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A description of relatively (p, r)-compact sets

Kati Ain and Eve Oja

Abstract. We introduce the notion of (p, r)-null sequences in a
Banach space and we prove a Grothendieck-like result: a subset of
a Banach space is relatively (p, r)-compact if and only if it is con-
tained in the closed convex hull of a (p, r)-null sequence. This extends a
recent description of relatively p-compact sets due to Delgado and Piñeiro,
providing to it an alternative straightforward proof.

1. Introduction

Let X be a Banach space and let c0(X) denote the space of X-valued null
sequences. By a classical result due to Grothendieck [6] (see, e.g., [7, p. 30]),
a subset K of X is relatively compact if and only if there exists (xn) ∈ c0(X)
such that K ⊂ conv(xn), the closed convex hull of the sequence (xn).

There is a strong form of compactness, the p-compactness, where p ≥ 1 is
a real number, that has been studied during the last years in the literature
(see, e.g., [3], [4], [5], [12]). Recently, Delgado and Piñeiro [10] introduced
and studied an interesting class c0,p(X) of p-null sequences which is a linear
subspace of c0(X) (in [8], it is proved that c0,p(X) coincides with the Chevet–
Saphar tensor product c0⊗̂dpX). One of their main results is as follows.

Theorem 1 (Delgado–Piñeiro; see [10, Theorem 2.5]). Let 1 ≤ p < ∞.
A subset K of a Banach space X is relatively p-compact if and only if there
exists (xn) ∈ c0,p(X) such that K ⊂ conv(xn).

The proof of Theorem 1 in [10] is not self-contained. It relies on some
theory of p-compact operators developed by Delgado, Piñeiro, and Serrano in
[5] (see [5, Corrollary 3.4, Propositions 3.5 and 3.8, and Theorem 3.13]) and
uses a characterization of operators having absolutely p-summing adjoints
(see [10, Proposition 2.4]).
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The aim of the present note is to give a very easy direct proof of the
Delgado–Piñeiro theorem. However, we shall proceed in a more general
setting of relatively (p, r)-compact sets, which is a very recent concept from
[1]. This will be done in Section 3.

In Section 2 we extend the notion of p-null sequences due to Delgado and
Piñeiro [10] to (p, r)-null sequences, and we show that a (p, r)-null sequence
converges to 0 and is relatively (p, r)-compact.

Our notation is standard. We consider Banach spaces over the same,
either real or complex, field K. The closed unit ball of a Banach space X
is denoted by BX . The Banach space of all p-summable sequences in X is
denoted by `p(X) and its norm by ‖(xn)‖p. If 1 ≤ p ≤ ∞, then p∗ denotes
the conjugate index of p (i.e., 1/p+1/p∗ = 1 with the convention 1/∞ = 0).

2. Relatively (p, r)-compact sets and (p, r)-null sequences

Let X be a Banach space and let p ≥ 1 be a real number. The p-convex
hull of a sequence (zk) ∈ `p(X) is defined as

p-conv(zk) =

{ ∞∑
k=1

akzk : (ak) ∈ B`p∗

}
.

Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ p∗. We define the (p, r)-convex hull of a
sequence (zk) ∈ `p(X) (where (zk) ∈ c0(X) if p =∞) by

(p, r)-conv(zk) =

{ ∞∑
k=1

akzk : (ak) ∈ B`r

}
.

As in [1], we say that a subset K of X is relatively (p, r)-compact if
K ⊂ (p, r)-conv(xn) for some (xn) ∈ `p(X), (where (xn) ∈ c0(X) if p =
∞). According to Grothendieck’s criterion, the (∞, 1)-compactness coin-
cides with the usual compactness (because (∞, 1)-conv(xn) is precisely the
closed absolutely convex hull of (xn)). The (p, 1)-compactness was occasion-
ally considered in the 1980s by Reinov [11] and by Bourgain and Reinov
[2] in the study of approximation properties of order s ≤ 1. The (p, p∗)-
compactness was introduced in 2002 by Sinha and Karn [12] under the name
of p-compactness.

In general, for p 6= q, r 6= s, relatively (p, r)-compact sets and rela-
tively (q, s)-compact sets do not coincide. In [10, Proposition 3.5], it was
proved (see also [9, Proposition 20] for a short proof within the frame-
work of operator ideals) that in all infinite-dimensional Banach spaces, rela-
tively p-compact subsets differ from relatively q-compact subsets for p 6= q,
2 ≤ p, q ≤ ∞. In our setting, this means that relatively (p, p∗)-compact sets
differ from relatively (q, q∗)-compact sets.

Let 1 ≤ p <∞ and 1 ≤ r ≤ p∗. Extending the notion of p-null sequences
due to Delgado and Piñeiro [10], we call a sequence (xn) in X (p, r)-null if for
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every ε > 0 there exist N ∈ N and (zk) ∈ `p(X) with ‖(zk)‖p ≤ ε such that
xn ∈ (p, r)-conv(zk) for all n ≥ N . The p-null sequences in [10] are defined
using the p-conv(zk), and they are precisely the (p, p∗)-null sequences.

Let us point out a couple of easy properties of (p, r)-null sequences.

Proposition 2. Let 1 ≤ p < ∞ and 1 ≤ r ≤ p∗. If a sequence (xn) in
a Banach space X is (p, r)-null, then xn → 0 and (xn) is relatively (p, r)-
compact.

Proof. Suppose that (xn) ⊂ X is (p, r)-null. Then for every ε > 0 there exist
N ∈ N and (zk) ∈ `p(X), ‖(zk)‖p ≤ ε, such that xn =

∑∞
k=1 a

n
kzk, where

(ank)∞k=1 ∈ B`r , for all n ≥ N .
We have, for all n ≥ N ,

‖xn‖ ≤
∞∑
k=1

‖ankzk‖ ≤ ‖(ank)k‖p∗‖(zk)‖p ≤ ‖(ank)k‖r‖(zk)‖p ≤ ε,

and therefore xn → 0.
We already have {xN , xN+1, ...} ⊂ (p, r)-conv(zk). We also have {x1, ...,

xN−1} ⊂ (p, r)-conv(wk), where

wk =

{
xk if k < N,

0 if k ≥ N.

Now the sequence

yk =

{
wk if k is odd,
zk if k is even,

is in `p(X) and xn ∈ (p, r)-conv(yk) for all n ∈ N. �

Sometimes (see, e.g., the next section), it is convenient to look at
(p, r)-convex hulls in the following way.

Let 1 ≤ p < ∞ and 1 ≤ r ≤ p∗. It is well known and easy to see that
every (zk) ∈ `p(X) defines a compact operator Φ(zk) : `r → X through the
equality

Φ(zk)(ak) =
∞∑
k=1

akzk, (ak) ∈ `r.

Clearly,

(p, r)-conv(zk) = Φ(zk)(B`r),

so that a subset K of X is relatively (p, r)-compact if and only if
K ⊂ Φ(zk)(B`r) for some (zk) ∈ `p(X); in particular, Φ(zk)(B`r) itself is
relatively (p, r)-compact.
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3. Relatively (p, r)-compact sets are contained in closed
convex hulls of (p, r)-null sequences

In the case when r = p∗, the following theorem reduces to the Delgado–
Piñeiro theorem (see Theorem 1).

Theorem 3. Let 1 ≤ p < ∞ and 1 ≤ r ≤ p∗. A subset K of a Banach
space X is relatively (p, r)-compact if and only if K is contained in the closed
convex hull of a (p, r)-null sequence.

Proof. For the “if ” part, let (xn) ⊂ X be a (p, r)-null sequence. By Propo-
sition 2, (xn) is relatively (p, r)-compact. Thus (xn) ⊂ Φ(zk)(B`r) for some
(zk) ∈ `p(X). The set Φ(zk)(B`r) is clearly absolutely convex. It is also
weakly compact. Indeed, if 1 < r < ∞, then B`r is weakly compact; if
r = 1 (or r = ∞), then B`1 = Bc∗0 (or B`∞ = B`∗1) is weak* compact
and Φ(zk) ∈ L(c∗0, X) (or Φ(zk) ∈ L(`∗1, X)) is weak* to weakly continu-
ous (because Φ∗(zk)(X

∗) ⊂ c0 (or Φ∗(zk)(X
∗) ⊂ `1)). Hence, Φ(zk)(B`r) is

a closed absolutely convex subset of X containing (xn). Since conv(xn) is
contained in the relatively (p, r)-compact set Φ(zk)(B`r), it is also relatively
(p, r)-compact.

For the “only if” part, let us assume that K ⊂ X is relatively (p, r)-
compact. We clearly may assume thatK = Φ(zk)(B`r) for some (zk) ∈ `p(X).
We are going to construct a (p, r)-null sequence (xn) such thatK ⊂ conv(xn).

Similarly to the very beginning of the proof of [4, Theorem 2.1, (c)⇒(a)]
(or of [10, Theorem 2.5]), we choose αk ↘ 0 such that (α−1

k zk) ∈ `p(X), and
we consider a compact diagonal operator D : `r → `r, defined by D(βk) =
(αkβk), (βk) ∈ `r, and Φ := Φ(α−1

k zk) : `r → X. Then, clearly, Φ(zk) = ΦD.
Since D(B`r) is a relatively compact subset of `r, by Grothendieck’s cri-

terion, there exists a sequence (Γn) ⊂ `r such that Γn → 0 and D(B`r) ⊂
conv(Γn). Denote xn = ΦΓn. Then K ⊂ conv(xn), and it remains to show
that (xn) is a (p, r)-null sequence.

Let Γn = (γnk )∞k=1. Then
∑∞

k=1 |γnk |r = ‖Γn‖rr →n 0 if r <∞ or supk |γnk | →n
0 if r =∞. Let us only consider the former case, the latter case being similar.

Let ε > 0 be fixed. Choose δ > 0 satisfying δr ≤ 1−2−r and δp(2pνp+1) ≤
εp, where ν := ‖(α−1

k zk)‖p. Then there exists N ∈ N such that
∑∞

k=1 |γnk |r <
δr if n ≥ N , and also

∑
k>N ‖α

−1
k zk‖p < δp. Now

xn =
∞∑
k=1

γnkα
−1
k zk =

N∑
k=1

γnkα
−1
k zk +

∑
k>N

γnkα
−1
k zk

=
N∑
k=1

γnk
2δ

2δα−1
k zk +

∑
k>N

γnkα
−1
k zk =

∞∑
k=1

δnk yk,
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where

(δnk )∞k=1 := (
γn1
2δ
, ...,

γnN
2δ
, γnN+1, γ

n
N+2, ...) ∈ `r

and

(yk)∞k=1 := (2δα−1
1 z1, ..., 2δα−1

N zN , α
−1
N+1zN+1, α

−1
N+2zN+2, ...) ⊂ X.

Observe that

‖(yk)‖pp = 2pδp
N∑
k=1

‖α−1
k zk‖p +

∑
k>N

‖α−1
k zk‖p

< 2pδpνp + δp = δp(2pνp + 1) ≤ εp,
i.e., (yk) ∈ `p(X) and ‖(yk)‖p ≤ ε. Observe also that, for every n ≥ N ,

‖(δnk )k‖rr =
N∑
k=1

|γnk |r

2rδr
+

∑
k>N

|γnk |r <
δr

2rδr
+ δr =

1
2r

+ δr ≤ 1,

i.e., (δnk )k ∈ B`r if n ≥ N . Hence, for every n ≥ N , we have

xn =
∞∑
k=1

δnk yk ∈ (p, r)-conv(yk),

as desired. �
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