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Influence of informative sampling on dependence
between variables

JuLiA ArRu

ABSTRACT. In the case of informative sampling the sampling scheme
explicitly or implicitly depends on the response variables. As a result,
neither the sample distribution of response variables, nor the covariance
matrix reflects the corresponding population counterparts. In this paper,
a relationship between multivariate sample and population distributions
is used. Based on this, the influence of the informative sampling on
the covariance matrix is investigated. It is shown that with inclusion
probabilities in a multiplicative form with respect to study variables,
the independence between variables is preserved in the sample. Further,
it is shown that with inclusion probabilities exponentially depending on
the study variables, the multivariate exponential family is invariant un-
der sampling. The sample distribution belongs to the same family as the
population distribution but with different parameters. The relationship
between parameters is given. The multinomial and multivariate normal
distributions are examined in more detail and the parameters of their
sample distributions are derived explicitly. The effect of the informa-
tive sampling on the respective covariance matrices and correlations is
analysed and illustrated in the examples.

1. Introduction

Many statistical methods are based on the dependence between variables.
In the multivariate case, the most important dependence characteristic to
use is the covariance matrix of variables. Therefore, valid estimation of the
covariance matrix is of utmost importance in data analysis. But with sur-
vey data the task is not trivial; sampling may disturb relationships between
variables. In this article we focus on the multivariate distributions and their
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covariance matrices under non-ignorable or informative sampling. In the case
of informative sampling the sampling scheme explicitly or implicitly depends
on the study variable(s). As a result, the sample distribution of the study
variables does not reflect the population distribution and does not approxi-
mate it after increasing the size of a sample either. The traditional sample
estimates are biased for the population parameters.

We use an analytical form of sample probability density function as pro-
posed by Pfeffermann and Sverchkov (1999). So far this approach was used
for one-dimentional response variable in the modelling context. We use their
approach to derive sample probability density functions for multivariate dis-
tributions. We concentrate on the exponential family. We assume inclusion
probabilities to depend on the study variables. Having chosen an exponential
function for this relationship we show that the multivariate sample probabil-
ity density function again belongs to the exponential family but with different
parameters. Knowledge of the sample distribution makes classical statisti-
cal inference possible with survey data. In particular, we give explicitly the
sample probability density functions for the multinomial and multivariate
normal distributions. We present covariance matrices of the obtained sam-
ple distributions and analyse differences between population and theoretical
sample covariances.

It should be mentioned that the theoretical sample covariance matrix can
be estimated from a sample in the classical way by a traditional sample co-
variance matrix. The established relationship between the theoretical sample
and population covariance matrices now allows to produce an estimate for
the population covariance matrix.

In sample surveys, the population covariance matrix can also be estimated
in other ways, for example by a design-weighted sample covariance matrix
(Traat, 2003). These other ways do not lend themselves to analytical compar-
isons of theoretical sample and population covariances. With our approach
the effect of the informative sampling can be analysed from the derived ex-
pressions.

2. Preliminaries

Let U = {1,2,...,4,..., N} define the finite population of size N. The
vector of study variables at object i is denoted by y; = (y},92,...,y¥F),
where k is the number of study variables. Let f,(y;) be the probability
density function (pdf) of the study variables in the population, either discrete
or continuous. The vector of parameters indexing f, is denoted by 6 =
(01,02,...,0pm).

The sample from a population is denoted by s and consists of n objects
from U, selected according to some sample selection scheme with inclusion
probabilities m; = P(i € s). In what follows we consider single stage sampling
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with inclusion probabilities 7;. In practice, probabilities often depend on
the values of study variable(s), the values of the auxiliary variables and,
possibly, values of design variables used for sample selection. For simplicity
we consider the case without any auxiliary or design variables, but all results
are also valid for conditional distributions given with the auxiliary or design
variables. Sample pdf fs of study variables is characterized by additional
condition of object ¢ being included in the sample s:

fs(yi) = fp(yiri € s).
As shown by Pfeffermann and Sverchkov (1999), by applying Bayes theorem

to the sample pdf we get the following relationship between sample and
population pdfs (E,() denotes expectation):

Ey(milyi) fo(yi)

) = . 1
fS(yl) Ep(’ﬂ_i) ( )
Expression (1) defines the relationship between population and sample dis-
tributions, so that if 7; depends on y;, then E,(m;|y;) # Ep(m;) and fp(y:) #
fs(yi). In this case the population distribution differs from the sample dis-

tribution and the sample design is informative. Note that E,(m;) is the
normalizing constant in (1), i.e.,

fs(yi) o< Ep(milys) fp(yi)- (2)
Relationship (1) or (2) is the basis for the following sections.

3. Independence in the population

Consider the case when variables y!,...,y* are independent in the popu-
lation. Then the population pdf can be rewritten as the product of marginal
distributions:

folyi) = fp(yz'l)fP@iQ) e fp(yf)' (3)
Let the sample selection probabilities depend on the study variables and have
expectations in multiplicative form,

Ep(ﬂib’i) = Ep(m\yil)Ep(m\yf) o Ep(ﬂi’yf) (4)
Then

Ep(mi) = Ep(Ep(mily:)) = Ep(Ep(Wi‘yz'l)) EE Ep(Ep(Wih/f))- (5)
Substituting (3) - (5) into (1), we see that the sample pdf is again the product
of marginal pdfs, i.e.,

fs(yi) = fs(yzl)fS(yzQ) . fS(yf)

and so variables are independent in sample as well. So, even in the case
of highly informative sampling, the independence between variables can be
preserved if effects of different variables in the inclusion probabilities are
multiplicative, like in (4).
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Example 1. Consider the population of N = 300 objects and two study
variables, y and z, which are independent and follow the standard normal
distribution in the population. We take a sample of n = 40 objects from that
population with two versions of inclusion probabilities which make sampling
informative:

i = ca(b + yizi + €),
mi=c((B+vi)3+2) + &)

where ¢; is a random error following a uniform distribution U(—0.15,0.15)
and ¢, and ¢p are normalizing constants. We use Pareto sampling as described
by Traat et al. (2004).

Conditional population expectations of inclusion probabilities are then
Ep(milyi, zi) = ca(5 + yizi), (7a)
Ep(milyi, 2i) = (3 + 1) (3 + ). (7b)

Graphs on Figure 1 show the population objects and objects selected into
the sample in cases (7a) and (7b). In case (7a) effects of y and z were not
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FiGure 1. Population and selected objects, independence
not preserved (on the left) and independence preserved (on
the right)

multiplicative and objects with both positive or both negative values of y and
z were selected into the sample, thus introducing correlation in the sampled
values, 7 = 0.40. While in case (7b) independence was preserved, r = 0.06,
the sampling is still informative: sample distributions of y and z are different
from population distributions (sample mean of y is 0.17, sample mean of z
is 0.41).
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4. Population distribution in multivariate exponential family

An example of exponential family in the univariate case with informative
sampling was examined in Pfeffermann et al. (1998). Presented here is
a generalisation for the multivariate case. In general, due to informative
sampling, a multivariate distribution in the population has another form in
the sample. Also dependence characteristics, such as covariance, change. In
some cases the sample covariance depending on the population parameters
can be derived analytically.

Let the population distribution belong to the multivariate exponential
family (Lehman, Casella 1998),

fo(yIn) = h(y) exp Zm B(n) |

where 7 = (7;) is an m-dimensional vector of canonical parameters taking
values in the parameter space ¥ C R™, h(-) : R¥ — R and T;(-) : R¥ - R
are functions of y, B(-) : R™ — R is a function of n.

If the inclusion probabilities also have an exponential form

m
Ey(nly) occexp | Y piT(y) |
j=1
where p; are some constants, then, according to (1), the sample distribution
belongs to the same family as the population distribution but with different
parameters, 17 = (n; +p;),j = 1,...,m, provided n* lies in ¥,

fo(y[m) Ep(mly)
Ep(”)

fs(ylm) =

m

y)exp | > nTi(y) — B(n) | exp | > piTi(y)
=1

7=1

y) exp 277] +p;)Tj(y) — B(n)
7j=1
5. Multinomial population distribution

Consider for example the k-dimensional multinomial distribution y =
(y*, 2, ...,y*) with number of trials I and probabilities @ = (01, 0s, ..., 0),
ie.,

k
! ;
fo(yll, 0) = WGXP (Z Yy 10g0¢> )

i=1
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where Zle f; = 1 and Zle y* = I. The vector of canonical parame-
ters is n = (logfy,...,log#), with parameter space ¥ C R* such that
Sy exp(m) = i, 6 = 1, and Ty(y) = ¢/

Let the population inclusion probabilities have expectations

k
Ep(nly) o exp <Zpiyi> :

i=1
then the sample distribution of the vector y is again multinomial with canon-
ical parameters n* = (log 601 +p1,...,log 0k +px), provided n* lies in W. The
vector of probabilities for the sample distribution is thus 6* = (61eP1,. ..,
OrePr). By defining a vector e = (eP1, ..., ePk), we can write 8™ as an element-
wise product 8* = 0 - e. The sample covariance matrix thus becomes

Dy = I(diag(0 -e) — (0 -¢e)(0 -e)').

The correlation coefficients between the variables y* and v/ in the popu-
lation and the sample are, respectively,

. . 0.6 . . 0:ePif.;ePi
o d\ — ] v, — 1 J
Py’ y) \/(1-@)(1—@) and ps(y',47) \/(1—9iepi)(1—9jepj)'

So, if p; and p; are positive, i.e., objects with larger y® and 3’ tend to be
selected more often, then the negative correlation between y* and ¢’ in the
sample is stronger than that in the population.

6. Multivariate normal population distribution

The multivariate normal distribution belongs to the exponential family.
Its density function equals

1 1 Iy—1
foly) = W exp <—2(Y —p)'E(y - H)) )
where p is the vector of expectations and X is the covariance matrix. We

will derive its sample distribution explicitly.

Suppose that the inclusion probabilities are again in exponential form, but
we now present them in matrix form

E,(rly) < exp (y'Ay + b'y), (8)

where A is a (k x k) symmetric matrix and b is a (k x 1) vector. After
applying (1) we see, given that the matrix (271 - 2A)_l is positive defi-
nite, the sample distribution is in this case again normal with the vector of
expectations A and the covariance matrix € having the forms
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A= (271 =24) (= lu+b), 9)

Q=(2"'-24)" (10)

From the above expressions we can make some conclusions on the rela-
tionship between the population and the sample covariance matrices in the
case of a normal distribution:

e The sample covariance matrix is different from the population covari-
ance matrix only if the matrix A is different from the matrix of zeros,
that is, if the expectation of inclusion probabilities depends on the
squares and products of study variables. If A = 0, then the mean of
the distribution changes but not the structure of dependencies.

e If variables are independent in the population, i.e., ¥ is diagonal,
then independence is preserved in the sample iff A is also diagonal
(including A = 0).

e With the choices of A, the structure of dependencies between vari-
ables can drastically change: dependent variables can become inde-
pendent, and vice versa, the sign of the covariance can change, etc.

So, with a normal population distribution and inclusion probabilities hav-
ing the form (8), parameters of the sample distribution (including covariance
matrix) can be calculated analytically using expressions (9) and (10). The
same relationships can be used in an opposite way to derive population pa-
rameters from the sample parameters. It is important to note that the sample
parameters can be estimated in the classical way from a sample by the sample
mean and the sample covariance matrix.

Example 2. To illustrate how different the population and sample corre-
lations may be, let us consider a population of N = 10000 objects with two
study variables, y and z. Let the study variables follow a standard normal dis-
tribution with correlation coefficient r. We take a sample of 1000 objects with

exponential inclusion probabilities of the form (8) with A = <1_/12 1_/12 > and

b = (1 1)/, and use Pareto sampling. Table 1 shows the population cor-
relation 7, the theoretical sample correlation 7 calculated with the help of
relationship (10) and the empirical sample correlation 7,

D ieslWi — 9)(zi — 2)]
\/ZiES (yi — ?j)Q\/Zies (2zi — 2)?
averaged over 1000 repetitions. The theory states, that 7 is a consistent es-
timator for 7, but not for r. We see that both strength and direction of the

correlation may drastically change in the sample as compared to the popu-
lation, negative correlation can become positive and independent variables

P =
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TABLE 1. Population and sample correlation coefficients

T T 7

-1 -1 -1
-0.8 1-0.26 | -0.25
-0.6 | 0.02] 0.01
-0.41 0.16 | 0.17
-0.21 0.26 | 0.27

0| 0.33] 0.33
0.2 040 0.39
0.4 046 | 0.46
0.6 0.54| 0.53
0.8] 0.67| 0.68

1 1 1

in the population can become correlated in the sample. We also see that 7
estimates 7 very well.

7. Summary

In this paper we considered the multivariate exponential family. We
showed that this family is closed under informative sampling if the inclu-
sion probabilities are of exponential form. We derived sample distributions
for the multinomial and multivariate normal distributions, and presented
formulas of the respective covariance matrices. We showed that informa-
tive sampling can drastically change the dependence structure in the sample
as compared to that in the population; sampling can even make dependent
variables independent and vice versa. However, special cases exist where
informative sampling does not influence covariances between variables. For
example, independence between variables is preserved if the inclusion prob-
abilities depend on the study variables in a multiplicative way.
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