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Fractional difference inequalities of
Gronwall–Bellman type

G.V. S.R. Deekshitulu and J. Jagan Mohan∗

Abstract. Discrete inequalities, in particular the discrete analogues
of the Gronwall–Bellman inequality, have been extensively used in the
analysis of finite difference equations. The aim of the present paper is
to establish some fractional difference inequalities of Gronwall–Bellman
type which provide explicit bounds for the solutions of fractional differ-
ence equations.

1. Introduction

Difference equations usually describe the evolution of phenomena over the
course of time. The theory of difference equations has been developed as a
natural discrete analogue of corresponding theory of differential equations.
Many physical problems arising in a wide variety of applications are governed
by finite difference equations.

The theory of inequalities is always of great importance for the develop-
ment of many branches of mathematics. This field is dynamic and experi-
encing an explosive growth in both theory and applications. As a response
to the needs of diverse applications, a large variety of inequalities have been
proposed and studied in the literature. Since the integral inequalities with
explicit estimates are so important in the study of properties of solutions of
differential and integral equations, their finite difference (or discrete) ana-
logues should also be useful in the study of properties of solutions of finite
difference equations.

The finite difference version of the well-known Gronwall inequality seems
to have appeared first in the work of Mikeladze in 1935. It is well rec-
ognized that the discrete version of Gronwall’s inequality provides a very
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useful and important tool in proving convergence of the discrete variable
methods. In view of wider applications, finite difference inequalities with
explicit estimates have been generalized, extended and used considerably in
the development of the theory of finite difference equations.

In the year 1973, B. G. Pachpatte [11] established the following remarkable
inequality.

Theorem 1.1. Let u(n), b(n) and c(n) be real valued nonnegative func-
tions defined on N+

0 and let C ≥ 0 be a constant. If for all n ∈ N+
0

u(n) ≤ C +
n−1∑
j=0

b(j)
[
u(j) +

j−1∑
k=0

c(k)u(k)
]
, (1.1)

then for all n ∈ N+
0

u(n) ≤ C
[
1 +

n−1∑
j=0

b(j)

j−1∏
k=0

[1 + b(j) + c(j)]
]
. (1.2)

On the other hand, fractional calculus has gained importance during the
past three decades due to its applicability in diverse fields of science and
engineering. The notions of fractional calculus may be traced back to the
works of Euler, but the idea of fractional difference is very recent.

J. B. Diaz and T. J. Osler [7] defined the fractional difference by the rather
natural approach of allowing the index of differencing, in the standard ex-
pression for the nth difference, to be any real or complex number. Later,
R. Hirota [9], defined the fractional order difference operator ∇α where α is
any real number, using Taylor’s series. A. Nagai [10] adopted another def-
inition for fractional difference by modifying Hirota’s definition. Recently,
G. V. S. R. Deekshitulu and J. Jagan Mohan [2] slightly modified the defi-
nition of A. Nagai [10] and discussed some basic inequalities, comparison
theorems and qualitative properties of the solutions of fractional difference
equations [2, 3, 4, 5, 6].

In the present paper, the authors consider an initial value problem of
fractional order and obtain some useful fractional difference inequalities of
Gronwall–Bellman type.

2. Preliminaries

In this section, we introduce some basic definitions and results concerning
nabla discrete fractional calculus. Throughout the article, for notations and
terminology we refer to [1]. The extended binomial coefficient

(
a
n

)
, where
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a ∈ R, n ∈ Z, is defined by(
a

n

)
=


Γ(a+1)

Γ(a−n+1)Γ(n+1) n > 0,

1 n = 0,
0 n < 0.

(2.1)

H. L. Gray and N. F. Zhang [8] gave the following definition.

Definition 2.1. For any complex numbers α and β, let (α)β be defined
as follows.

(α)β =


Γ(α+β)

Γ(α) when α, α+β are neither zero nor negative integers,

1 when α = β = 0,
0 when α = 0, β is neither zero nor negative integer,
undefined otherwise

Remark 1. For any complex numbers α and β, when α, β and α+ β are
neither zero nor negative integers,

(α+ β)n =
n∑
k=0

(
n

k

)
(α)n−k(β)k (2.2)

for any positive integer n.

In 2003, A. Nagai [10] gave the following definition for fractional order
difference operator.

Definition 2.2. Let α ∈ R and let m be an integer such that m− 1 <
α ≤ m. The difference operator ∇ of order α, with step length ε, is defined
as

∇αu(n) =


∇α−m[∇mu(n)] = εm−α∑n−1

j=0

(
α−m
j

)
(−1)j∇mu(n−j) α > 0,

u(n) α = 0,

ε−α
∑n−1

j=0

(
α
j

)
(−1)ju(n− j) α < 0.

The above definition contains ∇ operator and the term (−1)j inside the
summation index and hence it becomes difficult to study the properties of
solutions of fractional difference equations. To avoid this, G. V. S. R. Deek-
shitulu and J. Jagan Mohan [2] rearranged the terms in the definition of
A. Nagai [10] as follows, for ε = m = 1.

Definition 2.3. The fractional sum operator of order α (α ∈ R, α ≥ 0)
is defined as

∇−αu(n) =

n−1∑
j=0

(
j + α− 1

j

)
u(n− j) =

n∑
j=1

(
n− j + α− 1

n− j

)
u(j) (2.3)
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and the fractional order difference operator of order α (α ∈ R, 0 < α ≤ 1) is
defined as

∇αu(n) =

n−1∑
j=0

(
j − α
j

)
∇u(n− j) (2.4)

=
n∑
j=1

(
n− j − α− 1

n− j

)
u(j)−

(
n− α− 1

n− 1

)
u(0). (2.5)

Theorem 2.1. Let u(n), v(n) : N+
0 → R, α, β ∈ R be such that α, β > 0,

α+ β ≤ 1 and let c, d be scalars. Then

(1) ∇β∇γu(n) = ∇β+γu(n),
(2) ∇α[cu(n) + dv(n)] = c∇αu(n) + d∇αv(n),
(3) ∇αu(0) = 0 and ∇αu(1) = u(1)− u(0) = ∇u(1).

Proof. Consider

∇α∇βu(n) = ∇α
[
∇βu(n)

]
=

n∑
j=1

(
n− j − α− 1

n− j

)
∇βu(j)−

(
n− α− 1

n− 1

)[
∇βu(n)

]
n=0

=
n∑
j=1

j∑
k=1

(
n− j − α− 1

n− j

)(
j − k − β − 1

j − k

)
u(k)

−
n∑
j=1

(
n− j − α− 1

n− j

)(
j − β − 1

j − 1

)
u(0)

= S1 − S2.

Now consider

S1 =
n∑
j=1

j∑
k=1

(
n− j − α− 1

n− j

)(
j − k − β − 1

j − k

)
u(k)

=
n∑
k=1

n∑
j=k

Γ(n− j − α)

Γ(n− j + 1)Γ(−α)

Γ(j − k − β)

Γ(j − k + 1)Γ(−β)
u(k)

=

n∑
k=1

n−k∑
j=0

Γ(n− j − k − α)

Γ(n− j − k + 1)Γ(−α)

Γ(j − β)

Γ(j + 1)Γ(−β)
u(k)

=

n∑
k=1

u(k)

Γ(n− k + 1)

n−k∑
j=0

(
n− k
j

)
(−α)n−k−j(−β)j

=

n∑
k=1

u(k)

Γ(n− k + 1)
(−α− β)n−k (using Remark 2.2)
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=
n∑
k=1

Γ(n− k − α− β)

Γ(n− k + 1)Γ(−α− β)
u(k) =

n∑
k=1

(
n− k − α− β − 1

n− k

)
u(k)

and

S2 =
n∑
j=1

(
n− j − α− 1

n− j

)(
j − β − 1

j − 1

)
u(0)

=

n∑
j=1

Γ(n− j − α)

Γ(n− j + 1)Γ(−α)

Γ(j − β)

Γ(j)Γ(−β + 1)
u(0)

= u(0)
n−1∑
j=0

Γ(n− j − α− 1)

Γ(n− j)Γ(−α)

Γ(j − β + 1)

Γ(j + 1)Γ(−β + 1)

=
u(0)

Γ(n)

n−1∑
j=0

Γ(n)

Γ(n− j)Γ(j + 1)

Γ(n− 1− j − α)

Γ(−α)

Γ(j − β + 1)

Γ(−β + 1)

=
u(0)

Γ(n)

n−1∑
j=0

(
n− 1

j

)
(−α)n−1−j(−β + 1)j (using Definition 2.1)

=
u(0)

Γ(n)
(−α− β + 1)n−1 (using Remark 2.2)

=
Γ(n− α− β)

Γ(n)Γ(−α− β + 1)
u(0) =

(
n− α− β − 1

n− 1

)
u(0).

Therefore

∇α∇βu(n) =
n∑
k=1

(
n− k − α− β − 1

n− k

)
u(k)−

(
n− α− β − 1

n− 1

)
u(0)

= ∇α+βu(n).

�

Definition 2.4. Let f(n, r) : N+
0 × R → R. Then a nonlinear difference

equation of order α, 0 < α ≤ 1, together with an initial condition is of the
form

∇αu(n+ 1) = f(n, u(n)), u(0) = u0. (2.6)

Recently, the authors established the following fractional order discrete
Gronwall–Bellman inequality (see [5]).
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Theorem 2.2. Let u(n), a(n) and b(n) be real valued nonnegative func-
tions defined on N+

0 and let α ∈ R be such that 0 < α ≤ 1. If for all
n ∈ N+

0

∇αu(n+ 1) ≤ a(n)u(n) + b(n), (2.7)

then for all n ∈ N+
0

u(n) ≤ u(0)
n−1∏
j=0

[
1 +B(n− 1, α; j)a(j)

]
+
n−1∑
j=0

B(n− 1, α; j)b(j)

n−1∏
k=j+1

[
1 +B(n− 1, α; j)a(k)

]
.

Corollary 1. Let u(n), a(n) and b(n) be real valued nonnegative functions
defined on N+

0 and let α ∈ R be such that 0 < α ≤ 1. If for all n ∈ N+
0

u(n) ≤ u(0) +

n−1∑
j=0

B(n− 1, α; j)a(j)[a(j)u(j) + b(j)], (2.8)

then for all n ∈ N+
0

u(n) ≤ u(0)
n−1∏
j=0

[
1 +B(n− 1, α; j)a(j)

]
+
n−1∑
j=0

B(n− 1, α; j)b(j)

n−1∏
k=j+1

[
1 +B(n− 1, α; k)a(k)

]

≤ u(0) exp
[ n−1∑
j=0

B(n− 1, α; j)a(j)
]

+
n−1∑
j=0

B(n− 1, α; j)b(j)

exp
[ n−1∑
k=j+1

B(n− 1, α; k)a(k)
]
.

3. Gronwall–Bellman type inequalities

In this section, we shall establish some fractional difference inequalities of
Gronwall–Bellman type. Throughout the section we assume that α ∈ (0, 1].
Let u(n), a(n), b(n), c(n) and p(n) be real valued nonnegative functions
defined on N+

0 .

Theorem 3.1. If for all n ∈ N+
0

u(n) ≤ a(n) + p(n)

n−1∑
j=0

B(n− 1, α; j)[b(j)u(j) + c(j)], (3.1)
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then for all n ∈ N+
0

u(n) ≤ a(n) + p(n)
n−1∑
j=0

B(n− 1, α; j)[a(j)b(j) + c(j)]

n−1∏
k=j+1

[
1 +B(n− 1, α; k)b(k)p(k)

]
. (3.2)

Proof. Define a function z(n) by

z(n) =
n−1∑
j=0

B(n− 1, α; j)[b(j)u(j) + c(j)].

Then z(0) = 0, u(n) ≤ a(n) + p(n)z(n) and

∇αz(n+ 1) ≤ b(n)u(n) + c(n) ≤ b(n)p(n)z(n) + a(n)b(n) + c(n).

Now an application of Theorem 2.2 with z(0) = 0 yields

z(n) ≤
n−1∑
j=0

B(n− 1, α; j)[a(j)b(j) + c(j)]
n−1∏
k=j+1

[
1 +B(n− 1, α; k)b(k)p(k)

]
.

(3.3)
Using (3.3) in u(n) ≤ a(n) + p(n)z(n), we get the required inequality in
(3.2). �

Theorem 3.2. If, for all n ∈ N+
0 , a(n) is nondecreasing and

u(n) ≤ a(n) + p(n)
n−1∑
j=0

B(n− 1, α; j)[b(j)u(j)], (3.4)

then for all n ∈ N+
0

u(n) ≤ a(n)
[
1+p(n)

n−1∑
j=0

B(n−1, α; j)b(j)

n−1∏
k=j+1

[
1+B(n−1, α; k)b(k)p(k)

]]
.

(3.5)

Proof. First we assume that a(n) > 0 for n ∈ N+
0 . From (3.4) we observe

that

u(n)

a(n)
≤ 1 +

p(n)

a(n)

n−1∑
j=0

B(n− 1, α; j)[b(j)u(j)]

≤ 1 + p(n)

n−1∑
j=0

B(n− 1, α; j)
[
b(j)

u(j)

a(j)

]
.
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Now an application of Theorem 2.2 yields the desired bound in (3.5). If
a(n) = 0, then from (3.4) we observe that

u(n) ≤ ε+ p(n)
n−1∑
j=0

B(n− 1, α; j)[b(j)u(j)] (3.6)

where ε > 0 is an arbitrarily small constant. A suitable application of
Theorem 3.2 to (3.6) yields

u(n) ≤ ε
[
1 + p(n)

n−1∑
j=0

B(n− 1, α; j)b(j)
n−1∏
k=j+1

[
1 +B(n− 1, α; k)b(k)p(k)

]]
.

(3.7)
Now by lettting ε→ 0 in (3.7), we have u(n) = 0 and hence (3.5) holds. �

Theorem 3.3. If, for all n ∈ N+
0 , ∇αc(n+ 1) ≥ 0 and

u(n) ≤ a(n) + b(n)
[
c(n) +

n−1∑
j=0

B(n− 1, α; j)[p(j)u(j)]
]
, (3.8)

then for all n ∈ N+
0

u(n) ≤ a(n) + b(n)
[
c(0)

n−1∏
j=0

[
1 +B(n− 1, α; j)[b(j)p(j)]

]

+

n−1∑
j=0

B(n− 1, α; j)[∇αc(j + 1) + a(j)p(j)] (3.9)

n−1∏
k=j+1

[
1 +B(n− 1, α; k)b(k)p(k)

]]
.

Proof. Define a function z(n) by

z(n) = c(n) +

n−1∑
j=0

B(n− 1, α; j)[p(j)u(j)].

Then z(0) = c(0), u(n) ≤ a(n) + b(n)z(n) and

∇αz(n+ 1) = ∇αc(n+ 1) + p(n)u(n)

≤ ∇αc(n+ 1) + a(n)p(n) + p(n)b(n)z(n). (3.10)
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Now by applying Theorem 2.2 to (3.10), we get

z(n) ≤ z(0)

n−1∏
j=0

[
1 +B(n− 1, α; j)[b(j)p(j)]

]
(3.11)

+
n−1∑
j=0

B(n− 1, α; j)[∇αc(j + 1) + a(j)p(j)]

n−1∏
k=j+1

[
1 +B(n− 1, α; k)b(k)p(k)

]
.

Using (3.11) in u(n) ≤ a(n) + b(n)z(n), we get the required inequality in
(3.9). �

Theorem 3.4. Let a(n) be a real valued positive function defined on N+
0

and

u(n) ≤ a(n)
[
c+

n−1∑
j=0

B(n− 1, α; j)[b(j)u(j)]
]

(3.12)

for all n ∈ N+
0 , where c ≥ 0 is a constant. Then the following inequalities

hold.

(1) If 0 < a(n) ≤ 1, then

u(n) ≤ c a(n)
n−1∏
j=0

[
1 +B(n− 1, α; j)[b(j)]

]
. (3.13)

(2) If a(n) ≥ 1, then

u(n) ≤ c
[ n∏
j=0

a(j)
] n−1∏
j=0

[
1 +B(n− 1, α; j)[b(j)]

]
(3.14)

for n ∈ N+
0 .

Proof. (1) If 0 < a(n) ≤ 1, then from (3.12) we have

u(n)

a(n)
≤ c+

n−1∑
j=0

B(n− 1, α; j)b(j)u(j)

≤ c+

n−1∑
j=0

B(n− 1, α; j)
[
b(j)

u(j)

a(j)

]
(3.15)

for all n ∈ N+
0 . Now an application of Corollary 1 yields the desired inequal-

ity in (3.13).
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(2) If a(n) ≥ 1, then from (3.12) we have

u(n)

a(n)
≤ c+

n−1∑
j=0

B(n− 1, α; j)b(j)u(j)

= c+
n−1∑
j=0

B(n− 1, α; j)
[
b(j)a(j)

u(j)

a(j)

]
(3.16)

for n ∈ N+
0 . Now an application of Corollary 1 yields

u(n)

a(n)
≤ c

n−1∏
j=0

[
1 +B(n− 1, α; j)a(j)b(j)

]
. (3.17)

From (3.17), we observe that

u(n)

a(n)
≤ c
[ n−1∏
j=0

a(j)
] n−1∏
j=0

[
1 +B(n− 1, α; j)b(j)

]
(3.18)

for n ∈ N+
0 . The required inequality in (3.14) follows from (3.18). �

4. Applications

In this section we apply the fractional difference inequality established in
Theorem 2.2 to obtain a bound for the solution of a fractional difference
equation together with an initial condition of the form

∇αu(n+ 1) = f(n, u(n)), u(0) = u0, (4.1)

where f(n, r) is a function defined for n ∈ N+
0 , 0 ≤ r < ∞, and u(n) :

N+
0 −→ R is such that

|f(n, u(n))| ≤ a(n)|u(n)|+ b(n) (4.2)

for n ∈ N+
0 , where a(n), b(n) are as defined in Theorem 2.2. Let u(n) be the

solution of (4.1) for n ∈ N+
0 . Using Theorem 2.2, we get

|u(n)| ≤ u(0)
n−1∏
j=0

[
1 +B(n− 1, α; j)a(j)

]
+
n−1∑
j=0

B(n− 1, α; j)b(j)

n−1∏
k=j+1

[
1 +B(n− 1, α; k)a(k)

]

≤ u(0) exp
[ n−1∑
j=0

B(n− 1, α; j)a(j)
]

+

n−1∑
j=0

B(n− 1, α; j)b(j)

exp
[ n−1∑
k=j+1

B(n− 1, α; k)a(k)
]
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for n ∈ N+
0 . The right hand side of the above inequality gives the bound on

the solution of (4.1) in terms of the known functions.

Example 1. Now we use Theorem 2.2 to find a bound for the solution of
the fractional difference equation together with an initial condition

∇αu(n+ 1) = u(n), u(0) = 1, (4.3)

where u(n) : N+
0 −→ R.

Solution. Let u(n) be the solution of (4.3) for n ∈ N+
0 . Using Theorem 2.2,

we get

|u(n)| ≤ exp
[ n−1∑
j=0

B(n− 1, α; j)
]

= exp
[(n− 1 + α

n− 1

)]
(4.4)

for n ∈ N+
0 . The right hand side of the above inequality gives the bound on

the solution of (4.3) in terms of the known functions. Clearly, the solution
of (4.3) is

u(n) =
n−1∏
j=0

[
1 +B(n− 1, α; j)

]
. (4.5)

The solution of the corresponding ordinary difference equation

∇u(n+ 1) = u(n), u(0) = 1 (4.6)

is

u(n) = 2n. (4.7)

Figure 1. Comparison of the solution of (4.3) and its bound
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5. Conclusion

To conclude, we note that the bounds established in Theorems 3.1 to 3.4
are independent of the unknown functions and will have many applications
to boundedness, uniqueness and other properties of the solutions of initial
value problems of fractional order.

The comparison of the solution of (4.3) and its bound obtained in (4.4)
for α = 0.5 is given in Figure 1.
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