Generalized parallel p_i -equidistant ruled surfaces

Nuri Kuruoğlu and Melek Masal

ABSTRACT. In this paper, parallel p_i -equidistant ruled surfaces in 3-dimensional Euclidean space E^3 , [6], were generalized to n-dimensional Euclidean space E^n . Then mean curvatures, Lipschitz–Killing curvatures, Gauss curvatures, scalar normal curvatures, Riemannian curvatures, Ricci curvatures, scalar curvatures of (m+1)-dimensional parallel p_i -equidistant ruled surfaces were calculated and some relations between these curvatures were found. Also, examples related to the parallel p_3 -equidistant ruled surfaces in the E^3 are given.

1. Introduction

We shall assume throughout that all curves, vector fields, etc. are differentiable of class C^{∞} . Consider a general submanifold M of the Euclidean space E^n . Also, let $\chi(M)$ be the vector space of vector fields of a manifold M. Let \bar{D} and D be Riemannian connections of E^n and M, respectively. Then, if X and Y are vector fields of M and if V is the second fundamental form of M, by decomposing $\bar{D}_X Y$ in a tangential and a normal component, [5], we have

$$\bar{D}_X Y = D_X Y + V(X, Y). \tag{1}$$

If ξ is any normal vector field on M, then we find the Weingarten equation by decomposing $\bar{D}_X\xi$ in a tangential component and a normal component as

$$\bar{D}_X \xi = -A_{\xi}(X) + D_X^{\perp} \xi. \tag{2}$$

Here A_{ξ} determines a self-adjoint linear map at each point and D^{\perp} is a metric connection in the normal bundle M^{\perp} . We use the same notation A_{ξ} for the linear map and the matrix of the linear map. Suppose that X and Y

Received October 13, 2011.

²⁰¹⁰ Mathematics Subject Classification. 53A05, 53A07, 53A04, 53C25, 51M05, 51L20, 14125

Key words and phrases. Parallel p_i -equidistant ruled surfaces, generalized ruled surfaces, curvatures.

http://dx.doi.org/10.12697/ACUTM.2013.17.01

are vector fields on M, then, if the standard metric tensor of E^n is denoted by \langle , \rangle , we have

$$\langle V(X,Y), \xi \rangle = \langle A_{\xi}(X), Y \rangle,$$
 (3)

where ξ is a normal vector field. If $\xi_1, \xi_2, \dots, \xi_{n-\dim M}$ constitute an orthonormal base field of the normal bundle M^{\perp} , then we have

$$V(X,Y) = \sum_{i=1}^{n-\dim M} \langle V(X,Y), \xi_i \rangle \xi_i.$$

If V(X,Y) = 0, for all vector fields X, Y of M, then M is called totally geodesic in E^n and X and Y are called conjugate vectors in M. Moreover, X is said to be asymptotic vector if V(X,X) = 0, [2]. The mean curvature vector H of M is given by

$$H = \sum_{i=1}^{n-\dim M} \frac{tr A_{\xi_i}}{\dim M} \xi_i \,,$$

where ||H|| is the mean curvature. If H = 0 at each point P of M, then M is said to be minimal. The 4^{th} order covariant tensor field denoted by R as

$$R(X_1, X_2, X_3, X_4) = \langle X_1, R(X_3, X_4)X_2 \rangle, X_i \in \chi(M),$$

is called the Riemannian curvature tensor and its value at a point $P \in M$ is called Riemannian curvature of M at P and

$$K(P) = \langle X, R(X, Y) \rangle$$
 for all $X, Y \in \chi(M)$.

Therefore we can write, [5],

$$\langle X, R(X,Y)Y \rangle = \langle V(X,X), V(Y,Y) \rangle - \langle V(X,Y), V(X;Y) \rangle.$$

The sectional curvature function K is defined by

$$K(X_P, Y_P) = \frac{\langle R(X_P, Y_P) X_P, Y_P \rangle}{\langle X_P, X_P \rangle \langle Y_P, Y_P \rangle - \langle X_P, Y_P \rangle^2}.$$

 $K(X_P, Y_P)$ is called the sectional curvature of M at P.

For a matrix $A = [a_{ij}]$ we write $M(A) = \sum_{i,j} a_{ij}^2$. Suppose that $\xi_1, ..., \xi_n$

 $\xi_{n-\dim M}$ is an orthonormal base field of $\chi(M^{\perp})$, then the scalar normal curvature K_N of M is given by, [4],

$$K_N = \sum_{i,j=1}^{n-\dim M} M(A_{\xi_i} A_{\xi_j} - A_{\xi_j} A_{\xi_i}).$$

If ξ is a normal vector field on M, then the Lipschitz-Killing curvature in the direction ξ and at point P of M is given by, [5],

$$G(P,\xi) = \det A_{\xi}$$

and for the Gauss curvature, we can write

$$G(P) = \sum_{j=1}^{n-\dim M} G(P, \xi_j).$$

The submanifold M is said to be developable if G(P)=0 at $P\in M.$

If R is the Riemannian curvature tensor of M and $\{e_1, \ldots, e_m\}$ is an orthonormal frame field of $\chi(M)$, then we can write Ricci and the scalar curvatures of M for all vector fields $X, Y \in \chi(M)$ as

$$S(X,Y) = \sum_{i=1}^{m} \langle R(e_i, X)Y, e_i \rangle$$

and

$$r_{sk} = \sum_{i=1}^{m} S(e_i, e_i),$$

respectively, [2].

Let α be curve with arc-parameter and $\{e_1(t), e_2(t), ..., e_m(t)\}$ be an orthonormal set of vectors spanning the m-dimensional subspace $E_m(t)$ of $T_{\alpha(t)}E^n$. We get an (m+1)-dimensional surface in E^n if the subspace $E_m(t)$ moves along the curve α . This surface is called an (m+1)-dimensional generalized ruled surface and denoted by M. The curve α is called the base curve and the subspace $E_m(t)$ is called the generating space at point $\alpha(t)$. A parametrization of this ruled surface is given by

$$\Phi(t, u_1, u_2, ..., u_m) = \alpha(t) + \sum_{i=1}^{m} u_i e_i(t).$$

Taking the derivative of Φ with respect to t and u_i we get

$$\Phi_t = \dot{\alpha} + \sum_{i=1}^m u_i \dot{e}_i(t), \ \Phi_{u_i} = e_i(t), \quad 1 \le i \le m.$$

We call $Sp\{e_1, e_2, ..., e_m, \dot{e}_1, \dot{e}_2, ..., \dot{e}_m\}$ the asymptotic bundle of M with respect to $E_m(t)$ and denote it by A(t). The space

$$Sp\{e_1, e_2, ..., e_m, \dot{e}_1, \dot{e}_2, ..., \dot{e}_m, \dot{\alpha}\}$$

is called the tangential bundle of M with respect to $E_m(t)$ and it is denoted by T(t), [3].

2. The curvatures of (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n

In this section, the (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n are defined and the curvatures of these surfaces are obtained.

Let r and r^* be two curves with arc-parameter in E^n and let $\{V_1, V_2, \ldots, V_k\}$ and $\{V_1^*, V_2^*, \ldots, V_k^*\}$, $k \leq n$, be Frenet frames of r and r^* , respectively. If k_i and k_i^* , $1 \leq i \leq k-1$, are the curvatures of r and r^* , respectively, then we can write

$$V'_{1} = k_{1}V_{2},$$

$$V'_{i} = -k_{i-1}V_{i-1} + k_{i}V_{i+1}, 1 < i < k,$$

$$V'_{k} = -k_{k-1}V_{k-1}$$

$$(4)$$

and

$$V_1^{*'} = k_1^* V_2^*,$$

$$V_i^{*'} = -k_{i-1}^* V_{i-1}^* + k_i^* V_{i+1}^*, \quad 1 < i < k.$$

$$V_k^{*'} = -k_{k-1}^* V_{k-1}^*.$$
(5)

Let M and M^* be (m+1)-dimensional generalized ruled surfaces in E^n , and let $E_m(t)$ and $E_m(t^*)$, $1 \le m \le k-2$, be generating spaces of M and M^* , respectively. Then M and M^* can be given by the following parametric form:

$$M: X(t, u_1, \dots, u_m) = r(t) + \sum_{i=1}^{m} u_i V_i(t),$$

$$rank \{X_t, X_{u_1}, \dots, X_{u_m}\} = m + 1,$$
(6)

$$M^*: X^* (t^*, u_1^*, \dots, u_m^*) = r^*(t^*) + \sum_{i=1}^m u_i^* V_i^*(t^*),$$

$$rank \left\{ X_{t^*}^*, X_{u_1^*}^*, \dots, X_{u_m^*}^* \right\} = m + 1,$$

$$(7)$$

where $\{V_1, V_2, \dots, V_m\}$ and $\{V_1^*, V_2^*, \dots, V_m^*\}$ are the orthonormal bases of the generating spaces of M and M^* , respectively.

Definition 1. Let M and M^* be (m+1)-dimensional ruled surfaces as above in E^n . Let $p_1, p_2, \ldots, p_{k-1}, p_k$ be the distances between the (k-1)-dimensional osculator planes $Sp\{V_2, V_3, \ldots, V_k\}$ and $Sp\{V_2^*, V_3^*, \ldots, V_k^*\}$, $Sp\{V_1, V_3, V_4, \ldots, V_{k-1}, V_k\}$ and $Sp\{V_1^*, V_3^*, V_4^*, \ldots, V_{k-1}^*, V_k^*\}$, \ldots , $Sp\{V_1, V_2, \ldots, V_{k-3}, V_{k-2}, V_k\}$ and $Sp\{V_1^*, V_2^*, \ldots, V_{k-3}^*, V_{k-2}^*, V_k^*\}$, $Sp\{V_1, V_2, \ldots, V_{k-2}, V_{k-1}\}$ and $Sp\{V_1^*, V_2^*, \ldots, V_{k-2}^*, V_{k-1}^*\}$, respectively. If

- 1) V_1 and V_1^* are parallel,
- 2) the distances p_i , $1 \le i \le k$, between the (k-1)-dimensional osculator planes at the corresponding points of r and r^* are constant,

then the ruled surfaces M and M^* are called the (m+1)-dimensional parallel p_i -equidistant ruled surfaces, [1].

Since the Frenet frames $\{V_1, V_2, \dots, V_k\}$ and $\{V_1^*, V_2^*, \dots, V_k^*\}$ are the orthonormal systems, we have the orthogonal systems

$$E_1 = \frac{dr}{dt}, E_i = \frac{d^i r}{dt^i} - \sum_{j=1}^{i-1} \frac{\langle \frac{d^i r}{dt^i}, E_j \rangle}{\|E_j\|^2} E_j, \quad 1 < i \le k,$$

and

$$E_1^* = \frac{dr^*}{dt^*}, E_i^* = \frac{d^i r^*}{dt^{*i}} - \sum_{j=1}^{i-1} \frac{\langle \frac{d^i r^*}{dt^{*i}}, E_j^* \rangle}{\left\| E_j^* \right\|^2} E_j^*, \quad 1 < i \le k.$$
 (8)

At this point, we get

$$V_1 = E_1, V_2 = \frac{E_2}{\|E_2\|}, \dots, V_k = \frac{E_k}{\|E_k\|}$$

and

$$V_1^* = E_1^*, V_2^* = \frac{E_2^*}{\|E_2^*\|}, \dots, V_k^* = \frac{E_k^*}{\|E_k^*\|}.$$

Since $V_1 = V_1^*$ from the Definition 1, we get $\frac{dr}{dt} = \frac{dr^*}{dt^*}$. In addition, if $\frac{dt}{dt^*}$ is constant, then we have

$$\frac{d^{i}r^{*}}{dt^{*i}} = \frac{d^{i}r}{dt^{i}} \left(\frac{dt}{dt^{*}}\right)^{i-1}, \quad 1 \le i \le k.$$
(9)

If we substitute the relation (9) into the relation (8), we obtain

$$E_i = E_i^*$$
.

So we get

$$V_i = V_i^*, \quad 1 < i < k.$$

That is, we can say that the Frenet frames $\{V_1, V_2, \dots, V_k\}$ and $\{V_1^*, V_2^*, \dots, V_k^*\}$ are equivalent to each other at the corresponding points of r and r^* .

Hence we can give the following theorem.

Theorem 2. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n . The Frenet frames $\{V_1, V_2, \ldots, V_k\}$ and $\{V_1^*, V_2^*, \ldots, V_k^*\}$ are equivalent at the corresponding points of r and r^* .

If rr^* is the vector determined by the points r(t) and $r^*(t^*)$ of the base curves r and r^* of (m+1)-dimensional parallel p_i -equidistant ruled surfaces, then the vector rr^* can be expressed in terms of $\{V_1, V_2, \ldots, V_k\}$ as follows:

$$rr^* = a_1V_1 + a_2V_2 + \dots + a_kV_k, a_i \in IR, \quad 1 \le i \le k.$$

Since $\langle rr^*, V_i \rangle = p_i$ is the distance between the osculator planes, we get $a_i = p_i$ and thus

$$r^* = r + p_1 V_1 + p_2 V_2 + \dots + p_k V_k$$

Hence, we can give the following theorem.

Theorem 3. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces with the base curves r and r^* , respectively. If p_i , $1 \le i \le k$, is the distance between (k-1)-dimensional osculator planes, then we have the relation

$$r^* = r + p_1 V_1 + p_2 V_2 + \dots + p_k V_k.$$

If k_i and k_i^* are the curvatures of r and r^* of (m+1)-dimensional parallel p_i -equidistant ruled surfaces, then from the equations (4) and (5) we have

$$k_i = \langle V_i', V_{i+1} \rangle = \langle \frac{dV_i}{dt}, V_{i+1} \rangle, \quad 1 \le i < k,$$
 (10)

and

$$k_i^* = \langle V_i^{*'}, V_{i+1}^* \rangle = \langle \frac{dV_i^*}{dt^*}, V_{i+1}^* \rangle, \quad 1 \le i < k.$$

From Theorem 2,

$$\frac{dV_i}{dt} = \frac{dV_i^*}{dt^*} \frac{dt^*}{dt}.$$
 (11)

If we use the equation (11), Theorem 2 and the equation (10), then we get

$$k_i^* = \frac{dt}{dt^*} k_i, \quad 1 \le i < k.$$

Hence, we can give the following theorem.

Theorem 4. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces with the base curves r and r^* , respectively. If k_i and k_i^* are the curvatures of r and r^* , respectively, then

$$k_i^* = \frac{dt}{dt^*} k_i, \quad 1 \le i < k.$$

Let A(t) and $A(t^*)$ be asymptotic bundles of M and M^* , respectively. Then from the definition of the asymptotic bundle, we have

$$A(t) = Sp\{V_1, V_2, \dots, V_m, V_1', V_2', \dots, V_m'\}$$
(12)

and

$$A(t^*) = Sp\left\{V_1^*, V_2^*, \dots, V_m^*, V_1^{*'}, V_2^{*'}, \dots, V_m^{*'}\right\}.$$
(13)

If we use the Frenet formulas in the equations (12) and (13), then we get the orthonormal bases $\{V_1, V_2, \ldots, V_{m+1}\}$ and $\{V_1^*, V_2^*, \ldots, V_{m+1}^*\}$ of A(t) and $A(t^*)$, respectively. Therefore, we have

$$\dim A(t) = m + 1, \quad \dim A(t^*) = m + 1.$$

Similarly, if T(t) and $T(t^*)$ are the tangential bundles of M and M^* , respectively, then we have

$$T(t) = Sp\{V_1, V_2, \dots, V_m, V_1', V_2', \dots, V_m', r'\}$$

and

$$T(t^*) = Sp\left\{V_1^*, V_2^*, \dots, V_m^*, V_1^{*'}, V_2^{*'}, \dots, V_m^{*'}, r^{*'}\right\}.$$

From the Frenet formulas, we get the orthonormal bases $\{V_1, V_2, \dots, V_{m+1}\}$ and $\{V_1^*, V_2^*, \dots, V_{m+1}^*\}$ of T(t) and $T(t^*)$, respectively. Therefore,

$$\dim T(t) = m+1, \ \dim T(t^*) = m+1,$$

and

$$A(t) = A(t^*) = T(t) = T(t^*).$$

Thus, we can say that the asymptotic bundles of M and M^* are equal and so are the tangential bundles of M and M^* .

Hence, we can give the following theorem.

Theorem 5. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces. Then the asymptotic and the tangential bundles of M and M^* are equal.

Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n . From the equations (6) and (7), we have

$$X_t = V_1 + \sum_{i=1}^m u_i V_i', X_{u_1} = V_1, \dots, X_{u_m} = V_m.$$

Therefore, we get the orthonormal bases $\{V_1,\ldots,V_{m+1}\}$ and $\{V_1^*,\ldots,V_{m+1}^*\}$ of M and M^* , respectively. If $\{\xi_1,\ldots,\xi_{k-m-1},\ldots,\xi_{n-m-1}\}$ and $\{\xi_1^*,\ldots,\xi_{k-m-1}^*,\ldots,\xi_{n-m-1}^*\}$ are the orthonormal bases of the normal bundles M^\perp and $M^{*\perp}$, respectively, then we get the orthonormal bases $\{V_1,\ldots,V_{m+1},\xi_1,\ldots,\xi_{k-m-1},\ldots,\xi_{n-m-1}\}$ and $\{V_1^*,\ldots,V_{m+1}^*,\xi_1^*,\ldots,\xi_{k-m-1}^*,\ldots,\xi_{n-m-1}^*\}$ of E^n at a point $P\in M$ and at a point $P^*\in M^*$,

respectively, where $\xi_i = V_{m+1+i}$ and $\xi_i^* = V_{m+1+i}^*$, $1 \le i \le k-m-1$. Suppose that \bar{D} , D and D^* are the Riemannian connections of E^n , M and M^* , respectively. Then we have the following Weingarten equations:

$$\bar{D}_{V_1}\xi_j = \sum_{i=1}^{m+1} a_{1i}^j V_i + \sum_{q=1}^{n-m-1} b_{1q}^j \xi_q, \quad 1 \le j \le n-m-1,$$

$$\vdots$$

$$\bar{D}_{V_{m+1}}\xi_j = \sum_{i=1}^{m+1} a_{(m+1)i}^j V_i + \sum_{q=1}^{n-m-1} b_{(m+1)q}^j \xi_q, \quad 1 \le j \le n-m-1.$$

Therefore, we can obtain the matrix A_{ξ_i} , $1 \le j \le n-m-1$, as

$$A_{\xi_j} = - \begin{bmatrix} a_{11}^j & a_{12}^j & \cdots & a_{1(m+1)}^j \\ \vdots \vdots & & & \\ a_{(m+1)1}^j & a_{(m+1)2}^j & \cdots & a_{(m+1)(m+1)}^j \end{bmatrix},$$

where

$$a_{11}^{j} = \langle \bar{D}_{V_{1}}\xi_{j}, V_{1} \rangle, \dots, a_{1(m+1)}^{j} = \langle \bar{D}_{V_{1}}\xi_{j}, V_{m+1} \rangle,$$

$$\vdots$$

$$a_{(m+1)1}^{j} = \langle \bar{D}_{V_{m+1}}\xi_{j}, V_{1} \rangle, \dots, a_{(m+1)(m+1)}^{j} = \langle \bar{D}_{V_{m+1}}\xi_{j}, V_{m+1} \rangle.$$
(14)

It follows from the equations (2), (3) and (4) that

$$A_{\xi_{1}} = A_{V_{m+2}} = \begin{bmatrix} 0 & \cdots & 0 & k_{m+1} \\ 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{bmatrix}_{(m+1)\times(m+1)}$$
 and $A_{\xi_{j}} = 0, 2 \le j \le n-m-1.$ (15)

Similarly, if ξ^* is a normal vector field on M^* , then the Weingarten equation has the form

$$\bar{D}_{X^*}\xi^* = -A_{\xi^*}(X^*) + D_{X^*}^{*\perp}\xi^*,$$

where A_{ξ^*} is the self-adjoint linear transformation of $\chi(M^*)$ and $D^{*\perp}$ is the metric connection in the normal bundle $M^{*\perp}$. Then we have the following Weingarten equations:

$$\begin{split} \bar{D}_{V_1^*}\xi_j^* &= \sum_{i=1}^{m+1} c_{1i}^j V_i^* + \sum_{q=1}^{n-m-1} d_{1q}^j \xi_q^*, \quad 1 \leq j \leq n-m-1, \\ \vdots \\ \bar{D}_{V_{m+1}^*}\xi_j^* &= \sum_{i=1}^{m+1} c_{(m+1)i}^j V_i^* + \sum_{q=1}^{n-m-1} d_{(m+1)q}^j \xi_q^*, \quad 1 \leq j \leq n-m-1. \end{split}$$

Therefore, we can obtain the matrix $A_{\xi_i^*}$, $1 \le j \le n-m-1$, as

$$A_{\xi_{j}^{*}} = - \begin{bmatrix} c_{11}^{j} & \cdots & c_{1(m+1)}^{j} \\ \vdots & & & \\ c_{(m+1)1}^{j} & \cdots & c_{(m+1)(m+1)}^{j} \end{bmatrix},$$

where

$$c_{11}^{j} = \langle \bar{D}_{V_{1}^{*}} \xi_{j}^{*}, V_{1}^{*} \rangle, \dots, c_{1(m+1)}^{j} = \langle \bar{D}_{V_{1}^{*}} \xi_{j}^{*}, V_{m+1}^{*} \rangle,$$

$$\vdots$$

$$c_{(m+1)1}^{j} = \langle \bar{D}_{V_{m+1}^{*}} \xi_{j}^{*}, V_{1}^{*} \rangle, \dots, c_{(m+1)(m+1)}^{j} = \langle \bar{D}_{V_{m+1}^{*}} \xi_{j}^{*}, V_{m+1}^{*} \rangle.$$

$$(16)$$

Hence, from the equations (2), (3) and (5), it follows

$$A_{\xi_1^*} = A_{V_{m+2}^*} = \begin{bmatrix} 0 & \cdots & 0 & k_{m+1}^* \\ 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 \end{bmatrix}_{(m+1)\times(m+1)}$$
 and $A_{\xi_j^*} = 0, 2 \le j \le n-m-1.$ (17)

From Theorem 4 and equations (15) and (17), we have

$$A_{\xi_1^*} = \frac{dt}{dt^*} A_{\xi_1}$$
 and $A_{\xi_j^*} = A_{\xi_j} = 0$, $2 \le j \le n - m - 1$.

Making use of equations (15) and (17), we can prove the following theorem.

Theorem 6. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n . The matrices A_{ξ_j} and $A_{\xi_j^*}$, $1 \leq j \leq n-m-1$ satisfy the relations

$$A_{\xi_1^*} = \frac{dt}{dt^*} A_{\xi_1}, \quad A_{\xi_j^*} = A_{\xi_j} = 0, \quad 2 \le j \le n - m - 1.$$

Corollary 1. If M and M^* are (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n , then

$$\det A_{\xi_j^*} = \det A_{\xi_j} = 0, \quad 1 \le j \le n - m - 1.$$

From Corollary 1 and the definition of Lipschitz–Killing curvature in a direction ξ_i , we can write

$$G(P,\xi_j) = 0$$
 for all $P \in M$, $1 \le j \le n - m - 1$.

Thus, from the definition of Gauss curvature of M, we get

$$G(P) = \sum_{j=1}^{n-m-1} G(P, \xi_j) = 0.$$

Therefore, M is a developable ruled surface. Similarly, from the definition of Lipschitz–Killing and Gauss curvatures of M^* , we have

$$G(P^*, \xi_j^*) = \det A_{\xi_j^*} = 0, \ 1 \le j \le n - m - 1, \text{ for all } P^* \in M^*,$$

and

$$G(P^*) = \sum_{j=1}^{n-m-1} G(P^*, \xi_j^*) = 0.$$

Therefore, M^* is also a developable ruled surface.

Hence, we can give the following theorem.

Theorem 7. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n . Then for any normal direction the Lipschitz-Killing curvatures of M and M^* vanish and M, M^* are developable surfaces.

If $H(H^*)$ and $K_N(K_{N^*})$ are the mean curvature vector and scalar normal curvature of $M(M^*)$, respectively, then from equations (15) and (17) we have

$$H = H^* = 0$$
 and $K_N = K_{N^*} = 0$.

Therefore, M and M^* are the minimal ruled surfaces.

Hence we can give the following theorem.

Theorem 8. If M and M^* are (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n , then M and M^* are minimal ruled surfaces and the scalar normal curvatures of M and M^* are zero.

If X and Y are vector fields and V is the second fundamental form of M, then from equations (1) and (2) we have

$$<\bar{D}_XY\,,\,\xi>=< V(X,Y)\,,\,\xi>=< A_{\xi}(X)\,,\,Y>\,,\quad \xi\in\chi^{\perp}(M),$$

and

$$V(X,Y) = -\sum_{j=1}^{n-m-1} \langle Y, \bar{D}_X \xi_j \rangle \xi_j.$$

In this case, for the Frenet vectors V_i and V_j , $1 \leq i, j \leq m+1$, we can write

$$V(V_i, V_j) = -\sum_{l=1}^{n-m-1} \langle V_j, \bar{D}_{V_i} \xi_l \rangle \xi_l, \quad 1 \le i, j \le m+1.$$

Thus, from equation (14), we get

$$V(V_i, V_j) = -\sum_{l=1}^{n-m-1} a_{ij}^l \xi_l.$$

Using the equation (15), we obtain

$$V(V_1, V_{m+1}) = -\sum_{l=1}^{n-m-1} a_{1(m+1)}^l \xi_l = k_{m+1} V_{m+2},$$

$$V(V_i, V_j) = -\sum_{l=1}^{n-m-1} a_{ij}^l \xi_l = 0, \quad 1 \le i, j \le m+1.$$
(18)

Similarly, for all $X^*, Y^* \in \chi(M^*)$, the Gauss equation is

$$\bar{D}_{X^*}Y^* = D_{X^*}^*Y^* + V^*(X^*, Y^*)$$

where V^* is the second fundamental form of M^* . From (9), we have

$$<\bar{D}_{X^*}Y^*, \, \xi^*> = < V^*(X^*, Y^*), \xi^*> = < A_{\xi^*}(X^*), Y^*>$$

and

$$V^*(X^*, Y^*) = -\sum_{j=1}^{n-m-1} \langle Y^*, \bar{D}_{X^*} \xi_j^* \rangle \xi_j^*.$$

Then we have

$$V^*(V_i^*,V_j^*) = -\sum_{l=1}^{n-m-1} \langle V_j^*, \bar{D}_{V_i^*} \xi_l^* \rangle \xi_l^*, \quad 1 \leq i,j \leq m+1,$$

and from equation (16),

$$V^*(V_i^*, V_j^*) = -\sum_{l=1}^{n-m-1} c_{ij}^l \xi_l^*, \quad 1 \le i, j \le m+1.$$

Making use of equation (17), we obtain

$$V^*(V_1^*, V_{m+1}^*) = k_{m+1}^* V_{m+2}^*,$$

$$V^*(V_i^*, V_j^*) = 0, \quad 1 \le i, j \le m+1,$$
(19)

and from Theorems 2 and 4, we have

$$V^*(V_1^*, V_{m+1}^*) = \frac{dt}{dt^*} V(V_1, V_{m+1}),$$

$$V^*(V_i^*, V_j^*) = V(V_i, V_j) = 0, \quad 1 \le i, j \le m+1.$$
(20)

Thus, from equation (20) and from the definition of conjugate vectors, we can give the following result.

Corollary 2. The vectors V_1 and V_{m+1} are conjugate if and only if V_1^* and V_{m+1}^* are conjugate vectors.

The sectional curvatures of M are

$$K(V_i, V_j) = < V(V_i, V_i), V(V_j, V_j) > - < V(V_i, V_j), V(V_i, V_j) > .$$

Substituting equations (18) and (19) into the last equation, we get

$$K(V_1, V_{m+1}) = -(k_{m+1})^2, K(V_i, V_j) = 0, \quad 1 \le i, j \le m+1,$$

$$K(V_1^*, V_{m+1}^*) = -(k_{m+1}^*)^2, K(V_i^*, V_i^*) = 0, \quad 1 \le i, j \le m+1.$$
(21)

Hence, we can give the following theorem.

Theorem 9. The sectional curvatures of M and M^* are determined by the equations (21).

From Theorems 4 and 9, we can give the next corollary.

Corollary 3. We have the following equations for sectional curvatures of (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n :

$$K(V_1^*, V_{m+1}^*) = \left(\frac{dt}{dt^*}\right)^2 K(V_1, V_{m+1}),$$

$$K(V_i^*, V_j^*) = K(V_i, V_j) = 0, \quad 1 \le i, j \le m+1.$$

For the Ricci curvature in the direction V_i of $M, 1 \le i \le m+1$, we can write

$$S(V_i, V_i) = \sum_{j=1}^{m+1} \{ \langle V(V_j, V_j), V(V_i, V_i) \rangle - \langle V(V_i, V_j), V(V_i, V_j) \rangle \}.$$

Using (18), we get

$$S(V_{m+1}, V_{m+1}) = K(V_1, V_{m+1}) = -(k_{m+1})^2,$$

 $S(V_i, V_i) = 0, 1 < i < m.$

For the scalar curvature of M we obtain

$$r_{sk} = \sum_{i=1}^{m+1} S(V_i, V_i) = S(V_{m+1}, V_{m+1}) = K(V_1, V_{m+1}).$$

Similarly, for the Ricci curvature in the direction V_i^* of M^* , $1 \le i \le m+1$, we can write

$$(V_i^*, V_i^*) = \sum_{j=1}^{m+1} \left\{ \langle V(V_j^*, V_j^*), V(V_i^*, V_i^*) \rangle - \langle V(V_i^*, V_j^*), V(V_i^*, V_j^*) \rangle \right\}.$$

Using (20), we obtain

$$S(V_{m+1}^*, V_{m+1}^*) = K(V_1^*, V_{m+1}^*) = -(k_{m+1}^*)^2,$$

 $S(V_i^*, V_i^*) = 0, \ 1 \le i \le m.$

Thus, the scalar curvature of M^* is

$$r_{sk}^* = \sum_{i=1}^{m+1} S(V_i^*, V_i^*) = S(V_{m+1}^*, V_{m+1}^*) = K(V_1^*, V_{m+1}^*).$$

From Theorem 4 we have

$$S(V_{m+1}^*, V_{m+1}^*) = \left(\frac{dt}{dt^*}\right)^2 S(V_{m+1}, V_{m+1}) \text{ and } r_{sk}^* = \left(\frac{dt}{dt^*}\right)^2 r_{sk}.$$

Hence, we can give the following theorem.

Theorem 10. Let M and M^* be (m+1)-dimensional parallel p_i -equidistant ruled surfaces in E^n . If $S(V_i, V_i)$ and $S(V_i^*, V_i^*)$ are the Ricci curvatures of M and M^* and if r_{sk} and r_{sk}^* are the scalar curvatures of M and M^* , respectively, then we have

$$S(V_i^*, V_i^*) = S(V_i, V_i) = 0, \quad 1 \le i \le m,$$

$$S(V_{m+1}^*, V_{m+1}^*) = \left(\frac{dt}{dt^*}\right)^2 S(V_{m+1}, V_{m+1}) = r_{sk}^* = \left(\frac{dt}{dt^*}\right)^2 r_{sk}.$$

Let
$$X = \sum_{i=1}^{m+1} a_i V_i$$
, $Y = \sum_{i=1}^{m+1} b_i V_i \in \chi(M)$. Then we can write

$$V(X,Y) = V(\sum_{i=1}^{m+1} a_i V_i, \sum_{j=1}^{m+1} b_j V_j),$$

and from (18),

$$V(X,Y) = a_1 b_{m+1} V(V_1, V_{m+1}). (22)$$

If S is totally geodesic, then

$$V(X,Y) = 0$$
.

Thus, we get

$$a_1b_{m+1} = 0$$
 or $V(V_1, V_{m+1}) = 0$.

Conversely, let $a_1b_{m+1} = 0$ or $V(V_1, V_{m+1}) = 0$. From equation (22) we get

$$V(X,Y) = 0$$
 for all $X,Y \in \chi(M)$.

Hence, S is totally geodesic.

Thus, we can give the following theorem.

Theorem 11. Let $X = \sum_{i=1}^{m+1} a_i V_i$, $Y = \sum_{i=1}^{m+1} b_i V_i \in \chi(M)$. Then M is totally geodesic if and only if $V(V_1, V_{m+1}) = 0$ or $a_1 b_{m+1} = 0$.

Therefore, from Theorem 9, Theorem 11 and equation (18) we can give the following corollaries.

Corollary 4. If $K(V_1, V_{m+1})$ is equal to zero, then M is totally geodesic.

Corollary 5. If $a_1b_{m+1} \neq 0$ and M is totally geodesic, then M^* is totally geodesic and the Riemannian curvatures of M and M^* are zero.

Example 1. The following surfaces (Figure 2) are parallel p_3 -equidistant ruled surfaces in E^3 parametrized by

$$\varphi(t,v) = \left(\cos^2 t - v\sin 2t, \frac{1}{2}\sin 2t + v\cos 2t, 0\right),\,$$

and

$$\varphi^*(t, v) = \left(\cos^2 t - v \sin 2t, \frac{1}{2} \sin 2t + v \cos 2t, 4\right).$$

Example 2. The surfaces in E^3 parametrized by

$$\varphi(t, v) = (\cos^3 t - v \cos t, \sin^3 t + v \sin t, 0),$$

and

$$\varphi^*(t, v) = (4\cos^3 t - v\cos t, 4\sin^3 t + v\sin t, 0)$$

are parallel p_3 -equidistant ruled surfaces (Figure 3).

Figure 3

Example 3. The surfaces in E^3 parametrized by

$$\varphi(t, v) = (\cos t - v \sin t, \sin t + v \cos t, 1)$$

and

$$\varphi^*(t,v) = (3\cos t - v\sin t, 3\sin t + v\cos t, 4)$$

are parallel p_3 -equidistant ruled surfaces (Figure 4).

Figure 4

References

- [1] M. Baykut, Generalized Parallel p-Equidistant Ruled Surfaces, Ph D. Thesis, Ondokuz Mayıs University, Turkey, 1997.
- [2] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
- [3] H. Frank and O. Giering, Verallgemeinerte Regelflächen, Math. Z. 150 (1976), 261–271.
- [4] C. S. Houh, Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector, Proc. Amer. Math. Soc. 35 (1972), 537–542.
- [5] C. Thas, Minimal monosystems, Yokohama Math. J. 26 (1978), 157–167.
- [6] I. Valeontis, Parallel-p-äquidistante Regelflächen, Manuscripta Math. 54 (1986), 391–404.

Bahcesehir University, Faculty of Arts and Sciences, Department of Mathematics and Computer Sciences, Istanbul, Turkey

E-mail address: kuruoglu@bahcesehir.edu.tr

SAKARYA UNIVERSITY, FACULTY OF EDUCATION, DEPARTMENT OF ELEMENTERY EDUCATION, HENDEK-SAKARYA, TURKEY

E-mail address: mmasal@sakarya.edu.tr