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Categorical equivalence of some algebras

Oleg Košik

Abstract. We show that two lattices are categorically equivalent if and
only if they are isomorphic or dually isomorphic. Two normal bands
are categorically equivalent if and only if they are isomorphic or anti-
isomorphic. The same result holds for finite bands as well. We also
obtain corollaries for rectangular bands and semilattices.

1. Introduction

A variety of algebras is considered as a category: the objects are the
algebras in the variety and the morphisms are the homomorphisms between
them.

Two algebras A and B are called categorically equivalent, if there is a
categorical equivalence between the varieties they generate that sends A to
B.

All algebraic notions and properties that can be expressed by means of
categorical language are preserved under categorical equivalence. For exam-
ple, for categorically equivalent algebras A and B,

• the endomorphism semigroups of A and B are isomorphic;
• the subalgebra lattices of A and B are isomorphic;
• the congruence lattices of A and B are isomorphic.

(For the proofs, see [1].) Also, since categorical equivalence preserves limits,
all corresponding direct powers of categorically equivalent algebras are also
categorically equivalent.

Two algebras are called term-equivalent if their base sets and term oper-
ations coincide. Two algebras A and B are called weakly isomorphic if there
exists an algebra C isomorphic to A such that C is term-equivalent to B.
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According to R. McKenzie [4], weakly isomorphic algebras are categori-
cally equivalent.

An algebra A is directly irreducible if |A| > 1, and A ' B × C implies
|B| = 1 or |C| = 1. An algebra A has the unique factorization property if

(i) A is isomorphic to a product of directly irreducible algebras;
(ii) if

A '
∏
i∈I

Bi '
∏
j∈J

Cj

for some index sets I and J and for directly irreducible algebras Bi
and Cj , then there is a bijection φ : I → J such that Bi ' Cφ(i) for
all i ∈ I.

An algebra A has the refinement property (for direct factorizations) if

A '
∏
i∈I

Bi '
∏
j∈J

Cj

implies the existence of algebras Dij (i ∈ I, j ∈ J) such that, for all i ∈ I
and j ∈ J ,

Bi '
∏
j∈J

Dij and Cj '
∏
i∈I

Dij .

It is easy to see ([5]) that the refinement property implies condition (ii) of
the unique factorization property (but does not imply condition (i)).

An ordered set (A,R) is called connected if the conditions

B ∪ C = A, B ∩ C = ∅, R ⊆ B2 ∪ C2

entail that B = A or C = A.
Notions of the direct irreducibility, the unique factorization property, and

the refinement property for ordered sets are defined in the same way as for
algebras.

In [5], Section 5.6, the following facts, that we will use later, are proved.

Proposition 1.1. Every connected ordered set has the refinement prop-
erty.

Proposition 1.2. For an algebra A, if ConA is distributive, then A has
the refinement property.

2. Finite groups and semigroups

In 1997, L. Zádori [8] proved the following result.

Theorem 2.1. Finite groups are categorically equivalent if and only if
they are weakly isomorphic.
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In his work Zádori also stated a question of whether two weakly isomorphic
finite groups are always isomorphic. However, K. A. Kearnes and Á. Szendrei
showed in 2004 (see [2]) that there exist term-equivalent finite groups that
are not isomorphic. Thus categorical equivalence of general finite groups
implies only weak isomorphism.

But if at least one of the groups is abelian, the situation is slightly differ-
ent. It is well known that weakly isomorphic groups are isomorphic, provided
one of them is abelian, thus categorically equivalent finite groups are isomor-
phic as soon as one of them is abelian.

Recently, M. Behrisch and T. Waldhauser managed to generalize the result
of Zádori. Their result was presented in June 2012 at the Conference on
Universal Algebra and Lattice Theory in Szeged.

Theorem 2.2. Finite semigroups are categorically equivalent if and only
if they are weakly isomorphic.

3. Bands

We say that two groupoids (A, ·) and (B, ·) are anti-isomorphic, if there
is a bijection φ : A → B such that φ(xy) = φ(y)φ(x) for any x, y ∈ A. We
start with the following simple observations.

Lemma 3.1. Composition of two anti-isomorphisms is an isomorphism.

Lemma 3.2. For every groupoid A there exists a unique (up to isomor-
phism) groupoid A∗ anti-isomorphic to A.

Proof. We define A∗ to be groupoid with the same base set as A but with
the multiplication x ∗ y := yx. Then φ : A → A∗ defined by φ(x) = x is an
anti-isomorphism.

The uniqueness follows directly from Lemma 3.1. �

Lemma 3.3. For any groupoids A and B, (A×B)∗ ' A∗ ×B∗.

Proof. Let φ1 : A → A∗ and φ2 : B → B∗ be anti-isomorphisms. Then
φ : A × B → A∗ × B∗ defined by φ((x, y)) = (φ1(x), φ2(y)) is an anti-
isomorphism. �

Proposition 3.4. Anti-isomorphic groupoids are weakly isomorphic.

Proof. Let (A, ·) and (B, ·) be two anti-isomorphic groupoids. Consider
the groupoid (B, ∗) with x ∗ y := yx. Groupoids (B, ·) and (B, ∗) are anti-
isomorphic, hence (A, ·) and (B, ∗) are isomorphic. On the other hand, (B, ·)
and (B, ∗) are term-equivalent. Altogether we get that (A, ·) and (B, ·) are
weakly isomorphic. �

Corollary 3.5. Anti-isomorphic groupoids are categorically equivalent.



236 OLEG KOŠIK

A band is a semigroup consisting of idempotents. A rectangular band is a
band satisfying the identity xyx = x. Every rectangular band is isomorphic
to a direct product of a left zero band (satisfies the identity xy = x) and a
right zero band (satisfies the identity xy = y). A band is called normal if it
satisfies the identity xyzx = xzyx.

It is well known (see, for example, [3], p. 262) that every band S is a
semilattice Y of rectangular subbands, S = ∪{Se : e ∈ Y }, and SeSf ⊂ Sef
for e, f ∈ Y . The semilattice Y is called the structural semilattice of S. The
rectangular bands Se, e ∈ Y , are called the rectangular components of S.
Both the structural semilattice and the rectangular components of a band
are uniquely determined (up to isomorphism).

Lemma 3.6. If a band S is isomorphic to the direct product of a semi-
lattice Y and a rectangular band C, then Y and C are uniquely determined.

Proof. If S ' Y ×C, where Y is a semilattice and C a rectangular band,
then Y is the structural semilattice of S and the rectangular components are
all isomorphic to C. �

Lemma 3.7. If Y is a semilattice and C a rectangular band, then (Y ×
C)∗ ' Y × C∗.

Proof. Since semilattices are commutative, Y ∗ ' Y . Thus we have

(Y × C)∗ ' Y ∗ × C∗ ' Y × C∗.
�

Suppose Y is a chain semilattice, i.e., Y is linearly ordered, and st =
min{s, t} for all s, t ∈ Y . Then Y d denotes the dual chain semilattice, i.e.,
the semigroup (Y, ∗), where s ∗ t = max{s, t} for any s, t ∈ Y . If C is a
rectangular band, then both Y × C and Y d × C are normal bands. Every
band isomorphic to Y × C is called a chain normal band. If S and T are
bands isomorphic to Y × C and Y d × C, respectively, S and T are called
dual chain normal bands.

In 1985, B. M. Schein [6] characterized normal bands with isomorphic
endomorphism semigroups.

Theorem 3.8 (see [6], Theorem 3). Let S and T be normal bands with
isomorphic endomorphism semigroups. Then one of the following holds:

(1) S and T are isomorphic;
(2) S and T are anti-isomorphic;
(3) S and T are dual chain normal bands;
(4) S and T are chain normal bands and T is anti-isomorphic to the

dual of S.

Now we are ready to prove the following result.
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Theorem 3.9. Normal bands are categorically equivalent if and only if
they are isomorphic or anti-isomorphic.

Proof. We need to show that categorically equivalent normal bands are
isomorphic or anti-isomorphic. By Corollary 3.5, the converse is always true.

Take two categorically equivalent normal bands S and T . Their endo-
morphism semigroups are isomorphic, thus one of the statements (1)–(4) of
Theorem 3.8 is fulfilled. In case of (1) or (2) we are done. So assume that
(3) or (4) holds.

In case of (3), S ' Y × C and T ' Y d × C for some chain semilattice Y
and rectangular band C. We may assume that Y has at least two elements,
otherwise case (3) reduces to (1).

Consider the normal bands S2 ' (Y × C)2 ' Y 2 × C2 and T 2 ' (Y d ×
C)2 ' (Y d)2 × C2. They are also categorically equivalent and therefore
have isomorphic endomorphism semigroups. Thus one of the cases (1)–(4)
is fulfilled also for S2 and T 2. We analyze each possibility.

Case 3.1. S2 ' Y 2 × C2 and T 2 ' (Y d)2 × C2 are isomorphic.
By Lemma 3.6 we get that the semilattices Y 2 and (Y d)2 are isomorphic.

Semilattices as ordered sets are connected, hence by Proposition 1.1 they
have the refinement property. Both Y 2 and (Y d)2 have factorization into
directly irreducible ordered sets (chains Y and Y d are directly irreducible),
thus this factorization is unique. Therefore Y and Y d are isomorphic as
ordered sets and hence also as semilattices. Thus normal bands S and T are
also isomorphic.

Case 3.2. Y 2 × C2 and (Y d)2 × C2 are anti-isomorphic.
Lemma 3.7 gives us that Y 2 ×C2 ' (Y d)2 × (C2)∗, hence by Lemma 3.6,

Y 2 and (Y d)2 are isomorphic. Like in Case 3.1, this implies that semilattices
Y and Y d are isomorphic and therefore S ' Y ×C and T ' Y d×C are also
isomorphic.

Case 3.3 and 3.4. S2 ' Y 2 × C2 is a chain normal band.
By Lemma 3.6, Y 2 must be a chain semilattice. Since the square of at

least two-element chain is not a chain, this is not possible. This completes
the study of the case (3).

Finally, in case of (4), S ' Y × C and T is anti-isomorphic to Y d × C.
By Lemma 3.7, T ' Y d × C∗. Like in case (3), we consider the normal
bands S2 ' Y 2 × C2 and T 2 ' (Y d)2 × (C∗)2, which are also categorically
equivalent and therefore have isomorphic endomorphism semigroups. One of
the cases (1)–(4) of Theorem 3.8 is fulfilled for S2 and T 2, and the analysis
of them is exactly the same as for the cases (3.1)–(3.4).

First two cases lead to Y ' Y d, and thus S ' Y ×C, T ' Y ×C∗. From
Lemma 3.7 we see that S and T are anti-isomorphic. The last two cases lead
to contradiction.
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The proof of the theorem is now complete. �

Corollary 3.10. Categorically equivalent rectangular bands are isomor-
phic or anti-isomorphic.

Corollary 3.11. Categorically equivalent semilattices are isomorphic.

Proof. Since the semilattice multiplication is commutative, anti-isomorphic
semilattices are isomorphic. �

The assertion of Theorem 3.9 holds also for arbitrary finite bands if we
apply Theorem 2.2.

Proposition 3.12. Finite bands are categorically equivalent if and only
if they are isomorphic or anti-isomorphic.

Proof. By Theorem 2.2 it suffices to show that weakly isomorphic finite
bands are isomorphic or anti-isomorphic. Consider the binary part of the
clone of term operations generated by a band operation xy. Since the band
operation is idempotent, it is clear that this binary part consists of the inter-
pretations of the binary terms x, y, xy, yx, xyx, yxy. Hence any binary term
operation that generates the clone must equal xy or yx, which yields what
we need. Indeed, the projections themselves do not generate any additional
term operations; it is straightforward to check that the clone generated by
xyx (yxy) does not contain xy. �

Remark 3.13. Proposition 3.12 and the idea of its proof were suggested
by the referee. We thank the referee for this observation.

4. Lattices

For arbitrary lattice L we denote by Ld the dual lattice of L. We say that
the lattices L and L′ are dually isomorphic, if L′ ' Ld. We shall need the
following easy observation.

Lemma 4.1. For any positive integer n and lattice L, (Ln)d = (Ld)n.

We say that SubL determines L if for an arbitrary lattice K, SubL '
SubK implies L ' K or L ' Kd.

In [7], the following statement was proved.

Theorem 4.2. If L is directly reducible, then SubL determines L.

Note that in this theorem, L is determined not only in the class of directly
reducible lattices, but in the class of all lattices.

Theorem 4.3. Lattices are categorically equivalent if and only if they are
isomorphic or dually isomorphic.
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Proof. Take two categorically equivalent lattices L and K. They have
isomorphic sublattice-lattices. If at least one of them, say L, is directly
reducible, then SubL determines L, thus L ' K or L ' Kd.

Now assume that none of L and K is directly reducible. The lattices L2

and K2 are also categorically equivalent and SubL2 ' SubK2. Since L2 is
reducible, we obtain that L2 ' K2 or L2 ' (K2)d = (Kd)2. Lattices have
distributive congruence-lattices, thus by Proposition 1.2 they have the refine-
ment property. Since, by assumption, L and K are directly irreducible, both
L2 and K2 have factorization into directly irreducible lattices and therefore
have unique factorization. Thus L ' K or L ' Kd.

Conversely, assume that L and K are either isomorphic or dually iso-
morphic. The first case is trivial, in the second case L and K are weakly
isomorphic, hence categorically equivalent. �

Remark 4.4. The referee pointed out that Theorem 4.3 can be proved also
by using Proposition 1.1, in which case Proposition 1.2 may be avoided.
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