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Unary polynomials on a class of semidirect

products of �nite groups

Kalle Kaarli and Peeter Puusemp

Abstract. We describe unary polynomial functions on �nite groups G
that are semidirect products of an elementary abelian group of exponent
p and a cyclic group of prime order q, p 6= q.

1. Introduction

Given a (universal) algebra A, an n-ary polynomial function on A is a
mapping An → A that can be presented as a composition of fundamental
operations of A, projection maps and constant maps. In the present paper we
consider only unary polynomial functions. Therefore, from now on, when we
talk about polynomial functions we always mean unary polynomial functions.
Also, often we refer to polynomial functions just as to polynomials. The set
of all polynomial functions on an algebra A will be denoted by P (A).

Clearly, polynomial functions on a commutative ring R with identity are
the usual polynomials, that is, the functions f : R → R that can be de�ned
by the formula

f(x) = a0 + a1x+ a2x
2 + · · ·+ asx

s,

where a0, a1, . . . , as ∈ R.
If A is a left module over a ring R then a function f : A → A is a

polynomial function on A if and only if there exist r ∈ R and a ∈ A such
that f(x) = rx+ a for each x ∈ A.

Now, let (G; +) be a group. Then a function f : G → G is a polynomial
if and only if there are a1, a2, . . . , as+1 ∈ G and e1, e2, . . . , es ∈ Z, such that
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for each x ∈ G

f(x) = a1 + e1x+ a2 + e2x+ . . .+ as + esx+ as+1. (1.1)

The groups we consider are written additively, although they need not
be abelian. This is a general practice in theory of polynomial functions
on groups. It comes from the fact that multiplicative notation is already
occupied in the natural near-ring structure of the set P (G).

Obviously, in formula (1.1) it su�ces to take ei ∈ {−1, 1}. If, moreover,
the group G is �nite then we may take all ei equal to 1. This is because in
a �nite group the additive inverse of any element a is equal to its multiple
ma where m > 0. This implies that in case of a �nite group G any function
f ∈ P (G) has the form

f(x) = (a1 + x− a1) + (a2 + x− a2) + . . .+ (as−1 + x− as−1) + as , (1.2)

where a1, . . . , as ∈ G. In other words, polynomial functions of �nite groups
are precisely the sums of �nitely many inner automorphisms and a constant.

As described in [1] the size of P (G) is known for all groups with |G| ≤ 100,
all �nite simple groups, all �nite abelian groups, the symmetric groups Sn,
dihedral and generalized dihedral groups, generalized quaternion groups,
dicyclic groups, certain subdirectly irreducible groups (including the non-
abelian groups of order qp), and the general linear groups. The aim of the
present paper is to describe P (G) in case when G is a semidirect product of
an elementary abelian group of exponent p and a cyclic group of prime order
q, q 6= p.

De�nition 1. Suppose that we are given two groups A and B, and a
homomorphism α : B → AutA. The external semidirect product G = AoαB
is de�ned as the direct product of sets A×B with the group operation

(a1, b1) + (a2, b2) = (a1 + α(b1)(a2), b1 + b2). (1.3)

We shall identify every a ∈ A with (a, 0) ∈ G and every b ∈ B with
(0, b) ∈ G. After such identi�cation A is a normal subgroup of G (A E G),
B is a subgroup of G (B ≤ G) and

b+ a− b = α(b)(a) (1.4)

for all a ∈ A, b ∈ B.
Clearly, the natural homomorphismG→ G/A induces the surjective group

homomorphism Φ : P (G)→ P (G/A) whose kernel K consists of all polyno-
mials p ∈ P (G) such that p(G) ⊆ A. It follows that the problem of describing
polynomials of G reduces, to great extent, to characterizing polynomials of
G/A and polynomials of G belonging to K. Indeed, if we know the poly-
nomials of G/A then we may pick for each of them a polynomial f ∈ P (G)
that induces it modulo A. In other words, we may choose a transversal T of
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cosets of K in P (G). Now every polynomial of G has a unique representation
in the form of a sum f + g, where f ∈ T , g ∈ K.

Let |B| = q, B = {0 = b0, . . . , bq−1} and Ki = {p|bi+A | p ∈ K}, i =
0, 1, . . . , q − 1. Obviously, every p ∈ K determines a q-tuple (p|b0+A, . . . ,
p|bq−1+A). Hence, we have a one-to-one mapping

Ψ : K → K0 × · · · ×Kq−1 , Ψ(p) = (p|b0+A, . . . , p|bq−1+A) .

In what follows we shall use a result of Aichinger [1].

Theorem 1 (E. Aichinger). Let G = A oα B and let Ψ be the mapping
de�ned above. Assume that the homomorphism α is one-to-one and all auto-
morphisms α(b), b 6= 1, are �xed-point-free. Then the mapping Ψ is bijective.

This is a special case of Lemma 2.2 in [1]. Note that the assumptions of
that lemma are satis�ed. Indeed, since α is one-to-one and B is a group of
prime order, the centralizer of A in B is the zero subgroup.

Furthermore, it is easy to see that the mapping κi : Ki → K0, f 7→ g,
where g(x) = f(bi + x), i = 0, . . . , q − 1, is a bijection (actually a group
isomorphism). It follows that under assumptions of Theorem 1, in order to
describe the polynomials of G it su�ces to know polynomials of G/A and
polynomials f ∈ P (G) such that f(A) ⊆ A. In particular, the following
formula holds:

|P (G)| = |P (G/A)| · |K0||B| . (1.5)

2. Structure of the group G

In what follows G = AoαB, where A = Znp , B = Zq with p and q distinct
primes and α a non-trivial group homomorphism, that is, |α(B)| > 1. The
case |α(B)| = 1 is uninteresting because in that case the group G would be
abelian.

Since B is a cyclic group of prime order q and α is non-trivial, the image
α(B) is a cyclic group of order q, too. Thus,

α(B) = {1, φ, φ2, . . . , φq−1},

where α(1) = φ ∈ Aut(A) \ {1}. Let S be the subring of EndA generated
by φ. Then A has a natural structure of an S-module.

The homomorphism α can be considered as a GF(p)-representation of the
group Zq. Since (q, p) = 1, Maschke's Theorem [2, p. 216] implies that α is
completely reducible. This means that the S-module A is the direct sum of
irreducible S-submodules Ai, i = 1, . . . , k. Let φi be the restriction of φ to
Ai, i = 1, . . . , k. Also, let Ãj , j = 1, . . . , l, be the homogeneous components

of the S-module A. If there exists i such that φi = 1, then let Ã1 be the sum
of all such Aj that φj = 1. In that case we put C = Ã1 and D = Ã2+· · ·+Ãl.
Obviously A = C ⊕D and it follows easily from the multiplication law (1.3)
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that C is the center of the group G. If there is no i with φi = 1, we put
C = {0} and D = A.

Next proposition describes normal subgroups of G.

Proposition 1. The group G is the direct sum of normal subgroups C and
D o B. Every normal subgroup of G is the sum of two normal subgroups of
G, one contained in C and the other contained in D or equal to D oB.

Proof. It is easy to check that DoB is a normal subgroup of G and obviously
C+(DoB) = G, C∩(DoB) = {0}. Let X be an arbitrary normal subgroup
of G. Assume �rst that X ⊆ A. The multiplication law (1.3) easily implies

thatX is an S-submodule of A. Hence, X = X1+· · ·+Xl, whereXi = X∩Ãi,
i = 1, . . . , l. Then obviously X1 ⊆ C and X2 + · · ·+Xl ⊆ D.

Let now X 6⊆ A. Then there exists a+b ∈ X with a ∈ A, 0 6= b ∈ B. Since
b is a generator of B, we may assume b = 1. Now we show that D ⊆ X.
Since D is a sum of minimal S-submodules, it su�ces to show that every
minimal S-submodule of D is contained in X. Take any of the minimal
submodules Aj ⊆ D and a1 ∈ Aj , such that φj(a1) 6= a1. This is possible,
because otherwise we would have φj = 1 which would imply Aj ⊆ C. Then
(1.4) implies

φ(a1)− a1 + a+ b = b+ a1 − b− a1 + a+ b = −a1 + (a+ b) + a1 ∈ X ,

hence also 0 6= φ(a1)− a1 ∈ X. Since Aj is a minimal S-submodule of A, we
conclude Aj ⊆ X. Next we show that B ⊆ X, thus also D o B ⊆ X. Take
again a+ b ∈ X, where a ∈ A and 0 6= b ∈ B. Since D ⊆ X, we may assume
that a ∈ C, hence 0 6= pb = p(a+ b) ∈ X which implies B ⊆ X. Now clearly
X = Y + (D oB), where Y = X ∩ C. �

3. Polynomial functions on the group G

We have proved that the group G is the direct sum of normal subgroups
C and D o B. Therefore the mapping χ : P (G) → P (C) × P (D o B),
χ(p) = (p|C , p|DoB), is one-to-one. In fact, given x = y + z ∈ G, where
x ∈ C, y ∈ D o B, we have p(x) = p|C(y) + p|DoB(z). Actually we can
say more. Namely, due to the result of Kaarli and Mayr [3], Proposition 1
implies that χ is surjective.

Remark. We thank the reviewer who has pointed out that the surjectivity
of χ can be derived also from a result of Scott [4]. Indeed, Proposition 1
implies that the only homomorphic image of D o B with non-trivial center
is B. Now, since |B| = q 6= p, the surjectivity of χ follows from Theorem 3.4
and Corollary to Theorem 2.1 of [4].

Hence the problem of characterization of polynomials of G reduces to the
same problem for groups C and DoB. Moreover, since for the abelian group
C the problem is trivial, we have to deal only with groupDoB. Equivalently,
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we may assume that C = {0}, that is, φi 6= 1 for every i = 1, . . . , k. In this
situation Theorem 1 applies. Indeed, since α is one-to-one, it su�ces to
observe that α(b) is �xed-point-free for every 0 6= b ∈ B. But this is the case
because φ = α(1) is �xed-point-free and every 0 6= b ∈ B generates B.

It follows that in order to describe polynomials of G one has to describe
polynomials of P (G/A) and the polynomials of G that map A to A. The
�rst problem is trivial because G/A ' Zq and polynomials of Zq have the
form f(x) = kx+ u with k, u ∈ Zq. In particular, |P (G/A)| = q2.

It remains to describe the polynomials of G that map A to A. As above,
let K0 = {p|A | p ∈ P (G), p(A) ⊆ A}.

Lemma 1. The set K0 consists of all functions f : A → A of the form
f(x) = s(x) + a, where s ∈ S, a ∈ A. In particular,

|K0| = |S| · |A| . (3.1)

Proof. This is an easy consequence of the general form of group polynomials
(1.2) and the formula (1.4). Clearly, it su�ces to show that {f ∈ K0 | f(0) =
0} = S. By de�nition, S consists of all functions on A that can be expressed
as unary ring polynomials in φ. Since formula (1.4) implies φ ∈ K0, we
have the inclusion S ⊆ {f ∈ K0 | f(0) = 0}. For the opposite inclusion,
due to formula (1.2), we have to prove that the restriction of every inner
automorphisms of G to A is contained in S. Let γ be the inner automorphism
of G determined by a+ b, where a ∈ A, b ∈ B. Since A is an abelian normal
subgroup of G, the restriction γ|A coincides with the restriction to A of the
inner automorphism of G, determined by b. Since B is a cyclic group of
order q with generator 1 and α(1) = φ, formula (1.4) implies γ|A = φk,
where 0 ≤ k < q. This proves the lemma. �

Finally, we calculate the size of the ring S in terms of the S-module A.
Since A is a faithful completely reducible S-module, the ring S is classically
semisimple. Since S is commutative, it must be a direct sum of Galois �elds.
It follows from the basic ring theory that these direct summands Sj are

in one-to-one correspondence with the homogeneous components Ãj , j =
1, . . . , l. More precisely, every Sj is isomorphic to the so-called bicentralizer

of any Ai contained in Ãj , j = 1, . . . , l. This means that Sj ' End FiAi,
where Fi = End SAi. Obviously, Ai is a vector space over Fi. Since Sj is
commutative, the dimension of this space must be 1. Thus, if the dimension
of Ai over Zp is mi, then Fi ' GF(pmi) and also Sj ' GF(pmi).

In conclusion we have the following theorem.

Theorem 2. Let G = A oα B where A = Znp and B = Zq where p and
q are distinct primes. Assume that the center of G is trivial (equivalently,
α(1) is �xed-point-free). Let S be the subring of EndA generated by α(1)
and let A1, . . . , Al be a complete list of pairwise non-isomorphic irreducible
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S-submodules of A. Denote |Ai| = pmi, i = 1, . . . , l. Then

|P (G)| = q2pq(m1+···+ml+n) .

Proof. Using formulas (1.5) and (3.1), we have

|P (G)| = |P (B)| · |K| = q2 · |K0|q = q2 · (|S| · |A|)q

= q2 · (|S1| · · · |Sl| · |A|)q = q2 · (pm1 · · · pml · pn)q

= q2p(m1+···+ml+n)q .

�

4. Examples

To conclude, we consider some examples with di�erent action of φ = α(1)
on A.

Example 1. Let G = AoB, where A = Z3
5, B = Z2, and let

φ =

1 0 0
0 1 0
0 0 4

 .

Then the S-module A splits into direct sum of three irreducible submodules
A1, A2 and A3, all of which are additively isomorphic to Z5. Since the
automorphism φ acts trivially on A1 and A2, and non-trivially on A3, we have
two homogeneous components: Ã1 = A1 + A2 = C, Ã2 = A3 = D. Hence,
G = C × (DoB) and P (G) is isomorphic to P (C)× P (DoB). Obviously,
|P (C)| = p3. In order to calculate the size of P (D o B), observe that
ψ = φ|D =

(
4
)
. Clearly, the ring T generated by ψ in EndA is isomorphic

to GF(5). Thus, using Theorem 2 we get

|P (G)| = |P (C)||P (D oB)| = |P (C)| · |P (B)| · (|T | · |D|)2

= 53 · 22 · (5 · 5)2 = 22 · 57 .

Example 2. Let G = AoB, where A = Z3
5, B = Z2, and let

φ =

1 0 0
0 4 0
0 0 4

 .

This example is similar to the previous one. Again A is a direct sum of three
irreducible submodules A1, A2 and A3 and again we have two homogeneous
components. The di�erence is that now Ã1 = A1 = C, Ã2 = A2 + A3 = D.
Further, |P (C)| = 52, |D| = 5 and |T | = 5. Consequently,

|P (G)| = |P (C)||P (D oB)| = 52 · 22 · (52 · 5)2 = 22 · 58.
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Example 3. Let G = AoB, where A = Z4
19, B = Z5, and let

φ =


0 18 0 0
1 14 0 0
0 0 0 18
0 0 1 4

 .

Since the characteristic polynomial of φ is

x4 + x3 + x2 + x+ 1 = (x2 + 5x+ 1)(x2 + 15x+ 1),

i.e., the product of distinct monic irreducible polynomials of degree 2 over
GF(19), the S-module A splits into the direct sum of two non-isomorphic
irreducible submodules A1 and A2. Hence the homogeneous components of
A are Ã1 = A1 and Ã2 = A2. It is easy to see that the both A1 and A2

are additively isomorphic to Z2
19, and the both S1 and S2 are isomorphic

to GF(192). So the center of G is trivial and φ is �xed-point-free. Using
Theorem 2 we get that

|P (G)| = 52 · 195(2+2+4) = 52 · 1940.

Example 4. Let G = AoB, where A = Z3
23, B = Z7, and let

φ =

0 0 1
1 0 14
0 1 13

 .

Since the characteristic polynomial of φ is x3 + 10x2 + 9x + 22, i.e., an
irreducible cubic, A is a simple S-module and S ∼= GF(233). So the center
of G is trivial and φ is �xed-point-free. Using Theorem 2 we get that

|P (G)| = 72 · 237(3+3) = 72 · 2342.
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