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Generalized parallel pi-equidistant ruled surfaces

Nuri Kuruoğlu and Melek Masal

Abstract. In this paper, parallel pi-equidistant ruled surfaces in
3-dimensional Euclidean space E3, [6], were generalized to n-dimensional
Euclidean space En. Then mean curvatures, Lipschitz–Killing curva-
tures, Gauss curvatures, scalar normal curvatures, Riemannian curva-
tures, Ricci curvatures, scalar curvatures of (m+ 1)-dimensional par-
allel pi-equidistant ruled surfaces were calculated and some relations
between these curvatures were found. Also, examples related to the
parallel p3-equidistant ruled surfaces in the E3 are given.

1. Introduction

We shall assume throughout that all curves, vector fields, etc. are differ-
entiable of class C∞. Consider a general submanifold M of the Euclidean
space En. Also, let χ(M) be the vector space of vector fields of a manifold
M . Let D̄ and D be Riemannian connections of En and M , respectively.
Then, if X and Y are vector fields of M and if V is the second fundamental
form of M , by decomposing D̄XY in a tangential and a normal component,
[5], we have

D̄XY = DXY + V (X,Y ). (1)

If ξ is any normal vector field on M , then we find the Weingarten equation
by decomposing D̄Xξ in a tangential component and a normal component
as

D̄Xξ = −Aξ(X) +D⊥

Xξ. (2)

Here Aξ determines a self-adjoint linear map at each point and D⊥ is a

metric connection in the normal bundle M⊥. We use the same notation Aξ

for the linear map and the matrix of the linear map. Suppose that X and Y
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are vector fields on M , then, if the standard metric tensor of En is denoted
by 〈 , 〉, we have

< V (X,Y ) , ξ >=< Aξ(X) , Y >, (3)

where ξ is a normal vector field. If ξ1, ξ2, . . . , ξn−dim M constitute an or-
thonormal base field of the normal bundle M⊥, then we have

V (X,Y ) =
n−dimM
∑

i=1

< V (X,Y ), ξi > ξi.

If V (X,Y ) = 0, for all vector fields X, Y of M , then M is called totally
geodesic in En and X and Y are called conjugate vectors in M . Moreover,
X is said to be asymptotic vector if V (X,X) = 0, [2]. The mean curvature
vector H of M is given by

H =
n−dimM
∑

i=1

trAξi

dimM
ξi ,

where ‖H‖ is the mean curvature. If H = 0 at each point P of M , then M

is said to be minimal. The 4th order covariant tensor field denoted by R as

R(X1,X2,X3,X4) = 〈X1, R(X3,X4)X2〉 , Xi ∈ χ(M),

is called the Riemannian curvature tensor and its value at a point P ∈ M is
called Riemannian curvature of M at P and

K(P ) = 〈X,R(X,Y )〉 for all X,Y ∈ χ(M).

Therefore we can write, [5],

〈X,R(X,Y )Y 〉 = 〈V (X,X), V (Y, Y )〉 − 〈V (X,Y ), V (X;Y )〉 .

The sectional curvature function K is defined by

K(XP , YP ) =
〈R(XP , YP )XP , YP 〉

〈XP ,XP 〉 〈YP , YP 〉 − 〈XP , YP 〉
2 .

K(XP , YP ) is called the sectional curvature of M at P .

For a matrix A = [aij] we write M(A) =
∑

i,j

a2ij . Suppose that ξ1, ...,

ξn−dimM is an orthonormal base field of χ(M⊥), then the scalar normal
curvature KN of M is given by, [4],

KN =

n−dimM
∑

i,j=1

M(AξiAξj −AξjAξi).

If ξ is a normal vector field on M , then the Lipschitz–Killing curvature in
the direction ξ and at point P of M is given by, [5],

G(P, ξ) = detAξ
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and for the Gauss curvature, we can write

G(P ) =

n−dimM
∑

j=1

G(P, ξj).

The submanifold M is said to be developable if G(P ) = 0 at P ∈ M .
If R is the Riemannian curvature tensor of M and {e1, . . . , em} is an

orthonormal frame field of χ(M), then we can write Ricci and the scalar
curvatures of M for all vector fields X,Y ∈ χ(M) as

S(X,Y ) =

m
∑

i=1

< R(ei,X)Y, ei >

and

rsk =
m
∑

i=1

S(ei, ei),

respectively, [2].

Let α be curve with arc-parameter and {e1(t), e2(t), ..., em(t)} be an or-
thonormal set of vectors spanning the m-dimensional subspace Em(t) of
Tα(t)E

n. We get an (m+ 1)-dimensional surface in En if the subspace Em(t)
moves along the curve α. This surface is called an (m+ 1)-dimensional gen-
eralized ruled surface and denoted by M . The curve α is called the base
curve and the subspace Em(t) is called the generating space at point α(t).
A parametrization of this ruled surface is given by

Φ(t, u1, u2, ..., um) = α(t) +

m
∑

i=1

uiei(t).

Taking the derivative of Φ with respect to t and ui we get

Φt = α̇+

m
∑

i=1

uiėi(t) , Φui
= ei(t), 1 ≤ i ≤ m.

We call Sp {e1, e2, ..., em, ė1, ė2, ..., ėm} the asymptotic bundle of M with
respect to Em(t) and denote it by A (t). The space

Sp {e1, e2, ..., em, ė1, ė2, ..., ėm, α̇}

is called the tangential bundle of M with respect to Em(t) and it is denoted
by T (t), [3].

2. The curvatures of (m+ 1)-dimensional parallel

pi-equidistant ruled surfaces in En

In this section, the (m+ 1)-dimensional parallel pi-equidistant ruled sur-
faces in En are defined and the curvatures of these surfaces are obtained.
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Let r and r∗ be two curves with arc-parameter in En and let {V1,V2, . . . ,Vk}
and {V ∗

1 , V
∗
2 , . . . , V

∗

k }, k ≤ n, be Frenet frames of r and r∗, respectively. If
ki and k∗i , 1 ≤ i ≤ k − 1, are the curvatures of r and r∗, respectively, then
we can write

V ′

1 = k1V2 ,

V ′

i = −ki−1Vi−1 + kiVi+1, 1 < i < k,

V ′

k = −kk−1Vk−1

(4)

and

V
∗′

1 = k∗1V
∗

2 ,

V
∗
′

i = −k∗i−1V
∗

i−1 + k∗i V
∗

i+1 , 1 < i < k.

V
∗′

k = −k∗k−1V
∗

k−1 .

(5)

Let M and M∗ be (m+ 1)-dimensional generalized ruled surfaces in En,
and let Em(t) and Em(t∗), 1 ≤ m ≤ k − 2, be generating spaces of M and
M∗, respectively. Then M and M∗ can be given by the following parametric
form:

M : X(t, u1, . . . , um) = r(t) +
m
∑

i=1

uiVi(t),

rank {Xt,Xu1
, . . . ,Xum

} = m+ 1,

(6)

M∗ : X∗ (t∗, u∗1, . . . , u
∗

m) = r∗(t∗) +

m
∑

i=1

u∗iV
∗

i (t
∗),

rank
{

X∗

t∗ ,X
∗

u∗

1
, . . . ,X∗

u∗

m

}

= m+ 1,

(7)

where {V1, V2, . . . , Vm} and {V ∗
1 , V

∗
2 , . . . , V

∗
m} are the orthonormal bases of

the generating spaces of M and M∗, respectively.

Definition 1. Let M and M∗ be (m+ 1)-dimensional ruled surfaces as
above in En . Let p1, p2 , . . . , pk−1, pk be the distances between the (k − 1)-
dimensional osculator planes Sp {V2, V3, . . . , Vk} and Sp {V ∗

2 , V
∗
3 , . . . , V

∗

k },
Sp {V1, V3, V4, . . . , Vk−1, Vk} and Sp

{

V ∗
1 , V

∗
3 , V

∗
4 , . . . , V

∗

k−1, V
∗

k

}

, . . . ,

Sp {V1, V2, . . . , Vk−3, Vk−2, Vk} and Sp
{

V ∗
1 , V

∗
2 , . . . , V

∗

k−3, V
∗

k−2, V
∗

k

}

,

Sp {V1, V2, . . . , Vk−2, Vk−1} and Sp
{

V ∗
1 , V

∗
2 , . . . , V

∗

k−2, V
∗

k−1

}

, respectively. If

1) V1 and V ∗
1 are parallel,

2) the distances pi, 1 ≤ i ≤ k, between the (k − 1)-dimensional oscula-
tor planes at the corresponding points of r and r∗ are constant,

then the ruled surfacesM andM∗ are called the (m+ 1)-dimensional parallel
pi-equidistant ruled surfaces, [1].
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Since the Frenet frames {V1, V2, . . . , Vk} and {V ∗
1 , V

∗
2 , . . . , V

∗

k } are the
orthonormal systems, we have the orthogonal systems

E1 =
dr

dt
,Ei =

dir

dti
−

i−1
∑

j=1

< dir
dti

, Ej >

‖Ej‖
2 Ej , 1 < i ≤ k,

and

E∗

1 =
dr∗

dt∗
, E∗

i =
dir∗

dt∗i
−

i−1
∑

j=1

< dir∗

dt∗i
, E∗

j >
∥

∥

∥
E∗

j

∥

∥

∥

2 E∗

j , 1 < i ≤ k. (8)

At this point, we get

V1 = E1, V2 =
E2

‖E2‖
, . . . , Vk =

Ek

‖Ek‖

and

V ∗

1 = E∗

1 , V
∗

2 =
E∗

2

‖E∗
2‖

, . . . , V ∗

k =
E∗

k
∥

∥E∗

k

∥

∥

.

Since V1 = V ∗
1 from the Definition 1, we get dr

dt
= dr∗

dt∗
.

In addition, if dt
dt∗

is constant, then we have

dir∗

dt∗i
=

dir

dti

(

dt

dt∗

)i−1

, 1 ≤ i ≤ k. (9)

If we subsitute the relation (9) into the relation (8), we obtain

Ei = E∗

i .

So we get

Vi = V ∗

i , 1 ≤ i ≤ k.

That is, we can say that the Frenet frames {V1, V2, . . . , Vk} and {V ∗
1 , V

∗
2 , . . . ,

V ∗

k } are equivalent to each other at the corresponding points of r and r∗.

Hence we can give the following theorem.

Theorem 2. Let M and M∗ be (m+1)-dimensional parallel pi-equidistant

ruled surfaces in En. The Frenet frames {V1, V2, . . . , Vk} and {V ∗
1 , V

∗
2 , . . . ,

V ∗

k } are equivalent at the corresponding points of r and r∗.

If rr∗ is the vector determined by the points r(t) and r∗(t∗) of the base
curves r and r∗ of (m+ 1)-dimensional parallel pi-equidistant ruled surfaces,
then the vector rr∗ can be expressed in terms of {V1, V2, . . . , Vk} as follows:
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Figure 1

rr∗ = a1V1 + a2V2 + · · ·+ akVk, ai ∈ IR, 1 ≤ i ≤ k.

Since < rr∗, Vi >= pi is the distance between the osculator planes, we get
ai = pi and thus

r∗ = r + p1V1 + p2V2 + · · ·+ pkVk.

Hence, we can give the following theorem.

Theorem 3. Let M and M∗ be (m+1)-dimensional parallel pi-equidistant

ruled surfaces with the base curves r and r∗, respectively. If pi, 1 ≤ i ≤ k, is

the distance between (k − 1)-dimensional osculator planes, then we have the

relation

r∗ = r + p1V1 + p2V2 + · · ·+ pkVk.

If ki and k∗i are the curvatures of r and r∗ of (m+ 1)-dimensional parallel
pi-equidistant ruled surfaces, then from the equations (4) and (5) we have

ki =< V ′

i , Vi+1 >=<
dVi

dt
, Vi+1 >, 1 ≤ i < k, (10)

and

k∗i =< V ∗′

i , V ∗

i+1 >=<
dV ∗

i

dt∗
, V ∗

i+1 >, 1 ≤ i < k.

From Theorem 2,
dVi

dt
=

dV ∗

i

dt∗
dt∗

dt
. (11)

If we use the equation (11), Theorem 2 and the equation (10), then we get

k∗i =
dt

dt∗
ki, 1 ≤ i < k.

Hence, we can give the following theorem.

Theorem 4. Let M and M∗ be (m+1)-dimensional parallel pi-equidistant

ruled surfaces with the base curves r and r∗, respectively. If ki and k∗i are

the curvatures of r and r∗, respectively, then

k∗i =
dt

dt∗
ki, 1 ≤ i < k.
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Let A(t) and A(t∗) be asymptotic bundles of M and M∗, respectively.
Then from the definition of the asymptotic bundle, we have

A(t) = Sp
{

V1, V2, . . . , Vm, V ′

1 , V
′

2 , . . . , V
′

m

}

(12)

and

A(t∗) = Sp
{

V ∗

1 , V
∗

2 , . . . , V
∗

m, V ∗
′

1 , V ∗
′

2 , . . . , V ∗
′

m

}

. (13)

If we use the Frenet formulas in the equations (12) and (13), then we get the
orthonormal bases {V1, V2, . . . , Vm+1} and

{

V ∗
1 , V

∗
2 , . . . , V

∗
m+1

}

of A(t) and
A(t∗), respectively. Therefore, we have

dimA(t) = m+ 1, dimA(t∗) = m+ 1.

Similarly, if T (t) and T (t∗) are the tangential bundles of M and M∗, respec-
tively, then we have

T (t) = Sp
{

V1, V2, . . . , Vm, V ′

1 , V
′

2 , . . . , V
′

m, r′
}

and

T (t∗) = Sp
{

V ∗

1 , V
∗

2 , . . . , V
∗

m, V ∗′

1 , V ∗′

2 , . . . , V ∗′

m , r∗
′

}

.

From the Frenet formulas, we get the orthonormal bases {V1, V2, . . . , Vm+1}
and

{

V ∗
1 , V

∗
2 , . . . , V

∗
m+1

}

of T (t) and T (t∗), respectively. Therefore,

dimT (t) = m+ 1, dimT (t∗) = m+ 1,

and

A(t) = A(t∗) = T (t) = T (t∗).

Thus, we can say that the asymptotic bundles of M and M∗ are equal and
so are the tangential bundles of M and M∗.

Hence, we can give the following theorem.

Theorem 5. Let M and M∗ be (m+1)-dimensional parallel pi-equidistant

ruled surfaces. Then the asymptotic and the tangential bundles of M and

M∗ are equal.

Let M and M∗ be (m+ 1)-dimensional parallel pi-equidistant ruled sur-
faces in En . From the equations (6) and (7), we have

Xt = V1 +

m
∑

i=1

uiV
′

i ,Xu1
= V1, . . . ,Xum

= Vm.

Therefore, we get the orthonormal bases {V1, . . . , Vm+1} and {V ∗
1 , . . . ,

V ∗
m+1

}

of M and M∗, respectively. If {ξ1, . . . , ξk−m−1, . . . , ξn−m−1} and
{

ξ∗1 , . . . , ξ
∗

k−m−1, . . . , ξ
∗
n−m−1

}

are the orthonormal bases of the normal

bundles M⊥ and M∗⊥, respectively, then we get the orthonormal bases
{V1, . . . , Vm+1, ξ1, . . . , ξk−m−1, . . . , ξn−m−1} and

{

V ∗
1 , . . . , V

∗
m+1, ξ

∗
1 , . . . ,

ξ∗k−m−1, . . . , ξ
∗
n−m−1

}

of En at a point P ∈ M and at a point P ∗ ∈ M∗,
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respectively, where ξi = Vm+1+i and ξ∗i = V ∗
m+1+i, 1 ≤ i ≤ k −m− 1. Sup-

pose that D̄, D and D∗ are the Riemannian connections of En, M and M∗,
respectively. Then we have the following Weingarten equations:

D̄V1
ξj =

m+1
∑

i=1
a
j
1iVi +

n−m−1
∑

q=1
b
j
1qξq, 1 ≤ j ≤ n−m− 1,

...

D̄Vm+1
ξj =

m+1
∑

i=1
a
j

(m+1)iVi +
n−m−1
∑

q=1
b
j

(m+1)qξq , 1 ≤ j ≤ n−m− 1.

Therefore, we can obtain the matrix Aξj , 1 ≤ j ≤ n−m− 1, as

Aξj = −









a
j
11 a

j
12 · · · a

j

1(m+1)
...
...
...

a
j

(m+1)1 a
j

(m+1)2 · · · a
j

(m+1)(m+1)









,

where

a
j
11 =< D̄V1

ξj , V1 > , . . . , a
j

1(m+1) =< D̄V1
ξj, Vm+1 >,

...

a
j

(m+1)1 =< D̄Vm+1
ξj, V1 > , . . . , a

j

(m+1)(m+1) =< D̄Vm+1
ξj , Vm+1 > .

(14)
It follows from the equations (2), (3) and (4) that

Aξ1 =AVm+2
=











0 · · · 0 km+1

0 · · · 0 0
...
...
...

0 · · · 0 0











(m+1)×(m+1)

and Aξj = 0, 2 ≤ j ≤ n−m−1.

(15)

Similarly, if ξ∗ is a normal vector field on M∗, then the Weingarten equation
has the form

D̄X∗ξ∗ = −Aξ∗(X
∗) +D

∗⊥

X∗ ξ∗,

where Aξ∗ is the self-adjoint linear transformation of χ(M∗) and D∗⊥ is the

metric connection in the normal bundle M∗⊥. Then we have the following
Weingarten equations:

D̄V ∗

1
ξ∗j =

m+1
∑

i=1
c
j
1iV

∗

i +
n−m−1
∑

q=1
d
j
1qξ

∗
q , 1 ≤ j ≤ n−m− 1,

...

D̄V ∗

m+1
ξ∗j =

m+1
∑

i=1
c
j

(m+1)iV
∗

i +
n−m−1
∑

q=1
d
j

(m+1)qξ
∗
q , 1 ≤ j ≤ n−m− 1.
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Therefore, we can obtain the matrix Aξ∗
j
, 1 ≤ j ≤ n−m− 1, as

Aξ∗
j
= −









c
j
11 · · · cj1(m+1)

...
...

c
j

(m+1)1 · · · c
j

(m+1)(m+1)









,

where

c
j
11 =< D̄V ∗

1
ξ∗j , V ∗

1 > , . . . , c
j

1(m+1) =< D̄V ∗

1
ξ∗j , V

∗
m+1 >,

...

c
j

(m+1)1 =< D̄V ∗

m+1
ξ∗j , V

∗
1 > , . . . , c

j

(m+1)(m+1) =< D̄V ∗

m+1
ξ∗j , V

∗
m+1 > .

(16)
Hence, from the equations (2), (3) and (5), it follows

Aξ∗
1
=AV ∗

m+2
=











0 · · · 0 k∗m+1

0 · · · 0 0
...
...
...

0 · · · 0 0











(m+1)×(m+1)

and Aξ∗
j
=0, 2 ≤ j ≤ n−m−1.

(17)
From Theorem 4 and equations (15) and (17), we have

Aξ∗
1
=

dt

dt∗
Aξ1 and Aξ∗

j
= Aξj = 0 , 2 ≤ j ≤ n−m− 1.

Making use of equations (15) and (17), we can prove the following theorem.

Theorem 6. Let M and M∗ be (m+1)-dimensional parallel pi-equidistant

ruled surfaces in En. The matrices Aξj and Aξ∗
j
, 1 ≤ j ≤ n−m− 1 satisfy

the relations

Aξ∗
1
=

dt

dt∗
Aξ1 , Aξ∗

j
= Aξj = 0 , 2 ≤ j ≤ n−m− 1.

Corollary 1. If M and M∗ are (m+ 1)-dimensional parallel pi-equidistant

ruled surfaces in En, then

det Aξ∗
j
= det Aξj = 0 , 1 ≤ j ≤ n−m− 1.

From Corollary 1 and the definition of Lipschitz–Killing curvature in a
direction ξj, we can write

G(P, ξj) = 0 for all P ∈ M, 1 ≤ j ≤ n−m− 1.

Thus, from the definition of Gauss curvature of M , we get

G(P ) =

n−m−1
∑

j=1

G(P, ξj) = 0.
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Therefore, M is a developable ruled surface. Similarly, from the definition
of Lipschitz–Killing and Gauss curvatures of M∗, we have

G(P ∗, ξ∗j ) = detAξ∗
j
= 0 , 1 ≤ j ≤ n−m− 1 , for all P ∗ ∈ M∗,

and

G(P ∗) =

n−m−1
∑

j=1

G(P ∗, ξ∗j ) = 0.

Therefore, M∗ is also a developable ruled surface.

Hence, we can give the following theorem.

Theorem 7. Let M and M∗ be (m+1)-dimensional parallel pi-equidistant

ruled surfaces in En. Then for any normal direction the Lipschitz–Killing

curvatures of M and M∗ vanish and M , M∗ are developable surfaces.

If H (H∗) and KN (KN∗) are the mean curvature vector and scalar normal

curvature of M (M∗), respectively, then from equations (15) and (17) we

have

H = H∗ = 0 and KN = KN∗ = 0.

Therefore, M and M∗ are the minimal ruled surfaces.

Hence we can give the following theorem.

Theorem 8. If M and M∗ are (m+ 1)-dimensional parallel pi-equidistant

ruled surfaces in En, then M and M∗ are minimal ruled surfaces and the

scalar normal curvatures of M and M∗ are zero.

If X and Y are vector fields and V is the second fundamental form of M ,

then from equations (1) and (2) we have

< D̄XY , ξ >=< V (X,Y ) , ξ >=< Aξ(X) , Y > , ξ ∈ χ⊥(M),

and

V (X,Y ) = −
n−m−1
∑

j=1

< Y , D̄Xξj > ξj.

In this case, for the Frenet vectors Vi and Vj , 1 ≤ i, j ≤ m + 1, we can
write

V (Vi , Vj ) = −
n−m−1
∑

l=1

< Vj , D̄Vi
ξl > ξl, 1 ≤ i, j ≤ m+ 1.

Thus, from equation (14), we get

V (Vi , Vj) = −

n−m−1
∑

l=1

alijξl.
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Using the equation (15), we obtain

V (V1, Vm+1) = −
n−m−1
∑

l=1

al1(m+1)ξl = km+1Vm+2,

V (Vi, Vj) = −
n−m−1
∑

l=1

alijξl = 0, 1 ≤ i, j ≤ m+ 1.

(18)

Similarly, for all X∗, Y ∗ ∈ χ(M∗), the Gauss equation is

D̄X∗Y ∗ = D∗

X∗Y ∗ + V ∗(X∗, Y ∗),

where V ∗ is the second fundamental form of M∗. From (9), we have

< D̄X∗Y ∗, ξ∗ >=< V ∗(X∗, Y ∗), ξ∗ >=< Aξ∗(X
∗), Y ∗ >

and

V ∗(X∗, Y ∗) = −
n−m−1
∑

j=1

< Y ∗, D̄X∗ξ∗j > ξ∗j .

Then we have

V ∗(V ∗

i , V
∗

j ) = −
n−m−1
∑

l=1

< V ∗

j , D̄V ∗

i
ξ∗l > ξ∗l , 1 ≤ i, j ≤ m+ 1,

and from equation (16),

V ∗(V ∗

i , V
∗

j ) = −
n−m−1
∑

l=1

clijξ
∗

l , 1 ≤ i, j ≤ m+ 1.

Making use of equation (17), we obtain

V ∗(V ∗
1 , V

∗
m+1) = k∗m+1V

∗
m+2 ,

V ∗(V ∗

i , V
∗

j ) = 0, 1 ≤ i, j ≤ m+ 1,
(19)

and from Theorems 2 and 4, we have

V ∗(V ∗
1 , V

∗
m+1) =

dt
dt∗

V (V1, Vm+1),

V ∗(V ∗

i , V
∗

j ) = V (Vi, Vj) = 0, 1 ≤ i, j ≤ m+ 1.
(20)

Thus, from equation (20) and from the definition of conjugate vectors, we
can give the following result.

Corollary 2. The vectors V1 and Vm+1 are conjugate if and only if V ∗
1

and V ∗
m+1 are conjugate vectors.

The sectional curvatures of M are

K(Vi, Vj) =< V (Vi, Vi) , V (Vj , Vj) > − < V (Vi, Vj) , V (Vi, Vj) > .
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Substituting equations (18) and (19) into the last equation, we get

K(V1, Vm+1) = −(km+1)
2,K(Vi, Vj) = 0 , 1 ≤ i, j ≤ m+ 1 ,

K(V ∗
1 , V

∗
m+1) = −(k∗m+1)

2,K(V ∗

i , V
∗

j ) = 0, 1 ≤ i, j ≤ m+ 1 .
(21)

Hence, we can give the following theorem.

Theorem 9. The sectional curvatures of M and M∗ are determined by

the equations (21).

From Theorems 4 and 9, we can give the next corollary.

Corollary 3. We have the following equations for sectional curvatures of

(m+ 1)-dimensional parallel pi-equidistant ruled surfaces in En:

K(V ∗

1 , V
∗

m+1) =

(

dt

dt∗

)2

K(V1, Vm+1),

K(V ∗

i , V
∗

j ) = K(Vi, Vj) = 0 , 1 ≤ i, j ≤ m+ 1.

For the Ricci curvature in the direction Vi of M , 1 ≤ i ≤ m+ 1 , we can
write

S(Vi, Vi) =
m+1
∑

j=1

{< V (Vj , Vj) , V (Vi, Vi) > − < V (Vi, Vj) , V (Vi, Vj) >}.

Using (18), we get

S(Vm+1, Vm+1) = K(V1, Vm+1) = −(km+1)
2,

S(Vi, Vi) = 0 , 1 ≤ i ≤ m .

For the scalar curvature of M we obtain

rsk =

m+1
∑

i=1

S(Vi, Vi) = S(Vm+1, Vm+1) = K(V1, Vm+1) .

Similarly, for the Ricci curvature in the direction V ∗
i of M∗, 1 ≤ i ≤ m+1 ,

we can write

(V ∗

i , V
∗

i ) =

m+1
∑

j=1

{

< V (V ∗

j , V
∗

j ) , V (V ∗

i , V
∗

i ) >

− < V (V ∗

i , V
∗

j ) , V (V ∗

i , V
∗

j ) >
}

.

Using (20), we obtain

S(V ∗

m+1, V
∗

m+1) = K(V ∗

1 , V
∗

m+1) = −(k∗m+1)
2,

S(V ∗

i , V
∗

i ) = 0 , 1 ≤ i ≤ m.
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Thus, the scalar curvature of M∗ is

r∗sk =

m+1
∑

i=1

S(V ∗

i , V
∗

i ) = S(V ∗

m+1, V
∗

m+1) = K(V ∗

1 , V
∗

m+1).

From Theorem 4 we have

S(V ∗

m+1, V
∗

m+1) =

(

dt

dt∗

)2

S(Vm+1, Vm+1) and r∗sk =

(

dt

dt∗

)2

rsk.

Hence, we can give the following theorem.

Theorem 10. Let M and M∗ be (m+ 1)-dimensional parallel pi-equi-

distant ruled surfaces in En . If S(Vi, Vi) and S(V ∗
i , V

∗
i ) are the Ricci

curvatures of M and M∗ and if rsk and r∗sk are the scalar curvatures of M

and M∗, respectively, then we have

S(V ∗

i , V
∗

i ) = S(Vi, Vi) = 0 , 1 ≤ i ≤ m,

S(V ∗

m+1, V
∗

m+1) =

(

dt

dt∗

)2

S(Vm+1, Vm+1) = r∗sk =

(

dt

dt∗

)2

rsk.

Let X =
m+1
∑

i=1
aiVi , Y =

m+1
∑

i=1
biVi ∈ χ(M). Then we can write

V (X,Y ) = V (

m+1
∑

i=1

aiVi ,

m+1
∑

j=1

bjVj),

and from (18),

V (X,Y ) = a1bm+1 V (V1, Vm+1). (22)

If S is totally geodesic, then

V (X,Y ) = 0 .

Thus, we get

a1bm+1 = 0 or V (V1, Vm+1) = 0.

Conversely, let a1bm+1 = 0 or V (V1, Vm+1) = 0. From equation (22) we
get

V (X,Y ) = 0 for all X,Y ∈ χ(M).

Hence, S is totally geodesic.

Thus, we can give the following theorem.

Theorem 11. Let X =
m+1
∑

i=1
aiVi , Y =

m+1
∑

i=1
biVi ∈ χ(M). Then M is

totally geodesic if and only if V (V1, Vm+1) = 0 or a1bm+1 = 0.
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Therefore, from Theorem 9, Theorem 11 and equation (18) we can give
the following corollaries.

Corollary 4. If K(V1, Vm+1) is equal to zero, then M is totally geodesic.

Corollary 5. If a1bm+1 6= 0 and M is totally geodesic, then M∗ is totally

geodesic and the Riemannian curvatures of M and M∗ are zero.

Example 1. The following surfaces (Figure 2) are parallel p3-equidistant
ruled surfaces in E3 parametrized by

ϕ(t, v) =

(

cos2 t− v sin 2t,
1

2
sin 2t+ v cos 2t, 0

)

,

and

ϕ∗(t, v) =

(

cos2 t− v sin 2t,
1

2
sin 2t+ v cos 2t, 4

)

.

0

5
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0

50

1

2

3

4

Figure 2

Example 2. The surfaces in E3 parametrized by

ϕ(t, v) =
(

cos3 t− v cos t, sin3 t+ v sin t, 0
)

,

and

ϕ∗(t, v) =
(

4 cos3 t− v cos t, 4 sin3 t+ v sin t, 0
)

are parallel p3-equidistant ruled surfaces (Figure 3).
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Figure 3

Example 3. The surfaces in E3 parametrized by

ϕ(t, v) = (cos t− v sin t, sin t+ v cos t, 1)

and

ϕ∗(t, v) = (3 cos t− v sin t, 3 sin t+ v cos t, 4)

are parallel p3-equidistant ruled surfaces (Figure 4).
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Figure 4
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