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Generalized parallel p;-equidistant ruled surfaces

NURI KURUOGLU AND MELEK MASAL

ABSTRACT. In this paper, parallel p;-equidistant ruled surfaces in
3-dimensional Euclidean space E>, [6], were generalized to n-dimensional
Euclidean space E™. Then mean curvatures, Lipschitz—Killing curva-
tures, Gauss curvatures, scalar normal curvatures, Riemannian curva-
tures, Ricci curvatures, scalar curvatures of (m + 1)-dimensional par-
allel p;-equidistant ruled surfaces were calculated and some relations
between these curvatures were found. Also, examples related to the
parallel ps-equidistant ruled surfaces in the E® are given.

1. Introduction

We shall assume throughout that all curves, vector fields, etc. are differ-
entiable of class C*°. Consider a general submanifold M of the Euclidean
space E™. Also, let x(M) be the vector space of vector fields of a manifold
M. Let D and D be Riemannian connections of E™ and M, respectively.
Then, if X and Y are vector fields of M and if V is the second fundamental
form of M, by decomposing DxY in a tangential and a normal component,
[5], we have

DxY =DxY +V(X,Y). (1)
If £ is any normal vector field on M, then we find the Weingarten equation
by decomposing Dx¢ in a tangential component and a normal component
as

Dxé = —Ag(X) + Dx¢. (2)
Here A¢ determines a self-adjoint linear map at each point and Dt is a

metric connection in the normal bundle M. We use the same notation Ag
for the linear map and the matrix of the linear map. Suppose that X and Y
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are vector fields on M, then, if the standard metric tensor of E™ is denoted
by (,), we have

<V(X)Y), £ >=< A(X), Y >, (3)
where £ is a normal vector field. If &,&s,...,&—qim M constitute an or-
thonormal base field of the normal bundle M=, then we have

n—dim M
VXY)= > <V(X)Y)§>&
i=1

If V(X,Y) =0, for all vector fields X, Y of M, then M is called totally
geodesic in E™ and X and Y are called conjugate vectors in M. Moreover,
X is said to be asymptotic vector if V' (X, X) = 0, [2]. The mean curvature
vector H of M is given by

n—dim M

H— tTA&

dim M

gia

where || H|| is the mean curvature. If H = 0 at each point P of M, then M
is said to be minimal. The 4** order covariant tensor field denoted by R as

R(X1, X9, X3, X4) = (X1, R(X3, X4)X2) , X; € x(M),

is called the Riemannian curvature tensor and its value at a point P € M is
called Riemannian curvature of M at P and

K(P)=(X,R(X,Y)) forall X,Y € x(M).
Therefore we can write, [5],
(X, RX,Y)Y)=(V(X,X), V(YY) — (V(X,Y),V(X;Y)).

The sectional curvature function K is defined by

(R(Xp,Yp)Xp,Yp)
(Xp, Xp) (Yp,Yp) — (Xp,Yp)*
K(Xp,Yp) is called the sectional curvature of M at P.

For a matrix A = [a;;] we write M(A) = Za?j. Suppose that &, ...,
i

K(Xp,Yp) =

&n—dim M is an orthonormal base field of (M=), then the scalar normal
curvature Ky of M is given by, [4],

n—dim M
Ky = Z M(AfiAfj - ASjA&)'

ij=1
If € is a normal vector field on M, then the Lipschitz—Killing curvature in
the direction £ and at point P of M is given by, [5],

G(P,¢) = det Aq
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and for the Gauss curvature, we can write

n—dim M
GP)= > GPE)
j=1
The submanifold M is said to be developable if G(P) =0 at P € M.
If R is the Riemannian curvature tensor of M and {ej,...,en} is an

orthonormal frame field of x(M), then we can write Ricci and the scalar
curvatures of M for all vector fields X,Y € x(M) as

S(X,Y)=> < R(e;, X)Y,¢; >
i=1

and
Tsk = Z S(eia ei)7
i=1

respectively, [2].

Let a be curve with arc-parameter and {e;(t), ex(t),...,en(t)} be an or-
thonormal set of vectors spanning the m-dimensional subspace FE,,(t) of
Ty E". We get an (m + 1)-dimensional surface in E™ if the subspace Ei,(t)
moves along the curve . This surface is called an (m + 1)-dimensional gen-
eralized ruled surface and denoted by M. The curve « is called the base
curve and the subspace E,,(t) is called the generating space at point «(t).
A parametrization of this ruled surface is given by

D (t,ur, ug, ooy Up) = a(t) + iuiei(t).
i=1
Taking the derivative of ® with respect to t and u; we get
O, =+ Em:uiéi(t) , Oy, =ei(t), 1<i<m.
i=1
We call Sp{ei,ea,....em,€1,€a,...,én} the asymptotic bundle of M with
respect to E,,(t) and denote it by A (¢). The space

Sp{ela €2, .-, €m, é17 é27 seey em7a}

is called the tangential bundle of M with respect to E,,(t) and it is denoted
by T'(t), [3].

2. The curvatures of (m + 1)-dimensional parallel
pi-~equidistant ruled surfaces in £”

In this section, the (m + 1)-dimensional parallel p;-equidistant ruled sur-
faces in E™ are defined and the curvatures of these surfaces are obtained.
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Let r and 7* be two curves with arc-parameter in E™ and let {V;,Va,... ,V;}
and {V{*, V5", ..., V}*}, k < n, be Frenet frames of r and r*, respectively. If
ki and kf, 1 <i < k — 1, are the curvatures of r and r*, respectively, then
we can write

Vi =k Va,
Vi=—ki1Viei + kiVig1,1 <i <k, (4)
Vi = —kp—1Vi—1
and
Vi =KV,
Vi =k VR 1. 1<i<k (5)

Vi = —kraVii.
Let M and M* be (m + 1)-dimensional generalized ruled surfaces in E™,
and let E,,(t) and E,,(t*), 1 < m < k — 2, be generating spaces of M and

M*, respectively. Then M and M* can be given by the following parametric
form:

M : X(tug, ... ,up) =7rt)+ Y uVi(t),
1 Z (6)

rank { Xy, Xy, ..., Xu,, } =m+1,

m
M X () = () + 3 WV,
i=1 (7)
rank {X;i,XZI,... ,XZ;L} =m+1,

where {V1,Va,...,V,} and {V{*, V55, ..., V*} are the orthonormal bases of
the generating spaces of M and M™*, respectively.

Definition 1. Let M and M* be (m + 1)-dimensional ruled surfaces as
above in E™ . Let p1,pa,..., pk—1,pr be the distances between the (k — 1)-
dimensional osculator planes Sp{Va,Vs,...,V;} and Sp{Vy, V5, ... .V},
Sp{V1, ‘/37 V47 R Vk—la Vk} and Sp {V1*7 ‘/3*7 VY4*7 R Vk*_p Vk*}v EE)
Sp{Vl, Vg, ceey Vk_g, Vk_g, Vk} and Sp{Vl*, VQ*, ey Vk*—37 Vk*—2’ Vk*}’
Sp{Vi,Va,..., Vk_2,Vi_1} and Sp {Vl*, Vo, Vi, Vk*_l}, respectively. If

1) Vi and V;* are parallel,
2) the distances p;, 1 <i < k, between the (k — 1)-dimensional oscula-
tor planes at the corresponding points of r and r* are constant,

then the ruled surfaces M and M* are called the (m + 1)-dimensional parallel
pi-equidistant ruled surfaces, [1].
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Since the Frenet frames {Vi,Va,...,V;} and {V{*, V', ..., V}*} are the
orthonormal systems, we have the orthogonal systems

dr dir < dt’;,E > .
R = ~ = NERIET
— 1B
j=1 J
and
dr* dire 2l < ZZ,E* >
Bi = G i = t*z—Z e B l<isk @
=]
At this point, we get
E2 Ek
Vi=E,Vo=c, Vi = 75
| B2 | Exl
and
E*
1 15 V2 ”E;H’ ’ ’E H

Since V7 = V" from the Definition 1, we get d—; =4d.

In addition, if Cgi is constant, then we have

dir* B ﬂ dt
¥t dtt \ dt*

i—1
> . 1<i<k (9)

If we subsitute the relation (9) into the relation (8), we obtain
E; = E7.
So we get
Vi=Vr, 1<i<k

That is, we can say that the Frenet frames {V},Va,..., Vi } and {V*, V5, ...,
V*} are equivalent to each other at the corresponding points of r and r*.

Hence we can give the following theorem.

Theorem 2. Let M and M* be (m+1)-dimensional parallel p;-equidistant
ruled surfaces in E™. The Frenet frames {V1,Va, ..., Vi} and {V{*, V5, ...,
Vit are equivalent at the corresponding points of r and r*.

If 7r* is the vector determined by the points r(¢) and r*(t*) of the base
curves r and 7* of (m + 1)-dimensional parallel p;-equidistant ruled surfaces,
then the vector rr* can be expressed in terms of {Vi,Va,..., Vi } as follows:
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4

4
/

Figure 1

rr* =a1Vi +aVo+ - +apVi,a; € IR, 1<:<k.
Since < rr*,V; >= p; is the distance between the osculator planes, we get
a; = p; and thus

r* =r+p Vi +pVao+---+pp V.
Hence, we can give the following theorem.

Theorem 3. Let M and M* be (m+1)-dimensional parallel p;-equidistant
ruled surfaces with the base curves r and r*, respectively. Ifp;, 1 <i <k, is
the distance between (k — 1)-dimensional osculator planes, then we have the
relation

r* =r+p Vi +pVao+---+pp V.

If k; and k; are the curvatures of 7 and r* of (m + 1)-dimensional parallel
pi-equidistant ruled surfaces, then from the equations (4) and (5) we have

av;

ki =<V/,Viy1 >=<
i +1 dt

7‘/734-1 >, 1 < 1< k7 (10)

and
*

/ dV.
ki =< Vi, Vit >=< d—ti’v’:l >, 1<i<k.
From Theorem 2,
av;  dv;dt”

= . 11

dt dt* dt (11)

If we use the equation (11), Theorem 2 and the equation (10), then we get
., dt ,

Hence, we can give the following theorem.

Theorem 4. Let M and M* be (m+1)-dimensional parallel p;-equidistant
ruled surfaces with the base curves v and r*, respectively. If k; and k} are
the curvatures of r and r*, respectively, then

o dt

=k, 1<i<Ek.
i e 1<
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Let A(t) and A(t*) be asymptotic bundles of M and M*, respectively.
Then from the definition of the asymptotic bundle, we have

A(t) = Sp{Vi,Va,..., Vi, VI, V3,.. .,V } (12)
and
A(t) = Sp{vl*,vz*,...,Vnﬁ,vl*’,x/z*’,...,vn’;’}. (13)

If we use the Frenet formulas in the equations (12) and (13), then we get the
orthonormal bases {V1,Va,..., Vi } and {V5*, V55, ..., Vx  } of A(t) and
A(t*), respectively. Therefore, we have
dimA(t) =m+1, dimA(t") =m+ 1.
Similarly, if 7'(t) and T'(t*) are the tangential bundles of M and M™*, respec-
tively, then we have
T(t)=Sp{Vi,Va,..., Vi, V|, V3, ..., Vi .7}
and
T() = Sp{Vi Ve, Vi Vi vl
From the Frenet formulas, we get the orthonormal bases {V1,Va, ..., Vinq1}
and {V1*= |2 ,Vgﬂ} of T'(t) and T'(t*), respectively. Therefore,
dimT(t) =m+1, dimT(t") =m + 1,
and
A(t) = A(t") =T(t) = T(tY).
Thus, we can say that the asymptotic bundles of M and M* are equal and
so are the tangential bundles of M and M*.
Hence, we can give the following theorem.
Theorem 5. Let M and M* be (m+1)-dimensional parallel p;-equidistant

ruled surfaces. Then the asymptotic and the tangential bundles of M and
M* are equal.

Let M and M* be (m + 1)-dimensional parallel p;-equidistant ruled sur-
faces in E™ . From the equations (6) and (7), we have

Xt - ‘/i + Zui‘/;,7Xu1 = Vl” b 7Xum = Vm
=1

Therefore, we get the orthonormal bases {Vi,...,Vi,11} and {V", ...,
V,’;H_l} of M and M*, respectively. If {&1,...,&—m—1,---,&n—m—1} and
{&,....& 1, - & _m_1} are the orthonormal bases of the normal
bundles M+ and M*-, respectively, then we get the orthonormal bases
{Vl,...,vm+1,§1,...,fk_m_l,...,fn_m_l} and {‘/1*7"'7V7:l+17§ik7"'7
5;;_m_1,...,£;;_m_1} of E™ at a point P € M and at a point P* € M*,
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respectively, where § = Vi1 and =V ;1 <i<k—m—1. Sup-
pose that D, D and D* are the Riemannian connections of £, M and M*,
respectively. Then we have the following Weingarten equations:

m+1 . n—m—1

Dug = ¥ aiVit X My 1<ji<n—m-—1,
1= q=

m+1 . n—m—1

DVm+1£j = Z; a%m—i—l)iVi + qgl b%m—i-l)ng’ 1<j<n—-m-1L

Therefore, we can obtain the matrix A¢;,1 <j<n-—m—1, as

aj; @y a{(m—i—l)
j j j
Comt+1)1 Ymt1)2 """ Ym+1)(m+1)
where
a'{l =< Dvlgj,‘/l >, ., a{(mﬂ) =< DVlfj,Vm_;_l >,
a{m-i-l)l =< DVW“@"VI Z a{m—i-l)(m—i-l) =< DVmej, Vi1 >
(14)
It follows from the equations (2), (3) and (4) that
0 -0 kit
0---00
A=Ay, .= .. and Agj =0, 2<j<n—-m-1.
0---00 (m+1)x (m—+1)
(15)

Similarly, if £* is a normal vector field on M*, then the Weingarten equation
has the form

Dx+€" = —Ag(X*) + D¥: €7,
where Ag« is the self-adjoint linear transformation of y(M*) and D** is the
metric connection in the normal bundle A/**. Then we have the following
Weingarten equations:

_ m+1 . n—m—1 j )
DVl*gj - Zzzl C’LVZ + qgl dl‘ZSQ’ l<js<n-m-1,

m+1 . n—m—1

DV;rklg; =2 sz-i-l)ivi* * qzzjl d%m-i-l)q ZIF’ lsjsn-—m-1

i=1
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Therefore, we can obtain the matrix Ag;«, 1<j<n—m-—1, as

Ar )
Agr=—| &
g

(m+1)1 (m41)(m+1)

where

C{l =< Dvl*f;f 7V1* > S ey C{(m_"_l) =< DV1*€;7VTZ+1 >7

C'Zm+1)1 =< DVJLHS; > Cgm—i-l)(m—i-l) =< D‘CTLHq’VrZH >
(16)

Hence, from the equations (2), (3) and (5), it follows
0 --0ki
0---00
Aff :Avn§+2 = .. and Ag; =0, 2<j5< n—m—1.

0---00 (m+1)x (m+1)
(17)

From Theorem 4 and equations (15) and (17), we have

dt .
AST:%‘A& and Ag;:AngO, 2<j<n-m-—1

Making use of equations (15) and (17), we can prove the following theorem.

Theorem 6. Let M and M* be (m+1)-dimensional parallel p;-equidistant
ruled surfaces in E". The malrices A¢, and Ag;, 1<j<n—m-—1 satisfy
the relations

dt .

Corollary 1. If M and M* are (m + 1)-dimensional parallel p;-equidistant
ruled surfaces in E™, then

detAf;:detAijO, 1§j§n—m—1.

From Corollary 1 and the definition of Lipschitz—Killing curvature in a
direction §;, we can write

G(P,&)=0 forall Pe M, 1<j<n-—m-—1.
Thus, from the definition of Gauss curvature of M, we get

G(P) = v G(P,&) = 0.
j=1
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Therefore, M is a developable ruled surface. Similarly, from the definition
of Lipschitz—Killing and Gauss curvatures of M*, we have

G(P*,é’;»‘):detAg; =0, 1<j<n—-m-—1, forall P* € M~*,

and
n—m—1

Z G(P.&) =

Therefore, M* is also a developable ruled surface.

Hence, we can give the following theorem.

Theorem 7. Let M and M* be (m+1)-dimensional parallel p;-equidistant
ruled surfaces in E™. Then for any normal direction the Lipschitz—Killing
curvatures of M and M* vanish and M, M* are developable surfaces.

IfH (H*) and Kn (Kn~) are the mean curvature vector and scalar normal
curvature of M (M*), respectively, then from equations (15) and (17) we
have

H=H"=0 and Ky = Kpy+=0.

Therefore, M and M™* are the minimal ruled surfaces.

Hence we can give the following theorem.

Theorem 8. If M and M* are (m + 1)-dimensional parallel p;-equidistant
ruled surfaces in E™, then M and M* are minimal ruled surfaces and the
scalar normal curvatures of M and M* are zero.

If X and Y are vector fields and V is the second fundamental form of M,
then from equations (1) and (2) we have

<DxY,e>=<V(X,Y),{>=< A(X), Y >, £ex (M),

and
n—m-—1

Z <Y,Dij >fj.

=1

In this case, for the Frenet vectors V; and V;, 1 <4,5 < m+ 1, we can
write

n—m—1
Vi, Vi)== >, <V;. Dy&>§& 1<ij<m+1
=1
Thus, from equation (14), we get
n—m—1
V(Vi, V) =— 3 dj&.

=1
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Using the equation (15), we obtain

n—m—1
V(‘/I,Vm—l—l) = - Z all(m+1)£l = km+1Vin+2,
e (18)
V(Vi,Vi) == > a6 =0, 1<ij<m+]1
Similarly, for all X*, Y™ € x(M*), the Gauss equation is
Dx+Y* = D%.Y* + V*(X*, %),
where V* is the second fundamental form of M*. From (9), we have
< Dx:Y7*, £ >=< V(X" V"), & >=< A= (X7), Y™ >
and
n—m—1 _
VHXR Y ) == Y <Y Dx >
j=1
Then we have
n—m—1 B
1=1
and from equation (16),
n—m-—1
VHVE V) = — Z i, 1<ij<m+L
=1
Making use of equation (17), we obtain
V*(Vf’ njfb+1) = k:m+lvn>;+27
(19)
VHVAVE) =0, 1<ij<m+1,
and from Theorems 2 and 4, we have
VAV Vi) = 3=V (Vi Vi),
(20)

VIV V) = VIV V) =0, 1<ij<m+1.

Thus, from equation (20) and from the definition of conjugate vectors, we
can give the following result.

Corollary 2. The vectors Vi and Vy,11 are conjugate if and only if V}*
and V| are conjugate vectors.

The sectional curvatures of M are

K(Vi, V) =<V (V;, Vi), V(V}, V}) > = <V(Vi, V), VI(Vi, V) > .
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Substituting equations (18) and (19) into the last equation, we get

K(Vlvvm-i-l):_(km-i-l)sz(Vi?‘/}):O? 1<i,5<m+1,
(21)
KV Vi) = —(k0)?, KV V) =0, 1<d,j<m+1.
Hence, we can give the following theorem.

Theorem 9. The sectional curvatures of M and M* are determined by
the equations (21).

From Theorems 4 and 9, we can give the next corollary.

Corollary 3. We have the following equations for sectional curvatures of
(m + 1)-dimensional parallel p;-equidistant ruled surfaces in E™:

dt \?
K(V17 m—i—l) % K(V17Vm+l)7

For the Ricci curvature in the direction V; of M, 1 <i<m+ 1, we can
write
m—+1
SV, Vi) = Z{<VV],V) V(Vi,Vi) > = < V(Vi,V;), V(V;,V;) >}
7j=1

Using (18), we get

S(Vins1, V1) = K(Vi, Vins1) = —(kmy1)?,
S(V;,,Vi) =0, 1<i<m.

For the scalar curvature of M we obtain
m+1

rek =Y S(Vi, Vi) = S(Ving1, Ving1) = K(Vi, Ving1) -
=1

Similarly, for the Ricci curvature in the direction V;* of M*, 1 <¢<m+1,
we can write

m—+1
(V*, Vi) Z {<VV7 V), VIV V) >
—< V(‘/;*7‘/]*) ) V(‘/Z*?V]*) >} :
Using (20), we obtain

SVims1: Vingr) = K7, Vi y) = = (k1)
S(VHVH)=0, 1<i<m.
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Thus, the scalar curvature of M* is

m—+1

Top = Z SV VE) = S(Vingr, Ving) = KOV, Vi)
i=1

From Theorem 4 we have

. dt \? . dt\*
S( m—+1>» m+1) (%) S(Vm+lavm+1) and Tskp = <dt*> Tsk-

Hence, we can give the following theorem.

Theorem 10. Let M and M* be (m + 1)-dimensional parallel p;-equi-
distant ruled surfaces in E™ . If S(V;,Vi) and S(V;*,V*) are the Ricci
curvatures of M and M* and if rg, and v}, are the scalar curvatures of M
and M*, respectively, then we have

SV Vi) =5(Vi, Vi) =0, 1<i<m,

i} dt \ 2 . dt \?
S( m+1> m—i—l) (%) S(Vm-i-lvvm-i-l):rsk: (dt*) T'sk-

m+-1 m+1
Let X = > a;Vi, Y= > bV; € x(M). Then we can write
i=1 i=1

m+1 m+41

—V(Yai. Y01,
i=1 j=1

and from (18),
V(X,Y) = arbm1 V(Vi, Vi) (22)
If S is totally geodesic, then
V(X,Y)=0.
Thus, we get
a1bp+1 =0 or V(V1,Vyg1) =0.

Conversely, let a1b,+1 =0 or V(Vi,V,,41) = 0. From equation (22) we
get

V(X,Y)=0 forall X,Y € x(M).
Hence, S is totally geodesic.
Thus, we can give the following theorem.

m+1
Theorem 11. Let X = Z a;V;, Y = E biVi € x(M). Then M is

totally geodesic if and only zf V(Vl, Vint1) = O or aibm+1 = 0.
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Therefore, from Theorem 9, Theorem 11 and equation (18) we can give
the following corollaries.

Corollary 4. If K(V1,Vi,41) is equal to zero, then M is totally geodesic.

Corollary 5. If a1by,41 # 0 and M is totally geodesic, then M* is totally
geodesic and the Riemannian curvatures of M and M™ are zero.

Example 1. The following surfaces (Figure 2) are parallel ps-equidistant
ruled surfaces in E® parametrized by

1
o(t,v) = <COS2 t — vsin 2t, 5 sin 2t + v cos 2t, 0> ,

and
1
o (t,v) = (cos2 t — v sin 2t, 3 sin 2t 4 v cos 2t, 4> .

5 5

Figure 2
Example 2. The surfaces in E? parametrized by
o(t,v) = (0053 t —vcost,sin®t + vsint, 0) ,

and
©*(t,v) = (4 cos®t —wcost,4sin®t 4 vsint, 0)

are parallel ps-equidistant ruled surfaces (Figure 3).
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Figure 3
Example 3. The surfaces in E? parametrized by
o(t,v) = (cost — vsint,sint + vcost, 1)

and
©*(t,v) = (3cost —vsint,3sint + v cost,4)

are parallel ps-equidistant ruled surfaces (Figure 4).

Figure 4
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