A study on hypersurface of complex space form

C. S. Bagewadi and M. C. Bharathi

Abstract

We show that quasi-umbilical, generalized quasi-umbilical, super quasi-umbilical hypersurfaces of a complex space form are quasiEinstein, mixed generalized quasi-Einstein and mixed super quasiEinstein manifolds, respectively. We also prove that a Bochner flat space of generalized complex space form is an Einstein manifold.

1. Introduction

The notion of a quasi-Einstein manifold was studied in [3, 4] by M. C. Chaki and R. K. Maity. In [1] A. Bhattacharyya and T. De studied the notion of a mixed generalized quasi-Einstein manifold. A. Bhattacharyya, M. Tarafdar and D. Debnath [2 have obtained results on mixed super quasi-Einstein manifolds, they proved that a super quasi-umbilical hypersurface of Euclidean space is a mixed super quasi-Einstein manifold. S. Sular and C. Özgür [6] have proved that a quasi-umbilical hypersurface of Kenmotsu space forms is a generalized quasi-Einstein hypersurface. In this paper we study quasiumbilical, generalized quasi-umbilical, super quasi-umbilical hypersurfaces of a complex space form. It is proved that these hypersurfaces are quasiEinstein, mixed generalized quasi-Einstein and mixed super quasi-Einstein manifolds. respectively.

Definition 1.1 ([7). A Kähler manifold is an even-dimensional manifold $M^{2 n}$ with a complex structure J and a positive definite metric g which satisfy the conditions

$$
J^{2}=-I, \quad g(J X, J Y)=g(X, Y), \quad \nabla J=0,
$$

Received February 29, 2012.
2010 Mathematics Subject Classification. 53C40, 53B25, 53C15.
Key words and phrases. Quasi-Einstein, generalized quasi-Einstein, mixed generalized quasi-Einstein, mixed super quasi-Einstein, quasi-umbilical, generalized quasi-umbilical and super quasi-umbilical hypersurfaces, Kähler manifold, complex space form.
http://dx.doi.org/10.12697/ACUTM.2013.17.05
where ∇ means the covariant derivation according to the Levi-Civita connection.

2. Preliminaries

Definition 2.1. A complex manifold with constant sectional curvature c is known as a complex space form. The curvature tensor of a complex space form is given by

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{c}{4}[g(Y, Z) X-g(X, Z) Y+g(Z, J Y) J X \tag{2.1}\\
& -g(Z, J X) J Y+g(X, J Y) J Z]
\end{align*}
$$

Definition 2.2 (5]). An almost Hermitian manifold M is called a generalized complex space form $M\left(f_{1}, f_{2}\right)$ if its Riemannian curvature tensor R satisfies

$$
\begin{align*}
R(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, J Z) J Y \\
& -g(Y, J Z) J X+2 g(X, J Y) J Z\} \tag{2.2}
\end{align*}
$$

for all $X, Y, Z \in T M$, where f_{1} and f_{2} are smooth functions on M.
Definition 2.3. A non-flat Kähler manifold $M^{2 n}(n \geq 2)$ is said to be
(i) a quasi-Einstein manifold if its Ricci tensor S is non zero and satisfies the condition

$$
S(X, Y)=a g(X, Y)+b A(X) A(Y)
$$

(ii) a generalized quasi-Einstein manifold if

$$
S(X, Y)=a g(X, Y)+b A(X) A(Y)+c B(X) B(Y)
$$

(iii) a mixed generalized quasi-Einstein manifold if

$$
\begin{aligned}
S(X, Y) & =a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \\
& +d[A(X) B(Y)+B(X) A(Y)]
\end{aligned}
$$

(iv) a mixed super quasi-Einstein manifold if

$$
\begin{aligned}
S(X, Y) & =a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \\
& +d[A(X) B(Y)+B(X) A(Y)]+e D(X, Y),
\end{aligned}
$$

where a, b, c, d, e are non zero scalars , A and B are two non zero 1-forms such that

$$
g(X, U)=A(X) \text { and } g(X, V)=B(X) \quad \forall X \in T M
$$

U and V are unit vectors which are orthogonal, i.e.,

$$
g(U, V)=0 .
$$

D is a symmetric $(0,2)$ tensor of zero trace which satisfies the condition

$$
D(X, U)=0, \quad \forall X \in T M
$$

3. Hypersurfaces of the complex space form

Let M be a hypersurface of a Kähler manifold $M^{2 n}$.
If $T M^{2 n}$ and $T M$ denote the Lie algebra of vector fields on $M^{2 n}$ and M, respectively, and $T^{\perp} M$ is the set of all vector fields normal to M, then Gauss and Weingarten formulae are, respectively, given by

$$
\begin{aligned}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+\sigma(X, Y), \\
\bar{\nabla}_{X} N & =-A_{N} X+\nabla_{X}^{\perp} N,
\end{aligned}
$$

for all $X, Y \in T M$ and $N \in T^{\perp} M$, where ∇^{\perp} denotes the connection on the normal bundle $T^{\perp} M . \sigma$ and A_{N} are the second fundamental forms and shape operator of immersion of M into $M^{2 n}$ corresponding to a normal vector field N and they are related as

$$
g\left(A_{N} X, Y\right)=g(\sigma(X, Y), N)
$$

The Gauss equation is given by

$$
\begin{align*}
R(X, Y, Z, W)= & R(X, Y, Z, W)-g(\sigma(X, W), \sigma(Y, Z)) \tag{3.1}\\
& +g(\sigma(Y, W), \sigma(X, Z))
\end{align*}
$$

where Z, W are vector fields tangents to M.
We need the following definitions.
Definition 3.1 ([2]). A hypersurface of a Kähler manifold $M^{2 n}$ is said to be
(i) quasi-umbilical if its second fundamental tensor has the form

$$
\begin{equation*}
H(X, Y)=\alpha g(X, Y)+\beta \omega(X) \omega(Y) \tag{3.2}
\end{equation*}
$$

(ii) generalised quasi-umbilical if its second fundamental tensor has the form

$$
\begin{equation*}
H(X, Y)=\alpha g(X, Y)+\beta \omega(X) \omega(Y)+\gamma \delta(X) \delta(Y) \tag{3.3}
\end{equation*}
$$

(iii) super quasi-umbilical if its second fundamental tensor has the form

$$
\begin{equation*}
H(X, Y)=\alpha g(X, Y)+\beta \omega(X) \omega(Y)+\gamma \delta(X) \delta(Y)+\rho D(X, Y) \tag{3.4}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \rho$ are scalars and the vector fields corresponding to 1-forms ω and δ are unit vector fields.

Theorem 3.1. Let $M^{2 n}(c)$ be a complex space form.
(i) A quasi-umbilical hypersurface M of $M^{2 n}(c)$ is a quasi-Einstein hypersurface.
(ii) A generalized quasi-umbilical hypersurface M of a $M^{2 n}(c)$ is a mixed generalized quasi-Einstein manifold.
(iii) A super quasi-umbilical hypersurface M of $M^{2 n}(c)$ is a mixed super quasi-Einstein manifold.

Proof. (i) From equation (2.1), we have

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & \frac{c}{4}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& +g(Z, J Y) g(J X, W)-g(Z, J X) g(J Y, W) \tag{3.5}\\
& +g(X, J Y) g(J Z, W)]
\end{align*}
$$

for all tangents X, Y, Z, W to M.
Let N be the unit normal vector field of M in $M^{2 n}(c)$. Using $\sigma(X, Z)=$ $H(X, Z) N$ in equation (3.1), we have

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & R(X, Y, Z, W)-H(X, W) H(Y, Z) \tag{3.6}\\
& +H(Y, W) H(X, Z) .
\end{align*}
$$

For a quasi-umbilical hypersurface we know that

$$
\begin{equation*}
H(X, Z)=a g(X, Z)+b \omega(X) \omega(Z) \tag{3.7}
\end{equation*}
$$

Putting (3.7) in (3.6) and using (3.5), we have

$$
\begin{align*}
\frac{c}{4}[g(Y, Z) & g(X, W)-g(X, Z) g(Y, W)+g(Z, J Y) g(J X, W) \\
& \quad-g(Z, J X) g(J Y, W)+g(X, J Y) g(J Z, W)] \\
= & R(X, Y, Z, W)+a^{2}[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] \tag{3.8}\\
& +a b[g(X, Z) \omega(Y) \omega(W)+g(Y, W) \omega(X) \omega(Z) \\
& -g(Y, Z) \omega(X) \omega(W)-g(X, W) \omega(Y) \omega(Z)]
\end{align*}
$$

Putting $X=W=e_{i}$ and taking the sum over $i, \quad(1 \leq i \leq 2 n)$ in equation (3.8), where $\left\{e_{i}\right\}$ is an orthonormal basis for the given space form, we get

$$
S(Y, Z)=\left[\frac{c}{4}(2 n+1)+a^{2}(2 n-1)+a b(2 n-2)\right] g(Y, Z)+[2 n a b] \omega(Y) \omega(Z) .
$$

Hence M is a quasi-Einstein hypersurface.
Similar proofs of statements (ii) and (iii) are obtained by using equations (3.3), (3.4) and (3.5) in equation (3.6) and putting $X=W=e_{i}$.

4. Generalized complex space form with Bochner curvature tensor

Taking $X=e_{i} \quad(1 \leq i \leq 2 n), Y=X$ and $Z=Y$ in the equation (2.2), we obtain for the curvature

$$
\begin{align*}
R\left(e_{i}, X\right) Y= & F_{1}\left\{g(X, Y) e_{i}-g\left(e_{i}, Y\right) X\right\}+F_{2}\left\{g\left(e_{i}, J Y\right) J X\right. \\
& \left.-g(X, J Y) J e_{i}+2 g\left(e_{i}, J X\right) J Y\right\} . \tag{4.1}
\end{align*}
$$

Hence the Ricci tensor can be written in the form

$$
S(X, Y)=\sum_{i=1}^{2 n} R\left(e_{i}, X, Y, e_{i}\right)=\sum_{i=1}^{2 n} g\left(R\left(e_{i}, X\right) Y, e_{i}\right),
$$

and making use of 4.1) we can express it as

$$
\begin{align*}
S(X, Y) & =F_{1}\{g(X, Y) 2 n-g(X, Y)\}+F_{2}\{g(X, Y)+2 g(X, Y)\} \\
& =\left\{(2 n-1) F_{1}+3 F_{2}\right\} g(X, Y) . \tag{4.2}
\end{align*}
$$

For a generalized complex space form the Bochner curvature tensor is given by

$$
\begin{aligned}
B(X, Y) Z= & R(X, Y) Z+\frac{1}{2 n+4}[g(X, Z) Q Y-S(Y, Z) X-g(Y, Z) Q X \\
& +S(X, Z) Y+g(J X, Z) Q J Y-S(J Y, Z) J X-g(J Y, Z) Q J X \\
& +S(J X, Z) J Y+2 S(J X, Y) J Z+2 g(J X, Y) Q J Z] \\
& -\frac{D+2 n}{2 n+4}[g(J X, Z) J Y-g(J Y, Z) J X+2 g(J X, Y) J Z] \\
& -\frac{D-4}{2 n+4}[g(X, Z) Y-g(Y, Z) X]
\end{aligned}
$$

with $D=\frac{r+2 n}{2 n+2}$. R, S, Q and r are the Riemannian curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature of the manifold, respectively.

Suppose $B(X, Y) Z=0$. Then the curvature (1,3)-tensor is

$$
\begin{aligned}
R(X, Y) Z= & \frac{-1}{2 n+4}[g(X, Z) Q Y-S(Y, Z) X-g(Y, Z) Q X \\
& +S(X, Z) Y+g(J X, Z) Q J Y-S(J Y, Z) J X-g(J Y, Z) Q J X \\
& +S(J X, Z) J Y+2 S(J X, Y) J Z+2 g(J X, Y) Q J Z] \\
& +\frac{D+2 n}{2 n+4}[g(J X, Z) J Y-g(J Y, Z) J X+2 g(J X, Y) J Z] \\
& +\frac{D-4}{2 n+4}[g(X, Z) Y-g(Y, Z) X] .
\end{aligned}
$$

It follows from the previous formula that the curvature (0,4)-tensor can be written as

$$
\begin{aligned}
R(X, Y, Z, W)= & g(R(X, Y) Z, W) \\
= & -1 /(2 n+4)[g(X, Z) g(Q Y, W)-S(Y, Z) g(X, W) \\
& -g(Y, Z) g(Q X, W)+S(X, Z) g(Y, W) \\
& +g(J X, Z) g(Q J Y, W)-S(J Y, Z) g(J X, W) \\
& -g(J Y, Z) g(Q J X, W)+S(J X, Z) g(J Y, W) \\
& +2 S(J X, Y) g(J Z, W)+2 g(J X, Y) g(Q J Z, W)] \\
& +\frac{\left(\frac{r+2 n}{2 n+2}\right)+2 n}{2 n+4}[g(J X, Z) g(J Y, W) \\
& -g(J Y, Z) g(J X, W)+2 g(J X, Y) g(J Z, W)]
\end{aligned}
$$

$$
+\frac{\left(\frac{r+2 n}{2 n+2}\right)-4}{2 n+4}[g(X, Z) g(Y, W)-g(Y, Z) g(X, W)] .
$$

Putting $X=W=e_{i}$, where $\left\{e_{i}\right\}, \quad i=1,2, \ldots, 2 n$, is a local orthonormal basis for vector fields in a generalized complex space form $N\left(F_{1}, F_{2}\right)$, by virtue of $S(X, Y)=\sum_{i=1}^{2 n} g\left(R\left(e_{i}, X\right) Y, e_{i}\right)$, we get

$$
\begin{equation*}
S(Y, Z)=\left\{(2 n-1) F_{1}+3 F_{2}-2\right\} g(Y, Z) . \tag{4.3}
\end{equation*}
$$

Hence $N\left(F_{1}, F_{2}\right)$ is the Einstein manifold.
From (4.3), we have

$$
\begin{equation*}
Q Y=\left\{(2 n-1) F_{1}+3 F_{2}-2\right\} Y \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
r=2 n\left\{(2 n-1) F_{1}+3 F_{2}-2\right\} . \tag{4.5}
\end{equation*}
$$

Thus we can state the following theorem.
Theorem 4.1. A Bochner flat space of generalized complex space form $N\left(F_{1}, F_{2}\right)$ is an Einstein manifold. The Ricci tensor S, Ricci operator Q and scalar curvature r are given in equations (4.3)-4.5).

Acknowledgement. The authors are thankful to the referee for his/her valuable suggestions in the improvement of the paper.

References

[1] A. Bhattacharyya and T. De, On mixed generalized quasi-Einstein manifolds, Differ. Geom. Dyn. Syst. 9 (2007), 40-46 (electronic).
[2] A. Bhattacharyya, M. Tarafdar, and D. Debnath, On mixed super quasi-Einstein manifolds, Differ. Geom. Dyn. Syst. 10 (2008), 44-57.
[3] M. C. Chaki, On super quasi-Einstein manifolds, Publ. Math. Debrecen 64 (2004), 481-488.
[4] M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen 57 (2000), 297-306.
[5] U. C. De and G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J. 44 (2004), 607-615.
[6] S. Sular and C. Özgür, On some submanifolds of Kenmotsu manifolds, Chaos Solitons Fractals 42 (2009), 1990-1995.
[7] L. Tamássy, U. C. De, and T. Q. Binh, On weak symmetries of Kaehler manifolds, Balkan J. Geom. Appl. 5 (2000), 149-155.

Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, India

E-mail address: prof_bagewadi@yahoo.co.in; abjeevan@gmail.com

