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On testing the equality of mean vectors in high
dimension

Muni S. Srivastava

Abstract. In this article, we review various tests that have been pro-
posed in the literature for testing the equality of several mean vectors.
In particular, it includes testing the equality of two mean vectors, the
so-called two-sample problem as well as that of testing the equality of
several mean vectors, the so-called multivariate analysis of variance or
MANOVA problem. The total sample size, however, may be less than
the dimension of the mean vectors, and so usual tests cannot be used.
Powers of these tests are compared using simulation.

1. Introduction

In this article, we review various tests that have been proposed in the
literature for testing the equality of several mean vectors. We begin with
the comparison of the mean vectors of two groups with independently dis-
tributed p-dimensional observation vectors xij and the mean vectors µi and
the covariance matrices Σi, i = 1, 2, j = 1, . . . Ni. The total number of
p-dimensional observation vectors, N = N1 + N2 is less than p. Various
tests have been proposed in the literature. For normally distributed obser-
vation vectors, and when Σ1 = Σ2, a test has been proposed by Dempster
[3]. Bai and Saranadasa [1] proposed another test which does not require
the assumption of normality but have asymptotically the same power as the
one proposed by Dempster [3]. Srivastava [7] proposed a Hotelling’s T 2 type

test, denoted by T+2
, by using Moore–Penrose inverse of S in place of S−1

as n < p, n = N1 +N2 − 2. It may be noted that all the above three tests,

namely, TD, TBS and T+2
are invariant under the group of orthogonal ma-

trices. A test that is invariant under the group of non-singular p×p diagonal
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matrices has recently been proposed by Srivastava and Du [9] and Srivastava
[8]. It may be noted that this test is not invariant under the transformation
by orthogonal matrices. The power comparison of these tests will be given
in this article.

Bai and Saranadasa’s [1] test as well as the test proposed by Srivastava
and Du [9] can be generalized to the case when the covariance matrices
Σ1 and Σ2 of the two groups are not equal; for testing the equality of two
covariance matrices, see Srivastava and Yanagihara [13]. The generalized
versions of these two tests have been considered by Chen and Qin [2], and
Srivastava, Katayama and Kano [11].

For testing the equality of the mean vectors of several groups, the so-
called multivariate analysis of variance or simply MANOVA, it is assumed
that all the groups have the same covariance matrix. Under the assumption
that (p/n)→ c, c ∈ (0,∞), Fujikoshi, Himeno, and Wakaki [4] and Schott
[5] have given a generalized version of Dempster [3] and Bai–Saranadasa [1]
two-sample tests for the MANOVA problem. Tests that do not require the
above assumption have been proposed by Srivastava and Fujikoshi [10]. The
above two tests considered by Fujikoshi et al. [4], Schott [5], Srivastava and
Fujikoshi [10] require the assumption of normality to obtain the asymptotic
distributions of these statistics. Following Srivastava [8], it can, however,
be shown that these two tests are robust under a general non-normal dis-
tributions. A third test based on the Moore–Penrose Inverse of the sample
covariance matrix has been proposed by Srivastava [7] under the assumption
of normality. For comparison of the asymptotic powers of these three tests,
see Srivastava and Fujikoshi [10].

The above three tests are, however, not invariant under the transforma-
tion by non-singular diagonal matrices. A test that has this property has
been recently proposed by Yamada and Srivastava [14] under normality as-
sumption.

The organization of this article is as follows. Since it is assumed that
N < p, we show in Section 2 that there does not exist a test that is invariant
under the transformation of the observation vector by any p×p non-singular
matrix. Thus, we shall be considering tests that are invariant under smaller
groups. Two such groups are the group of orthogonal matrices and the
group of non-singular diagonal matrices. Such tests for the equality of two
mean vectors will be given in Section 4 for the non-normal model described
in Section 3. In Section 5, the problem of testing the equality of two mean
vectors is considered again only under normality but the covariance matrices
of the two groups are not equal. The MANOVA problem will be considered
in Section 6. The paper concludes in Section 7.



ON TESTING THE EQUALITY OF MEAN VECTORS 33

2. Consequences of N < p, Σ non-singular

In this section, we show that no invariant test exists under the transfor-
mation of the observation vectors by a non-singular matrix. Let

X = (x1,x2, . . . ,xN) : p×N,N < p,

X∗ = (x∗1,x
∗
2, . . . ,x

∗
N ) : p×N,N < p

be two sample points. Let

Z = (X,X1) and Z∗ = (X∗, X∗1 ),

where X1 and X∗1 are p× (p−N) arbitrary matrices chosen such that Z and
Z∗ are non-singular (n.s.). Thus

Ip = (Z∗)−1Z∗ = (Z∗)−1(X∗, X∗1 ) = [(Z∗)−1X∗, (Z∗)−1X∗1 ]

=

(
IN 0
0 Ip−N

)
.

Hence

(Z∗)−1X∗ =

(
IN
0

)
, Z(Z∗)−1X∗ = (X,X1)

(
IN
0

)
= X,

X = AX∗, A = Z(Z∗)−1,

where A is n.s.
Thus, for two sample points, X and X∗, on the sample space, there exists a

non-singular matrix taking one point to the other. That is the whole sample
space is a single orbit; group of non-singular transformations is transitive.
Hence, no invariant test under the group of non-singular transformations
exists. Clearly then, we need to consider smaller group of transformations,
namely invariance under the group of orthogonal matrices and invariance
under the group of non-singular diagonal matrices. Thus, tests have been
proposed in the literature that are invariant under orthogonal group or
invariant under the group of non-singular diagonal matrices. The latter tests
appear to perform better than the ones that are invariant under orthogonal
group.

3. A non-normal model

To show that the two-sample tests and tests in multivariate analysis of
variance (MANOVA) hold when the observation vectors are not necessarily
normally distributed, we consider a general model for the independently
distributed p-dimensional vectors xij , j = 1, . . . , Ni, i = 1, 2. We call this
model as Model M which we describe next.
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Model M

In this model, we assume that the observation vectors xij satisfy (a), (b),
and (c) given below:

(a) xij = µi + Fiuij , j = 1, . . . , Ni, i = 1, 2,
Cov(xij) = Σi = F 2

i , i = 1, 2,

(b) E
[∏p

k=1 u
νk
ijk

]
=
∏p
k=1E(uνkijk), uij = (uij1, . . . , uijp)

′
,

νk ≥ 0, ν1 + · · ·+ ν4 ≤ 4, νi are integers,

(c) E(u4
ijk) = K4 + 3, K4 ≥ −2.

It may be noted that Fi is the unique p × p positive definite matrix such
that Σi = FiFi. The results, however, holds for a general factorization of
Σi = CiC

′
i where Ci is a p × p non-singular matrix (see Srivastava [8]).

For simplicity of presentation we have, however, chosen Σi = F 2
i . Bai and

Saranadasa [1] have chosen a model in which Σi = ΓiΓ
′
i, Γi is a p × m

matrix, m ≥ p; in our model m = p. However, the assumptions to prove the
asymptotic normality of the test statistic proposed by Bai and Saranadasa
[1] under their model are much stronger than for Model M, see Section 4.

4. Two sample tests: Σ1 = Σ2

Let x11, . . . ,x1N1 be independent and identically distributed (i.i.d.) vec-
tors with p-variate normal distributionNp(µ1,Σ1), and x21, . . . ,x2N2 be i.i.d.
Np(µ2,Σ2), where both samples are independently distributed.

The sample mean vectors are, respectively, given by

x̄1 =
1

N1

N1∑
j=1

xij , x̄2 =
1

N2

N2∑
j=1

x2j ,

The sample covariance matrices are, respectively, given by

S1 =
1

n1

N1∑
j=1

(x1j − x̄1)(x1j − x̄1)
′
, n1 = N1 − 1,

S2 =
1

n2

N2∑
j=1

(x2j − x̄2)(x2j − x̄2)
′
, n2 = N2 − 1.

When Σ1 = Σ2 = Σ, an unbiased estimator of Σ is given by

S =
n1S1 + n2S2

n
, n = n1 + n2 = N1 +N2 − 2.
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4.1. Dempster’s test. For testing the hypothesis H : µ1 = µ2 versus A :
µ1 6= µ2, four tests have been proposed in the literature by Dempster [3], Bai
and Saranadasa [1], Srivastava [7] and Srivastava and Du [9]. The first three
tests are invariant under orthogonal transformation and the fourth one is
invariant under the transformation by any p×p non-singular diagonal matrix.
We begin with the test proposed by Dempster [3] under the assumption of
normality.

In the notation of Section 4, Dempster’s test statistic is given by

TD =

(
1

N1
+

1

N2

)−1

(x̄1 − x̄2)
′
(x̄1 − x̄2)/(trS). (4.1)

Let G be an N ×N orthogonal matrix given by

G =

[
1√
N

1N|

(
(N2/N1N)

1
2 1N1

−(N1/N2N)
1
2 1N2

)
,g3, . . . ,gN

]
, N = N1 +N2,

where GG′ = G′G = IN , g
′
igi = 1, i = 3, . . . , N, and g

′
igj = 0, i 6= j. Let

X = (x11, . . . ,x1N1 ,x21, . . . ,x2N2) : p×N

be the p×N matrix of the observation vectors from the two groups, and

XG = (y1, . . . ,yN ).

Then

E(y1) = N−
1
2 (N1µ1 +N2µ2),

E(y2) = (
1

N1
+

1

N2
)−

1
2 (µ1 − µ2),

E(yj) = 0, j = 3, . . . N.

Hence, we can write TD in terms of (N − 1) independent random vectors
y2, ...,yN as

TD =
ny
′
2y2

y
′
3y3 + · · ·+ y

′
NyN

, n = N1 +N2 − 2. (4.2)

If Σ = γ2Ip, then y2, ....,yN are i.i.d. Np(0, γ
2Ip) under µ1 = µ2. Hence,

TD ∼ Fp,np. It may be noted that when Σ = γ2Ip′ and under the assumption

of normality Dempster’s test TD is uniformly most powerful among all tests
whose power depends on µ

′
µ/γ2.

To obtain the distribution of TD when Σ 6= γ2Ip, it is assumed that under

the null hypothesis y
′
iyi, i = 2, . . . , p, are independently distributed as mχ2

r ,
wherem > 0, r > 0 are scalar unknown quantities. Clearly, the distributions
of TD will not depend on m and thus, we need to find only r. Dempster
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gave two iterative methods to obtain an estimate of r. Bai and Saranadasa
[1] obtained an experssion for r as follows:

E(y
′
iyi) = tr Σ = mE(χ2

r) = mr

and

V ar(y
′
iyi) = 2tr Σ2 = V ar(mχ2

r) = 2m2r.

Hence,

r = (tr Σ)2/(tr Σ2).

Bai and Saranadasa [1], however, did not provide any estimator of r, as they
have provided only ratio consistent estimator of tr Σ2 which cannot be used
here. An estimator of r is obtained as follows. Let

b = (a2
1/a2), where ai = tr Σi/p, i = 1, 2.

It may be noted that from Cauchy–Schwarz inequality

0 < (tr Σ)2 ≤ p tr Σ2,

the equality on the right hand side holds if and only if Σ = γ2Ip, γ > 0.
Hence, 0 < b ≤ 1, and r ≤ p. Under the assumption of normality of the
observation vectors and assuming that 0 < limp→∞ ai < ∞, i = 1, . . . , 4, it
has been shown by Srivastava [6] that

â1 =
trS

p
, â2 =

1

p
[trS2 − 1

n
(trS)2],

are consistent estimators of ai. Thus, b̂ = (â2
1/â2) is a consistent estimator

of b giving r̂ = pb̂, and

TD ' F[r̂],[nr̂].

Thus, under the hypothesis that µ1 = µ2, Dempster’s TD statistic for
normally distributed observations is approximately distributed as an F-
distribution with [r̂] and [nr̂] degrees of freedom, where [a] denotes the
largest integer value ≤ a. Clearly then the hypothesis of equality of two
mean vectors is rejected if TD > F[r̂][nr̂],1−α, the 100(1 − α)% point of the
F-distribution with degrees of freedom mentioned above.

The asymptotic power of the TD test has been derived by Bai and Sarana-
dasa [1] who proposed another test and showed that the asymptotic power
of the TD test is the same as the one proposed by them. This test will be
called Bai–Saranadasa test in our discussion which we describe next.
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4.2. Bai–Saranadasa test. Consider an asymptotic version of Dempster’s
statistic. The mean of the numerator is given by(

1

N1
+

1

N2

)−1

E
[
(x̄1 − x̄2)

′
(x̄1 − x̄2)

]
=

(
1

N1
+

1

N2

)−1 [
E(x̄

′
1x̄1 − 2x̄

′
1x̄2 + x̄

′
2x̄2)

]
=

(
1

N1
+

1

N2

)−1 [tr Σ

N1
+ µ

′
1µ1 − 2µ

′
1µ2 +

tr Σ

N2
+ µ

′
2µ2

]
= tr Σ + τ(µ1 − µ2)

′
(µ1 − µ2), τ = N1N2/(N1 +N2).

So the numerator may be estimated by[(
1

N1
+

1

N2

)−1

(x̄1 − x̄2)
′
(x̄1 − x̄2)− trS

]
.

The asymptotic variance of this estimator is 2tr Σ2 + o(1). Under the as-

sumption that lim(p/n) = c, 0 < c < ∞ and λmax(Σ) = o(p−
1
2 ), Bai and

Saranadasa [1] showed that as (n, p)→∞,

(tr Σ2)−1

[
trS2 − 1

n
(trS)2

]
p→ 1. (4.3)

Thus, using the ratio consistent estimator of (tr Σ2) given in (4.3), Bai and
Saranadasa [1] proposed the statistic

TBS =

(
1
N1

+ 1
N2

)−1
(x̄1 − x̄2)

′
(x̄1 − x̄2)− trS√

2[trS2 − 1
n(trS)2]

(4.4)

for testing the hypothesis that µ1 = µ2. They also showed that under the
hypothesis TBS is normally distributed with mean zero and variance 1 for
a general model described in Section 3 that includes the normal model as a
special case.

To obtain the asymptotic distribution of TBS under the alternative hy-
pothesis A = µ1 6= µ2, it is assumed that the difference between the two
mean vectors satisfy the following conditions:(

1

N1
+

1

N2

)−1

(µ1 − µ2)
′
Σ(µ1 − µ2) = o(tr Σ2), (4.5)

(p/n)→ c > 0 and λmax(Σ) = o(
√

tr Σ2). (4.6)

Under the conditions (4.5) and (4.6), Bai and Saranadasa [1] showed that
the asymptotic power of Dempster’s test TD and Bai and Saranadasa’s test
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TBS are equal and is given by

β(TD) = β(TBS) = Φ

(
−z1−α +

N1N2

(N1 +N2)

(µ1 − µ2)
′
(µ1 − µ2)√

2pa2

)
, (4.7)

where Φ is the distribution function of the standard normally distributed
random variable with mean 0 and variance 1, Φ(z1−α) = 1− α, 0 < α < 1.

It may be recalled that both tests TD as well as TBS are one-sided tests:
Reject H : µ1 = µ2, if TD > z1−α; similarly reject H if TBS > z1−α.

4.3. Srivastava’s T+2
test. Using Moore–Penrose of S, Srivastava [7] pro-

posed the statistic

T+2 =

(
1

N1
+

1

N2

)−1

(x̄1 − x̄2)
′
S+(x̄1 − x̄2), (4.8)

where S+ is the Moore–Penrose inverse of S, which is unique and satisfies the
following conditions: S+SS+= S+, SS+S=S, SS+ and S+S are symmetric

matrices. Let S = 1
nV, n = N1 + N2 − 2. It can be shown that the T+2

statistic is invariant under the transformation xij → cΓxij , c 6= 0, ΓΓ
′

= Ip.
Thus, without loss of generality, we may assume that Σ = Λ, a diagonal
matrix. Note that

S+ = nV + = nH
′
L−1H,HH

′
= In,

where L = diag (l1, . . . , ln), the non-zero eigenvalues of V . Thus,

T+2 = n

(
1

N1
+

1

N2

)−1

(x̄1 − x̄2)
′
H
′
L−1H(x̄1 − x̄2). (4.9)

Let

z =

(
1

N1
+

1

N2

)− 1
2

AH(x̄1 − x̄2)
′
,

where

A = (HΛH
′
)−

1
2 .

Hence, under the hypothesis that µ1 = µ2,

T+2 = nz
′
(ALA)−1z, z ∼ Nn(0, In). (4.10)

In order to obtain the asymptotic distribution of T+2
, it is assumed that

0 < lim
p→∞

ai <∞, i = 1, . . . , 4, where ai = (tr Σi/p).

Under the above assumption it has been shown in Srivastava [7], that as

p→∞, p−1ALA
p→ bIn, where b = (a2

1/a2). Thus, under the hypothesis, as
p→∞,

bpT+2

n

d→ z
′
z,
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where “d” stands for “in distribution”. Since, under the hypothesis z
′
z has a

chi-square distribution with n degrees of freedom denoted by χ2
n (bp/n)T+2

is asymptotically distributed as χ2
n when p → ∞. Although b is unknown,

a consistent estimator of b is given by b̂ = (â2
1/â2) as p and n go to infinity.

Thus, approximately (b̂p/n)T+2
is distributed as χ2

n and the hypothesis is
rejected if

(b̂p/n)T+2
> χ2

n,1−α, (4.11)

where P (χ2
n < χ2

n,1−α) = 1− α. Alternatively, we may consider the asymp-

totic distribution of (b̂p/n)T+2
as p → ∞, and then n → ∞. That is, we

consider the standardized statistic

T+
S =

(b̂p/n)T+2 − n√
2n

(4.12)

which is asymptotically distributed as standard normal. Thus, the hypoth-
esis is rejected if T+

S > z1−α, where Φ(z1−α) = 1− α. It may be noted that
for moderate sample size, the approximate distribution in (4.11) may give a
better approximation than (4.12).

To obtain the asymptotic power of T+
S test, we consider local alternative

in which,

(µ1 − µ2) = (τn)−
1
2δ, (4.13)

where δ is fixed, n = N1+N2−2 , and τ = N1N2/(N1+N2). The asymptotic
power of the T+

S statistic is given by

β(T+
S ) = Φ

[
−z1−α +

(n
2

) 1
2 τ(µ1 − µ2)

′
Λ(µ1 − µ2)

pa2

]
. (4.14)

It may be noted that all the above three tests, namely, TD, TBS and T+2
or

equivalently T+
S are invariant under the transformations

xij → aΓxij , a 6= 0, ΓΓ
′

= Ip.

It has been shown by Bai and Saranadasa [1] that the tests TD and TBS have
same asymptotic power given in (4.8). Comparing it with the power of T+

S

given in (4.13), we find that the test T+
S may be preferred if(

n

pa2

) 1
2

θ
′
Λθ > θ

′
θ, θ = (µ1 − µ2) (4.15)

For example, if θ ∼ Np(0,Λ), then on the average (4.15) implies that(
n

pa2

) 1
2

tr Λ2 > tr Σ,

that is
n > (a2

1/a
2
2)p = bp. (4.16)
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Since a2
1 < a2, many such n exist for large p. Similarly, if θ=(

√
λ1, . . . ,

√
λp)

′
,

where λ1 > · · · > λp are the eigenvalues of Σ, the same inequality given in
(4.16) is obtained.

4.4. Srivastava–Du test. All the above three tests are invariant under
the transformations

xij → aΓxij , a 6= 0, ΓΓ
′

= Ip,

but not invariant under the transformations

xij → Dxij ,

where D is a p× p non-singular diagonal matrix,

D = diag (d1, . . . dp).

This implies that change of unit of measurements will affect all the above
three statistics. Srivastava and Du [9] proposed a statistic that is invariant
under the transformation by any p × p non-singular diagonal matrix. This
test statistic is given by

TSD =

(
1
N1

+ 1
N2

)−1
(x̄1 − x̄2)

′
D−1
S (x̄1 − x̄2)− p[

2
{

tr R̂2 − (p
2

n )
}
Cp,n

] 1
2

,

where

R̂ = D
− 1

2
S SD

− 1
2

S , DS = diag (S11, . . . , Spp), S = (Sij),

Cp,n = 1 +

(
tr R̂2

p
3
2

)
p→ 1, as (n, p)→∞.

Under normality assumptions this test was proposed by Srivastava and Du
[9]. It has been shown to be robust by Srivastava [8]. Let

Σ = (σij) = D
1
2
σRD

1
2
σ , (4.17)

where D
1
2
σ = diag (σ

1
2
11, . . . , σ

1
2
pp). Then R is the correlation matrix which can

be estimated by R̂ defined above. In order to obtain the distribution of TSD,
Srivastava and Du [9] assumed the following:

(i) 0 < lim
p→∞

(
trRi

p

)
<∞, i = 1, . . . , 4 , (4.18)

(ii) lim
p→∞

max
1≤i≤p

λip√
p

= 0, (4.19)

where λ1p, . . . , λpp are the eigenvalues of the correlation matrix R. Under the
hypothesis of equality of two mean vectors, TSD has asymptotically standard
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normal distribution. Under local alternative defined by

µ1 − µ2 = (τn)−
1
2δ, τ = N1N2/(N1 +N2), n = N1 +N2 − 2,

where δ is fixed, the asymptotic distribution of the statistic TSD is given by

lim
(n,p)→∞

P (TSD > z1−α) = Φ

[
−z1−α +

τ(µ1 − µ2)
′
D−1
σ (µ1 − µ2)√

2trR2

]
.

It may be noted that Yamada and Srivastava [14] have shown that the con-
dition (4.19) is not needed in deriving the asymptotic distribution of the
statistic TSD.

Srivastava and Du [9] showed theoretically that under the condition

0 < lim
p→∞

δ
′
δ

p
= lim

p→∞

δ
′
D−1
σ δ

trD−1
σ

<∞ (4.20)

the TSD test is superior to TBS test. It may be noted that the condition
(4.20) is satisfied for δ = (δ1, . . . , δp)

′
in which δi = δ 6= 0, i = 1, . . . , p, that

is, all the components of the random vector have the same mean.
In the next two sections, we compare the attained significance level and

power of the two robust tests, namely TD and TSD through simulation.

4.5. Attained significance level (ASL). To compare the three tests, we
need to define the attained significance levels and the empirical powers. Let
z1−α be a 100(1 − α)% quantile of the asymptotic null distribution of the
test statistic T which is N(0,1) in our case; thus z1−α is the 100(1 − α)%
quantile of N(0, 1). With m replications of the data set simulated under the
null hypothesis, the ASL is

α̂ =
(# of tH ≥ z1−α)

m
, m = 10, 000, α = 0.05,

where tH represents the values of the test statistic T based on the data sets
simulated under the null hypothesis. α̂ is approximately distributed as Bi-
nomial(10000, 0.05) and has the standard deviation estimated by

ŝe(α̂) =
√

0.05× 0.95/10, 000 ' 0.0022.

For simplicity of presentation, we shall consider one-sample case in which
we test that the mean vector is zero.

4.6. Empirical power. To compute the empirical powers, we shall use the
empirical critical points. Specifically, we first simulate m replications of the
data set under the null hypothesis, then select the (mα)th largest value of
the test statistic as the empirical critical point, denoted as ẑ1−α, that is, the
100(1 − α)% quantile of the empirical null distribution of the test statistic
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obtained from the m replications. Then another m replications of the data
set are simulated under the alternative with the given choice of µ.

The empirical power is calculated by

β̂ =
(# of tA ≥ ẑ1−α)

m
.

Table 1. Attained significance levels of TSD and TD under
the null hypothesis, when R = Ip and R = R1, respectively

Dσ = Ip Dσ = Dσ,1 Dσ = Dσ,2

p N TSD TD TSD TD TSD TD
R = Ip
60 30 0.056 0.051 0.056 0.049 0.056 0.052

100 40 0.048 0.054 0.048 0.054 0.048 0.052
60 0.050 0.053 0.050 0.053 0.050 0.051
80 0.050 0.054 0.050 0.054 0.050 0.054

150 40 0.050 0.054 0.050 0.053 0.050 0.051
60 0.048 0.049 0.048 0.048 0.048 0.053
80 0.049 0.050 0.049 0.051 0.049 0.053

200 40 0.045 0.052 0.045 0.052 0.045 0.051
60 0.048 0.052 0.045 0.052 0.045 0.051
80 0.045 0.047 0.045 0.050 0.045 0.051

400 40 0.037 0.046 0.037 0.046 0.037 0.054
60 0.035 0.050 0.035 0.051 0.035 0.053
80 0.044 0.050 0.044 0.049 0.044 0.046

R = R1

60 30 0.058 0.058 0.058 0.057 0.0582 0.059

100 40 0.053 0.062 0.053 0.063 0.0526 0.061
60 0.045 0.062 0.045 0.061 0.0450 0.057
80 0.046 0.057 0.046 0.057 0.0463 0.060

150 40 0.049 0.065 0.049 0.065 0.0493 0.063
60 0.050 0.064 0.050 0.063 0.0502 0.061
80 0.044 0.059 0.044 0.059 0.0441 0.062

200 40 0.049 0.067 0.049 0.068 0.0485 0.064
60 0.044 0.061 0.044 0.062 0.0441 0.060
80 0.047 0.062 0.047 0.063 0.0469 0.063

400 40 0.045 0.063 0.045 0.063 0.0448 0.066
60 0.041 0.064 0.041 0.063 0.0408 0.059
80 0.036 0.062 0.036 0.063 0.0362 0.058
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Table 2. Empirical powers of TSD and TD under the alter-
native hypothesis, when R = Ip and R = R1, respectively

Dσ = Ip Dσ = Dσ,1 Dσ = Dσ,2

p N TSD TD TSD TD TSD TD
R = Ip
60 30 0.999 1.000 0.287 0.291 0.976 0.542

100 40 1.000 1.000 0.622 0.593 1.000 0.939
60 1.000 1.000 0.880 0.861 1.000 0.998
80 1.000 1.000 0.973 0.962 1.000 1.000

150 40 1.000 1.000 0.698 0.661 1.000 0.962
60 1.000 1.000 0.932 0.913 1.000 1.000
80 1.000 1.000 0.991 0.983 1.000 1.000

200 40 1.000 1.000 0.831 0.789 1.000 0.992
60 1.000 1.000 0.979 0.967 1.000 1.000
80 1.000 1.000 0.999 0.998 1.000 1.000

400 40 1.000 1.000 0.926 0.903 1.000 1.000
60 1.000 1.000 0.998 0.995 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000

R = R1

60 30 0.789 0.948 0.088 0.014 0.513 0.112

100 40 0.990 1.000 0.125 0.013 0.936 0.290
60 1.000 1.000 0.203 0.067 1.000 0.813
80 1.000 1.000 0.303 0.261 1.000 0.973

150 40 0.980 1.000 0.115 0.003 0.974 0.143
60 1.000 1.000 0.143 0.024 1.000 0.681
80 1.000 1.000 0.245 0.142 1.000 0.958

200 40 0.984 1.000 0.108 0.000 0.944 0.148
60 1.000 1.000 0.157 0.016 1.000 0.792
80 1.000 1.000 0.249 0.096 1.000 0.985

400 40 0.933 1.000 0.085 0.000 0.814 0.018
60 1.000 1.000 0.118 0.000 0.995 0.589
80 1.000 1.000 0.194 0.003 1.000 0.984

4.7. Parameter selection: one-sample case. We consider both indepen-
dent correlation structures R = Ip = diag (1, 1, . . . 1) and equal correlation
structure R = R1 = (ρij) : ρij = 0.25, i 6= j. We also consider different
scalar matrix Dσ = diag (σ11, . . . , σpp). We select Dσ = Ip, Dσ = Dσ,1 :

σ
1
2
11, . . . , σ

1
2
pp

iid∼ Unif(2, 3) and Dσ = Dσ,2 : σ11, . . . , σpp
iid∼ χ2

3.

For the alternative hypothesis, we choose µ = ν = (ν1, . . . νp)
′

: ν2k−1 = 0

and ν2k
iid∼ Unif(−1

2 ,
1
2), k = 1, . . . , p2 .
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5. Two sample tests: Σ1 6= Σ2

In this section, we consider the problem of testing the equality of the mean
vectors of two groups when the covariance matrices of the two groups are
not equal. For normally distributed observation vectors, the equality of two
covariance matrices can be ascertained using a test proposed by Srivastava
and Yanagihara [13]. And if it is found that the covariance matrices of the
two groups are not equal, the tests given in this section should be used. We
begin with a test proposed by Chen and Qin [2].

5.1. Chen–Qin test statistic. In the notation of Section 4, this test
statistic is given by

Tcq =
1

N1n1

∑N1
i 6=j x

′
1ix1j + 1

N2n2

∑N2
i 6=j x

′
2ix2j − 2x̄

′
1x̄2[

2
N1n1

t̂r Σ2
1 + 2

N2n2
t̂r Σ2

2 + 4
N1n2

̂tr Σ1Σ2

] 1
2

,

where

t̂r Σ2
i =

1

Nini
tr


Ni∑
j 6=k

(xij − x̄i(j,k))x
′
ij(xik − x̄i(jk)x

′
ik)

 , i = 1, 2,

̂tr Σ1Σ2 =
1

N1N2
tr


N1∑
j=1

N2∑
k=1

(x1j − x̄1(j))x
′
1j(x2k − x̄2(k))x

′
2k

 ,

x̄i(j,k) =
1

Ni − 2
(Nix̄i − xij − xik), i = 1, 2; j, k = 1, . . . , Ni,

x̄i(k) =
1

ni
(Nix̄i − xik), i = 1, 2; k = 1, . . . .Ni.

In order to derive the asymptotic distribution of the statistic Tcq, Chen and
Qin [2] made the following assumption.

Assumption (A)

A(1) xij = Γizij + µi, j = 1, . . . , Ni, i = 1, 2,

where each Γi is a p×m matrix for some m ≥ p such that ΓiΓ
′
i = Σi,

and {zij}Ni

j=1 are m-variate independent and identically distributed

random vectors satisfying E(zij) = 0, Cov(zij) = Im, and for zij =

(zij1, . . . , zijm)
′
, it is assumed that E(z4

ijk) = K4 + 3 <∞, and

E(zα1
ijl1
, zα2
ijl2
, . . . , z

αq

ijlq
) =

∏q
r=1E(zαr

ijlr
),
∑q

r=1 αr ≤ 8,

and l1 6= l2 6= · · · 6= lq,
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A(2) limp→∞
tr ΣiΣjΣkΣl

{tr (Σ1+Σ2)}2 = 0, i, j, k, l = 1 or 2,

A(3) N(µ1 − µ2)
′
Σi(µ1 − µ2) = o

{
tr (Σ1 + Σ2)2

}
.

Chen and Qin (2010) proved the asymptotic normality of Tcq under the
hypothesis that µ1 = µ2 and under the Assumptions (A1)–(A2) given above.
They also obtained the asymptotic power under Assumptions (A1)–(A3). It
is given by

lim
(N1,N2,p)→∞

P1(Tcq > z1−α) = Φ

(
−z1−α +

(µ1 − µ2)
′
(µ1 − µ2)

σ2
n,p

)
,

where

σ2
n,p =

2

N1n1
tr (Σ2

1) +
2

N2n2
tr (Σ2

2) +
4

N1N2
tr (Σ1Σ2).

It may be noted that σ2
n,p is the variance of the numerator of Tcq which can

also be estimated by using the usual consistent estimators of tr Σ2
i /p and

tr Σ1Σ2/p, i = 1, 2. Most importantly note that the numerator of Tcq,

1

N1n1

N1∑
i 6=j

x
′
1ix1j +

1

N2n2

N2∑
i 6=j

x
′
2ix2j − 2x

′
1x2

= (x̄1 − x̄2)′(x̄1 − x̄2)− 1

N1
trS1 −

1

N2
trS2,

which is identical to the one obtained by generalizing Bai and Saranadasa
test to the case when Σ1 6= Σ2, and much simpler to compute. Thus, Sri-
vastava, Katayama and Kano [11] proposed a simpler test given in the next
subsection in which a different consistent estimator of the variance of the
numerator is used.

5.2. A simpler test than Tcq. Chen–Qin test Tcq has rather complicated

expressions and takes much longer time in computing with no apparent ad-
vantage in terms of power than the corresponding simpler test

T2 =
p−

1
2

[
(x̄1 − x̄2)

′
(x̄1 − x̄2)−N−1

1 trS1 −N−1
2 trS2

]
[
2N−2

1 â21 + 2N−2
2 â22 + 4(N1N2p)−1trS1S2

] 1
2

,

â2i =
1

p

[
trS2

i −
1

ni
(trSi)

2

]
, ni = Ni − 1, i = 1, 2.

The test T2 has the same distribution as Tcq. The power and ASL for both
tests, are indistinguishable, as seen in the attached tables obtained from
simulation.
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5.3. Srivastava–Katayama–Kano test. It may be noted that the tests
Tcq and Tu are both invariant under the transformation by an orthogonal
matrix but not invariant under the transformation by any non-singular di-
agonal matrix. In this subsection we describe a test which is invariant under
the group. Let

Si = (Sijk), D̂i = diag (Si11, . . . , Sipp), i = 1, 2,

D̂ = N−1
1 D̂1 +N−1

2 D̂2,

R̂ = D̂−
1
2 (N−1

1 S1 +N−1
2 S2)D̂−

1
2 = (rij),

qn = [(x̄1 − x̄2)
′
D̂−1(x̄1 − x̄2)− p].

Let σ2(qn) = V ar(qn) = 2trR2, where R is the population version of the

sample correlation matrix R̂. Then the statistic proposed by Srivastava,
Katayama and Kano [11] is given by

T1 =
qn

[Cp,nσ̂2(qn)]
1
2

, ni = Ni − 1, i = 1, 2,

where

Cp,n = 1 +
tr R̂2

p2
→ 1, as (n, p)→∞,

and

σ̂2(qn) = 2

[
(tr R̂2)− 1

n1N2
1

(tr D̂−1S1)2 − 1

n2N2
2

(tr D̂−1S2)2

]
.

It can be shown that under the Assumptions (B1)–(B3) stated below,

σ̂2(qn) is a ratio consistent estimator of σ2(qn): namely [σ̂2(qn)/σ2(qn)]
p→ 1.

Assumption (B)

(B1) 0 < c1 < min 1≤k≤p σikp < max 1≤k≤p σikk < c2 <∞
uniformly for all p,

(B2) limp→∞[trR4/(trR2)2] = 0,

(B3) (N1/N)→ k ∈ (0, 1) as N = N1 +N2 →∞,

(B4) Nm = O(pδ), δ > 1
2 , Nm = min(N1, N2),

(B5) (µ1 − µ2)
′
D−

1
2RD−

1
2 (µ1 − µ2) = o(trR2),
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where

R = D−
1
2 (N−1

1 Σ1 +N−1
2 Σ2)D−

1
2 ,Σi = (σijk), i = 1, 2,

D = (N−1
1 D1 +N−1

2 D2), Di = diag (σi11, . . . , σipp).

It can be shown that when µ1 = µ2, and under the Assumptions (B1)–(B4),
we get the following theorem.

Theorem 5.1. Under the Assumptions (B1)–(B4), when µ1 = µ2,

P0 {T1 ≤ z1−α} → Φ(z1−α) as (N1, N2, p)→∞.

Srivastava, Katayama and Kano [11] obtained this result assuming nor-
mality of the observation vectors. To obtain the distribution under the
alternative hypothesis, we choose the local alternative given in (B5), and
obtain the following theorem.

Theorem 5.2. Under the Assumption (B), the distribution of the statistic
T1 under the local alternative (B5) is given by

P1 {T1 < −z1−α} → Φ

{
−z1−α +

(µ1 − µ2)
′
D−1(µ1 − µ2)

2trR2

}
.

5.4. Comparison of Tcq, T1 and T2 tests: simulation. The parameters

of the simulation are given by

N1 = N2 = N/2,

µ1 = µ2 = 0 for ASL,

µ1 = 0, µ2 = (u1, . . . , up)
T , ui i.i.d. U(

1

2
,
3

2
),

Σ1 = diag (d1, . . . , dp) R1 diag (d1, . . . , dp),

Σ2 = diag (ψ1, . . . , ψp) R2 diag (ψ1, . . . , ψp),

di = 2 +
p− i+ 1

p
, ψ2

i i.i.d. χ2
3,

R1 = (rij) with rij = (−1)i+j(0.2)|i−j|
0.1

,

R2 = (ρij) with ρij = (−1)i+j(0.4)|i−j|
0.1

.
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Table 3. ASL and power for normal distribution: 1000
simulations

ASL Power
p N1 = N2 T1 Tcq T2 T1 Tcq T2

100 20 0.069 0.089 0.089 0.824 0.395 0.396
30 0.067 0.075 0.075 0.979 0.727 0.731
40 0.059 0.072 0.071 0.998 0.884 0.883

150 20 0.054 0.063 0.063 0.966 0.621 0.622
30 0.058 0.061 0.062 0.982 0.654 0.655
40 0.052 0.061 0.061 1.000 0.964 0.963

200 20 0.073 0.079 0.080 0.928 0.628 0.624
30 0.061 0.073 0.074 0.997 0.852 0.854
40 0.069 0.086 0.086 1.000 0.858 0.856

Table 4. ASL and power for χ2
8: 10,000 simulations

p N1 = N2 ASL T1 ASL T2 power T1 power T2

100

20 0.0905 0.0739 0.4960 0.1922
30 0.0813 0.0787 0.8446 0.3578
40 0.0793 0.0737 0.9496 0.5027
60 0.0721 0.0751 0.9922 0.6144

200

20 0.0270 0.0457 0.9185 0.3138
30 0.0261 0.0388 0.9974 0.6673
40 0.0230 0.0401 1.0000 0.7601
60 0.0194 0.0282 1.0000 1.0000

300

20 0.0649 0.0714 0.9319 0.4199
30 0.0452 0.0590 0.9958 0.5699
40 0.0457 0.0632 1.0000 0.8875
60 0.0438 0.0625 1.0000 0.9976

500

20 0.0872 0.0887 0.8229 0.3132
30 0.0768 0.0839 0.9956 0.5470
40 0.0718 0.0791 0.9996 0.7511
60 0.0649 0.0757 1.0000 0.9426
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Table 5. ASL and power: χ2
32 distribution, 1,000 simula-

tions

p N1 = N2 ASL T1 ASL T2 power T1 power T2

100

20 0.104 0.08 0.599 0.24
30 0.078 0.966 0.373 0.078
40 0.081 0.078 0.972 0.35
60 0.069 0.079 1 0.994

200

20 0.024 0.038 0.968 0.477
30 0.024 0.038 1 0.618
40 0.017 0.032 1 0.916
60 0.065 0.072 1 0.768

300

20 0.06 0.072 0.908 0.406
30 0.055 0.07 1 0.652
40 0.056 0.061 1 0.858
60 0.049 0.071 1 0.991

500

20 0.1 0.093 0.851 0.29
30 0.088 0.096 0.987 0.427
40 0.021 0.033 1 1
60 0.063 0.065 1 0.998

6. Multivariate analysis of variance (MANOVA)

The problem of testing the equality of (q + 1) mean vectors, q ≥ 2, is a
special case of the multivariate regression model

Y = XΘ + UΛ
1
2 , Y = (y1, . . . ,yN )

′
: N × p,

U = (u1, . . . ,uN )
′

: N × p, (ui1, . . . , uip)
′

= ui,

where y1, . . . ,yN are independently distributed p-dimensional observation
vectors,

X : N × k of rank k, matrix of constants,

Θ : k × p, matrix of parameters ,

Rather than assuming normality of yi, or equivalently of ui, we shall assume
that

E(ui) = 0, Cov(ui) = Ip, E(u4
ik) = K4 + 3, (6.1)

Cov(yi) = Λ = Λ
1
2 Λ

1
2 = (λij).

We also assume that for νk ≥ 0, Σp
k=1νk = 4,

E

[
p∏

k=1

uνkik

]
=

p∏
k=1

E(uνkik ). (6.2)
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Under the assumptions (6.1) and (6.2), we consider the problem of testing
the hypothesis

H : CΘ = 0 versus A : CΘ 6= 0,

where C is a q × k, matrix with q ≤ k, and rank(C) = q. Let

B = Y ′GY = (CΘ̂)′[C(X ′X)−1C ′]−1CΘ̂,

where

G = X(X ′X)−1C ′[C(X ′X)−1C ′]−1C(X ′X)−1X ′,

Θ̂ = (X ′X)−1X ′Y,

S = n−1Y ′(IN −H)Y, H = X(X ′X)−1X ′, n = N − k.

Then, under the hypothesis CΘ = 0, E(B) = qΣ, and thus B measures the
departure from the hypothesis. On the other hand, E(S) = Σ, irrespective
of whether the hypothesis is true or not. Thus, a test is usually constructed
by comparing in some manner B with S. Since n < p, the inverse of S does
not exist, and thus the likelihood ratio test which uses the inverse of S does
not exist. Fujikoshi, Himeno and Wakaki [4] proposed a test by generalizing
Dempster’s two-sample test, and Srivastava [7] proposed a test using Moore–
Penrose inverse of S. Srivastava and Fujikoshi [10] and Schott [5] proposed a
test by generalizing Bai and Saranadasa’s two sample test. These tests will
be described in the following subsection.

6.1. Generalization of Dempster’s test. Assume

(p/n)→ c ∈ (0,∞), (6.3)

T̃D =
√
p

[
trB

trS
− q
]
, â2 = p−1[trS2 − 1

n
(trS)2],

σ̂2
D = 2q

â2

â2
1

, â1 =
(trS)

p
.

Then, Fujikoshi, Himeno and Wakaki [4] showed that under the hypothesis
H, (6.1), and normality,

(T̃D/σ̂D)→ N(0, 1).

Distribution under the alternative hypothesis is also given.

6.2. Generalization of Bai–Saranadasa test. Let

T2 =
p−

1
2 [trB − qtrS]√

2qâ2
. (6.4)

This test was proposed by Srivastava and Fujikoshi [10], and Schott [5].
Under the hypothesis that CΘ = 0, the asymptotic distribution of T2 is
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normal with mean 0 and variance 1. To obtain the asymptotic distribution
when CΘ 6= 0, we consider local alternatives. For this, let

(CΘ)
′
[C(X

′
X)−1C

′
]−1(CΘ) = MM

′
, (6.5)

where M is a p × q matrix of rank q < n, when CΘ 6= 0. We shall assume
that q is finite and

lim
p→∞

tr ΛMM
′

p
= 0. (6.6)

Then, Srivastava and Fujikoshi [10] have shown that the power of the T2 test
is given by

β(T2) ' Φ

(
−z1−α +

trMM
′

√
2pqa2

)
, (6.7)

for local alternatives satisfying (6.6), and finite q.

6.3. Srivastava’s test. Let V = nS, V + be its Moore–Penrose inverse,
and d1, ...., dq be the eigenvalues of BV +, q < n. Then Srivastava [7] pro-
posed the satistic

U+ =

q∏
i=1

(1 + di)
−1 = |I +BV +|−1. (6.8)

When Σ = γ2I or Σ is of rank r ≤ n, Srivastava [7] obtained distributions of
chi-square types, similar to the likelihood ratio test. It may be noted that
the hypothesis Σ = γ2I can be tested by a test proposed by Srivastava [6]
which has been shown to be robust under some departure from normality
by Srivastava, Kollo, and von Rosen [12].

For general Σ, however, he showed that under the null hypothesis CΘ = 0,

lim
(n,p)→∞

p

[
−pb̂ log U+ − qn√

2qn
< z1−α

]
= Φ(z1−α). (6.9)

Srivastava and Fujikoshi [10] considered more generalized form of T̃D and T2

and obtained the distribution without the condition (6.3) which was required
by Schott [5].

Next we give the asymptotic distribution of the statistic U+ under local
alternatives given by

M = n−
1
2 ∆, (6.10)

where ∆ is O(1). The asymptotic power of the test based on U+ is given by

β(U+) = lim
n→∞

lim
p→∞

P1

[
pb̂ log U+ − qn√

2qn
< z1−α

]

= lim
n→∞

lim
p→∞

Φ

[
−z1−α +

n tr ΛMM
′

pa2
√

2qn

]
.
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The U+ test should be preferred over T2 if

tr ΛMM
′

trMM ′ >
pa2
√

2qn
n
√

2pqa2
=
(pa2

n

) 1
2
.

For example, if M = (m1, . . . ,mq), and mi = (
√
λ1, . . . ,

√
λp)

′
i = 1, . . . , q,

where λ1, . . . , λp are the eigenvalues of Σ given in the same order as the
matrix Λ consisting of the eigenvalues of Σ, then the test U+ should be
preferred if

n < p

(
a2

1

a2

)
= pb.

Since 0 < b ≤ 1, many such n exist for large p. It may be noted that the U+

test assumes normality and has yet to be generalized for non-normal model
such as Model M. Thus, it is not included in the tables of comparison by
simulation.

These tests are invariant under the group of orthogonal transformations
but not invariant under p × p non-singular diagonal matrices. A test that
is invariant under this transformation has been proposed by Yamada and
Srivastava [14] assuming normality of the observation vectors. We describe
this test in the next Subsection 6.4.

6.4. Invariant test statistics. As mentioned above, T̃D and T2 tests are
not invariant under non-singular diagonal matrices. Thus, Yamada and Sri-
vastava [14] proposed the statistic

T1 =
trBD−1

S −
(

n
n−2

)
pq

[2cp,nq(trR2 − n−1p2)]
1
2

, R = D
− 1

2
S SD

− 1
2

S

under normality, where cp,n = 1 + (trR2/p
3
2 ).

The asymptotic distribution under the null hypothesis is standard normal
and under local alternatives similar to (6.6), the asymptotic power of the
T1-test is given by

β(T1) ' Φ

[
−z1−α +

trMM
′
D−1

Σ√
2q trR2

]
,

where R = D
− 1

2
Σ ΣD

− 1
2

Σ and DΣ = diag (σ11, . . . , σpp), σ11, . . . , σpp being
the diagonal elements of Σ.

For details see Yamada and Srivastava [14], where a theoretical comparison
between T1 and T2 similar to Srivastava and Du [9] is also given.

In the next section, we compare the power of T1-test with that of T2-test
by simulation.
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6.5. Power comparison by simulation. For simulation, we consider the
problem of testing the equality of 3 mean vectors, that is, k = q + 1 = 3
and q = 2, where N1 = N2 = N3 = N∗, and the cases of (N∗, p) =
(10, 40), (20, 80), (30, 120) and (40, 200) are treated. Note that n = N1 +
N2 + N3 − k = 3(N∗ − 1). For testing the inequality of the three mean
vectors, we write

Θ = (µ1,µ2,µ3)
′

: 3× p,

C =

(
1 0 −1
0 1 −1

)
, CΘ =

(
µ

′
1 − µ

′
3

µ
′
2 − µ

′
3

)
.

The observation matrix is

Y = (y
(1)
1 , . . . ,y

(1)
N∗ ; y

(2)
1 , . . . ,y

(2)
N∗ ; y

(3)
1 , . . . ,y

(3)
N∗)

′
,

X
N×3

=

1N∗ 0 0
0 1N∗ 0
0 0 1N∗

 ,

where 1N∗ = (1, . . . , 1)′ : N∗ × 1 for N = 3N∗. For the hypothesis, without
loss of generality, we choose µ1 = µ2 = µ3 = 0. For the alternative hypoth-
esis, we choose µ1 = 0, µ2 = 3n−1/2p−1/41′p, µ3 = −µ2. To generate the
Y matrix from a non-normal distribution, we generate 3N∗p i.i.d. random
variables uij from three kinds of chi-square distributions, namely, χ2

2, χ2
8 and

χ2
32 with 2, 8 and 32 degrees of freedom, respectively, and centre them and

scale them as
νij = (uij −m)/

√
2m,

for uij ∼ χ2
m, m = 2, 8, 32. Since the skewness and kurtosis (K4 + 3) of

χ2
m are, repectively, (8/m)1/2 and 3 + 12/m, it is noted that χ2

2 has higher
skewness and kurtosis than χ2

8 and χ2
32. Write them as

V = (ν
(1)
1 , . . . , ν

(1)
N∗ ; ν

(2)
1 , . . . , ν

(2)
N∗ ; ν

(3)
1 , . . . , ν

(3)
N∗)
′,

where ν
(i)
j vectors are p-vectors, j = 1, . . . , N∗, i = 1, 2, 3. For the covariance

matrix, we consider two cases.

Case 1 : Σ = Ip,

Case 2 : Σ = Da = diag (a2
1, . . . , a

2
p),

where ai are i.i.d. as chi-square with 3 degrees of freedom.

For the Case 1 we define

Y = V + X(0,µ2,µ3)′,

where under the hypothesis, Y = V, and under the alternative, µ2 and µ3

are replaced by the vectors mentioned above. For the Case 2 let

Y = VD1/2
a + X(0,µ2,µ3)′,
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where under the hypothesis, Y = VD
1/2
a , and in the alternative, µ2 and µ3

are replaced by the vectors mentioned above.
The simulation results under the χ2

m distributions for m = 2, 8 and 32
are presented in Tables 6, 7 and 8, respectively. The critical values are
computed based on 100,000 replications and the powers are obtained based
on 10,000 replications. Three tables report the critical values and the power
in the hypothesis of the two tests, and it is seen that the critical values are
appropriate.

Table 6. Critical values and powers of the tests T1 and T2

in the case of χ2
2-distribution with skewness 2 and kurtosis 9

Critical value Power in H Power in A
N∗ p T1 T2 T1 T2 T1 T2

Case 1
10 40 1.6061 1.5966 4.94 4.97 92.04 85.02
20 80 1.5632 1.6225 4.97 4.78 90.46 85.65
30 120 1.5622 1.6440 4.69 4.72 89.94 86.21
40 200 1.5564 1.6386 5.46 5.44 90.43 87.40

Case 2
10 40 1.6061 1.6865 4.94 5.49 99.96 24.71
20 80 1.5632 1.6784 4.97 5.04 99.63 18.20
30 120 1.5622 1.6919 4.69 4.64 97.82 15.20
40 200 1.5564 1.6852 5.46 4.99 96.26 16.97

Table 7. Critical values and powers of the tests T1 and T2

in the case of χ2
8-distribution with skewness 1 and kurtosis 4.5

Critical value Power in H Power in A
N∗ p T1 T2 T1 T2 T1 T2

Case 1
10 40 1.7339 1.7029 5.13 5.00 84.92 84.48
20 80 1.6175 1.6810 5.11 5.16 86.92 86.19
30 120 1.6119 1.6812 4.78 4.76 87.04 86.49
40 200 1.5967 1.6714 4.73 4.73 87.80 87.26

Case 2
10 40 1.7339 1.7903 5.13 5.05 99.93 23.56
20 80 1.6175 1.7276 5.11 5.45 99.27 18.89
30 120 1.6119 1.7344 4.78 5.00 97.06 15.56
40 200 1.5967 1.7291 4.73 5.02 94.70 16.38
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Table 8. Critical values and powers of the tests T1 and T2

in the case of χ2
32-distribution with skewness 0.5 and kurtosis

3.375

Critical value Power in H Power in A
N∗ p T1 T2 T1 T2 T1 T2

Case 1
10 40 1.7688 1.7184 4.78 4.77 82.13 84.72
20 80 1.6457 1.6930 4.72 4.87 84.12 84.89
30 120 1.6155 1.6812 4.54 4.57 86.09 86.20
40 200 1.6090 1.6831 5.06 4.86 86.84 87.08

Case 2
10 40 1.7688 1.8157 4.78 5.21 99.97 23.15
20 80 1.6457 1.7409 4.72 4.61 98.93 16.80
30 120 1.6155 1.7476 4.54 4.73 96.46 15.85
40 200 1.6090 1.7223 5.06 4.93 94.55 16.61

As reported in the tables, the powers of the two tests perform similarly
in Case 1, but the proposed test T1 has much higher powers than T2 in
Case 2. For the χ2

2-distribution, which has higher skewness and kurtosis,
T1 has slightly higher power than T2 in Case 1. Clearly, when Σ = Ip, all
the components have the same unit of measurements and hence both tests
perform equally well but when the unit of measurements are not the same,
as in Case 2, the proposed test performs much better than the test based on
T2.

7. Concluding remarks

In this article we reviewed several tests for the equality of the two mean
vectors including the case when the covariance matrices of the two groups
may be unequal. The asymptotic distributions are given under non-normal
models. Thus, the tests are robust against the departure from normality.
In MANOVA, we assume that the covariance matrices are all equal. We
have shown through simulation that the tests that are invariant under non-
singular diagonal matrices perform better than those that are not invariant.
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