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Slight extensions of some theorems on the rate of
pointwise approximation of functions from some

subclasses of Lp

Xhevat Z. Krasniqi

Abstract. In this paper we prove some results on the rate of pointwise
approximation of functions by means of some matrix transformations
related to the partial sums of a Fourier series, removing the assumptions
that entries of the considered matrix belong to the classes RBV S or
HBV S. In fact, with weaker assumptions, our results give better degrees
than those obtained previously. Moreover, some results that have been
obtained earlier follow from our results as special cases. Finally, we
present some theorems of such type involving the so-called γRBV S or
γHBV S classes of numerical sequences.

1. Introduction and preliminaries

Let Lp (1 < p < +∞) be the class of all 2π-periodic real-valued functions
integrable in the Lebesgue sense with p-th power over T := [−π, π] with the
norm

‖f‖ = ‖f‖Lp =

(∫
T
|f(t)|pdt

)1/p

.

Consider its trigonometric Fourier series

Sf(x) :=
a0
2

+
∞∑
ν=1

(aν cos νx+ bν sin νx)

and the conjugate one

S̃f(x) :=

∞∑
ν=1

(bν cos νx− aν sin νx)
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with their partial sums Skf and S̃kf , respectively. It is a well-known fact
that if f ∈ L, then

f̃(x) := − 1

2π

∫ π

0
ψx(t) cot

t

2
dt = lim

ε→0
f̃(x, ε),

where

f̃(x, ε) := − 1

2π

∫ π

ε
ψx(t) cot

t

2
dt

with

ψx(t) := f(x+ t)− f(x− t),

exists for almost all x (see, e.g., [10], Theorem (3.1), Chapter IV).
Let A := (an,k) be a lower triangular infinite matrix of real numbers such

that

an,k ≥ 0,

n∑
k=0

an,k = 1, (k, n = 0, 1, . . . ),

and let the A-transformations of {Skf} and {S̃kf} be given by

Tn,A(f ;x) :=
n∑
k=0

an,kSk(f ;x) (n = 0, 1, . . . )

and

T̃n,A(f ;x) :=

n∑
k=0

an,kS̃k(f ;x) (n = 0, 1, . . . ),

respectively.

The estimates of the deviation T̃n,A(f) − f̃ were obtained by K. Qureshi
[7, 8] for monotonic sequences {an,k}. This deviation was estimated in the
norm of Lp by S. Lal and H. Nigam [2], while later on their result was
generalized by M. L. Mittal, B. E. Rhoades, and V. N. Mishra [6]. Recently
W.  Lenski and B. Szal [5] considered the same deviation and additionally

the deviations T̃n,Af(·) − f̃
(
·, π
n+1

)
and Tn,A(f) − f in the case when the

sequence {an,k} is of Rest Bounded Variation or of Head Bounded Variation.
Also some results of this type are obtained very recently in [1].

A sequence c := {cn} of nonnegative numbers tending to zero is called of
Rest Bounded Variation, or briefly c ∈ RBV S, if it has the property

∞∑
n=m

|cn − cn+1| ≤ K(c)cm

for all natural numbers m, where K(c) is a constant depending only on c.
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A sequence c := {cn} of nonnegative numbers will be called of Head
Bounded Variation, or briefly c ∈ HBV S, if it has the property

m−1∑
n=0

|cn − cn+1| ≤ K(c)cm

for all natural numbers m, or only for all m ≤ N if the sequence c has only
finitely many nonzero terms, and the last nonzero term is cN .

As a measure of approximation W.  Lenski and B. Szal used the generalized
moduli of continuity of f in the space Lp defined for β ≥ 0 by

ω̃βf(δ)Lp := sup
0≤|t|≤δ

{∣∣∣∣sin t

2

∣∣∣∣βp ∫ π

0
|ψx(t)|pdx

}1/p

,

ωβf(δ)Lp := sup
0≤|t|≤δ

{∣∣∣∣sin t

2

∣∣∣∣βp ∫ π

0
|ϕx(t)|pdx

}1/p

,

where

ϕx(t) := f(x+ t) + f(x− t)− 2f(x).

Also they defined two subclasses of Lp class as follows.
Let ω be a function of modulus of continuity type on the interval [0, 2π],

i.e. a nondecreasing continuous function having the following properties:
ω(0) = 0, ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2) for any 0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 2π.

Then the above-mentioned classes are

Lp(ω̃)β = {f ∈ Lp : ω̃βf(δ)Lp ≤ ω̃(δ)} ,

Lp(ω)β = {f ∈ Lp : ωβf(δ)Lp ≤ ω(δ)} ,
where ω and ω̃ are some functions of modulus of continuity type.

Using the notation

an =

{
an,0 when {an,k} ∈ RBV S,
an,n when {an,k} ∈ HBV S,

W.  Lenski and B. Szal [5] have proved the following three theorems.

Theorem 1. Let f ∈ Lp(ω̃)β with β < 1 − 1
p , {an,k} ∈ HBV S (or

{an,k} ∈ RBV S) and let ω̃ be such that(∫ π/(n+1)

0

(
t|ψx(t)|
ω̃(t)

)p
sinβp

t

2
dt

)1/p

= Ox
(
(n+ 1)−1

)
(1)

and (∫ π

π/(n+1)

(
t−γ |ψx(t)|
ω̃(t)

)p
sinβp

t

2
dt

)1/p

= Ox ((n+ 1)γ) (2)
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hold with 0 < γ < β + 1
p . Then∣∣∣∣T̃n,Af(x)− f̃

(
x,

π

n+ 1

)∣∣∣∣ = Ox

(
(n+ 1)

β+ 1
p
+1
anω̃

(
π

n+ 1

))
for considered x.

Theorem 2. Let f ∈ Lp(ω̃)β with β < 1 − 1
p , {an,k} ∈ HBV S (or

{an,k} ∈ RBV S) and let ω̃ satisfy (2) with 0 < γ < β + 1
p ,(∫ π/(n+1)

0

(
|ψx(t)|
ω̃(t)

)p
sinβp

t

2
dt

)1/p

= Ox

(
(n+ 1)−1/p

)
(3)

and(∫ π/(n+1)

0

(
ω̃(t)

t sinβ t
2

)q
dt

)1/q

= Ox

(
(n+ 1)β+1/p ω̃

(
π

n+ 1

))
, (4)

where q = p/(p− 1). Then∣∣∣T̃n,Af(x)− f̃(x)
∣∣∣ = Ox

(
(n+ 1)

β+ 1
p
+1
anω̃

(
π

n+ 1

))
for considered x such that f̃(x) exists.

Theorem 3. Let f ∈ Lp(ω)β with β < 1 − 1
p , {an,k} ∈ HBV S (or

{an,k} ∈ RBV S) and let ω̃ satisfy(∫ π

π/(n+1)

(
t−γ |ϕx(t)|
ω(t)

)p
sinβp

t

2
dt

)1/p

= Ox ((n+ 1)γ) (5)

with 0 < γ < β + 1
p ,(∫ π/(n+1)

0

(
|ϕx(t)|
ω(t)

)p
sinβp

t

2
dt

)1/p

= Ox

(
(n+ 1)−1/p

)
, (6)

and(∫ π/(n+1)

0

(
ω(t)

t sinβ t
2

)q
dt

)1/q

= Ox

(
(n+ 1)β+1/p ω

(
π

n+ 1

))
, (7)

where q = p/(p− 1). Then

|Tn,Af(x)− f(x)| = Ox

(
(n+ 1)

β+ 1
p
+1
anω

(
π

n+ 1

))
for considered x.
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The aim of the present paper is to prove the counterparts of the above
results (Theorems 1–3) without assuming that {an,k} ∈ HBV S or {an,k} ∈
RBV S.

Throughout this paper we write u = O(v) if there exists a positive con-
stant C such that u ≤ Cv.

2. Helpful lemmas

To prove the main results we need some auxiliary statements. Also we
shall use the following equalities from [5]:

Tn,Af(x)− f(x) =
1

π

∫ π

0
ϕx(t)

n∑
k=0

an,kDk(t)dt,

T̃n,Af(x)− f̃(x) =
1

π

∫ π

0
ψx(t)

n∑
k=0

an,kD̃
◦
k(t)dt,

and

T̃n,Af(x)− f̃
(
x,

π

n+ 1

)
= − 1

π

∫ π/(n+1)

0
ψx(t)

n∑
k=0

an,kD̃k(t)dt

+
1

π

∫ π

π/(n+1)
ψx(t)

n∑
k=0

an,kD̃
◦
k(t)dt,

where

D̃◦k(t) =
cos (2k+1)t

2

2 sin t
2

,

Dk(t) =
1

2
+

k∑
ν=1

cos νx =
sin (2k+1)t

2

2 sin t
2

,

and

D̃k(t) =
k∑
ν=1

sin νx =
cos t

2 − cos (2k+1)t
2

2 sin t
2

.

Lemma 4 ([10]). If 0 < |t| ≤ π/2, then∣∣D̃◦k(t)∣∣ ≤ π

2|t|
and

∣∣D̃k(t)
∣∣ ≤ π

|t|
,

and for any real number t we have∣∣D̃k(t)
∣∣ ≤ 1

2
k(k + 1)|t| and

∣∣D̃k(t)
∣∣ ≤ k + 1.
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Lemma 5 ([10]). If 0 < |t| ≤ π/2, then∣∣Dk(t)
∣∣ ≤ π

|t|
,

and for any real number t we have∣∣Dk(t)
∣∣ ≤ k + 1.

Lemma 6. For any lower triangular infinite matrix (an,k), k,n=0,1,2, . . . ,
of nonnegative numbers, it holds uniformly in 0 < t ≤ π, that∣∣∣∣ n∑

k=0

an,kD̃
◦
k(t)

∣∣∣∣ ≤ O
(

1

t2

(
n∑
k=0

|4an,k|

))
.

Proof. Using the following equality (see [5], page 19)

n∑
k=m

an,k cos
(2k + 1)t

2
sin

t

2

= an,m cos
(2m+ 1)t

2
sin

t

2

+

n−1∑
k=m+1

(an,k − an,k+1) sin
(k −m− 1)t

2
cos

(k +m+ 1)t

2

+an,n sin
(n−m− 1)t

2
cos

(n+m+ 1)t

2
,

we obviously obtain∣∣∣∣ n∑
k=m

an,k cos
(2k + 1)t

2
sin

t

2

∣∣∣∣ ≤ an,m +

n−1∑
k=m+1

|an,k − an,k+1|+ an,n.

But since (ank) is a lower triangular matrix, that is, an,k = 0 for k > n, then

anm ≤
n∑

k=m

|4ank|

holds for m = 0, 1, 2, . . . , n.
Therefore from this and above we have∣∣∣∣ n∑

k=0

an,kD̃
◦
k(t)

∣∣∣∣ = O

(
1

t2

(
an,0 +

n−1∑
k=1

|an,k − an,k+1|+ an,n

))

= O

(
1

t2

(
n∑
k=0

|4an,k|

))
,

which completes the proof of the lemma. �
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Lemma 7. For any lower triangular infinite matrix (an,k), k,n=0,1,2, . . . ,
of nonnegative numbers, it holds uniformly in 0 < t ≤ π, that∣∣∣∣ n∑

k=0

an,kDk(t)

∣∣∣∣ ≤ O
(

1

t2

(
n∑
k=0

|4an,k|

))
.

Proof. Analogously, we obtain∣∣∣∣ n∑
k=m

an,k sin
(2k + 1)t

2
sin

t

2

∣∣∣∣ ≤ an,m +

n−1∑
k=m+1

|an,k − an,k+1|+ an,n.

Using again the fact that (ank) is a lower triangular matrix, that is, an,k = 0
for k > n, we obtain that

anm ≤
n∑

k=m

|4ank|

holds for m = 0, 1, 2, . . . , n, and it follows that∣∣∣∣ n∑
k=0

an,kDk(t)

∣∣∣∣ = O

(
1

t2

(
an,0 +

n−1∑
k=1

|an,k − an,k+1|+ an,n

))

= O

(
1

t2

(
n∑
k=0

|4an,k|

))
.

The proof of the lemma is finished. �

3. Main results

We establish the following.

Theorem 8. Let f ∈ Lp(ω̃)β with β < 1 − 1
p , and let ω̃ satisfy (1) and

(2) with 0 < γ < β + 1
p . Then∣∣∣∣T̃n,Af(x)− f̃

(
x,

π

n+ 1

)∣∣∣∣ = Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|4an,k|ω̃
(

π

n+ 1

))
for considered x.

Proof. We shall follow the idea of  Lenski and Szal’s [5]. Starting from the
equality

T̃n,Af(x)− f̃
(
x,

π

n+ 1

)
= − 1

π

∫ π/(n+1)

0
ψx(t)

n∑
k=0

an,kD̃k(t)dt

+
1

π

∫ π

π/(n+1)
ψx(t)

n∑
k=0

an,kD̃
◦
k(t)dt :=R1+R2,
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we clearly have ∣∣∣∣T̃n,Af(x)− f̃
(
x,

π

n+ 1

)∣∣∣∣ ≤ |R1|+ |R2|.

To estimate |R1| we use Hölder’s inequality with p+ q = pq, Lemma 4, and
(1):

|R1| ≤
(n+ 1)2

2π

∫ π
n+1

0
t|ψx(t)|dt

≤ (n+ 1)2

2π

(∫ π
n+1

0

(
t|ψx(t)|
ω̃(t)

)p
sinβp

t

2
dt

) 1
p
(∫ π

n+1

0

(
ω̃(t)

sinβ t
2

)q
dt

) 1
q

= O

(n+ 1)

(∫ π
n+1

0

(
ω̃(t)

tβ

)q
dt

) 1
q


= Ox

(
(n+ 1)

β+ 1
p ω̃

(
π

n+ 1

))
,

for β < 1− 1
p .

Now by Hölder’s inequality with p + q = pq, Lemma 6 and (2), for |R2|
we have

|R2| ≤
1

π

∫ π

π
n+1

|ψx(t)|
∣∣∣∣ n∑
k=0

an,kD̃
◦
k(t)

∣∣∣∣dt
= O

(
n∑
k=0

|4an,k|
∫ π

π
n+1

|ψx(t)|
t2

dt

)

= O

(
n∑
k=0

|4an,k|

(∫ π

π
n+1

(
t−γ |ψx(t)|
ω̃(t)

)p
sinβp

t

2
dt

) 1
p

×

(∫ π

π
n+1

(
ω̃(t)

t2−γ sinβ t
2

)q
dt

) 1
q
)

= Ox

(n+ 1)γ
n∑
k=0

|4an,k|

(∫ π

π
n+1

(
ω̃(t)

t2−γ+β

)q
dt

) 1
q


= Ox

(n+ 1)γ+1
n∑
k=0

|4an,k|ω̃
(

π

n+ 1

)(∫ π

π
n+1

(
tγ−β−1

)q
dt

) 1
q


= Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|4an,k|ω̃
(

π

n+ 1

))
,
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for 0 < γ < β + 1
p .

We complete the proof by combining the above estimates. �

Theorem 9. Let f ∈ Lp(ω̃)β with β < 1 − 1
p , and let ω̃ satisfy (2), (3),

and (4), with 0 < γ < β + 1
p and q = p/(p− 1). Then∣∣∣T̃n,Af(x)− f̃(x)

∣∣∣ = Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|4an,k|ω̃
(

π

n+ 1

))
for considered x such that f̃(x) exists.

Proof. From the equality

T̃n,Af(x)− f̃ (x) =
1

π

∫ π
n+1

0
ψx(t)

n∑
k=0

an,kD̃
◦
k(t)dt

+
1

π

∫ π

π
n+1

ψx(t)
n∑
k=0

an,kD̃
◦
k(t)dt := R◦1 +R2,

we have

|T̃n,Af(x)− f̃ (x) | ≤ |R◦1|+ |R2|.
For |R◦1| we use the estimation (see [5, p. 23])

|R◦1| = Ox

(
(n+ 1)βω̃

(
π

n+ 1

))
,

while for |R2| we use the one from Theorem 8

|R2| = Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|4an,k|ω̃
(

π

n+ 1

))
.

Estimates made for |R◦1| and |R2| completely verify the theorem. �

Theorem 10. Let f ∈ Lp(ω)β with β < 1− 1
p , and let ω̃ satisfy (5), (6),

and (7), where q = p/(p− 1). Then

|Tn,Af(x)− f(x)| = Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|4an,k|ω
(

π

n+ 1

))
for considered x.

Proof. Since

Tn,Af(x)− f (x) =
1

π

∫ π
n+1

0
ϕx(t)

n∑
k=0

an,kDk(t)dt

+
1

π

∫ π

π
n+1

ϕx(t)
n∑
k=0

an,kDk(t)dt := R◦1 +R◦2,
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we have

|Tn,Af(x)− f (x) | ≤ |R◦1|+ |R◦2|.

On one hand, in the same way as in the proof of Theorem 3 using Lemmas
5, (6), and (7), we obtain

|R◦1| = Ox

(
(n+ 1)βω

(
π

n+ 1

))
.

On the other hand, by Hölder’s inequality with p+ q = pq, Lemma 7, and
(5) we have

|R◦2| ≤
1

π

∫ π

π
n+1

|ϕx(t)|
∣∣∣∣ n∑
k=0

an,kDk(t)

∣∣∣∣dt
= O

(
n∑
k=0

|4an,k|
∫ π

π
n+1

|ϕx(t)|
t2

dt

)

= O

(
n∑
k=0

|4an,k|

(∫ π

π
n+1

(
t−γ |ϕx(t)|
ω(t)

)p
sinβp

t

2
dt

) 1
p

×

(∫ π

π
n+1

(
ω(t)

t2−γ sinβ t
2

)q
dt

) 1
q
)

= Ox

(n+ 1)γ
n∑
k=0

|4an,k|

(∫ π

π
n+1

(
ω(t)

t2−γ+β

)q
dt

) 1
q


= Ox

(n+ 1)γ+1
n∑
k=0

|4an,k|ω
(

π

n+ 1

)(∫ π

π
n+1

(
tγ−β−1

)q
dt

) 1
q


= Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|4an,k|ω
(

π

n+ 1

))
,

for 0 < γ < β + 1
p .

This completes the proof. �
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4. Concluding remarks

Remark 1. Note that if c := {an,k} ∈ RBV S, then the inequality

an,n − an,0 ≤ |an,0 − an,n| ≤
n−1∑
k=0

|4an,k|

implies

n∑
k=0

|4an,k| =

n−1∑
k=0

|4an,k|+ an,n

≤ 2
n−1∑
k=0

|4an,k|+ an,0 ≤ 2 (K (c) + 1) an,0.

Also if c : {an,k} ∈ HBV S, then

n∑
k=0

|4an,k| =
n−1∑
k=0

|4an,k|+ an,n ≤ 2 (K (c) + 1) an,n.

Therefore, Theorems 1 – 3 immediately follow from Theorems 8 – 10.

Remark 2. L. Leindler [4] has extended the definition of RBV S to the
so called γRBV S. Indeed: For a fixed n, let γn := {γn,k} be a nonnegative
sequence. If a null-sequence θn := {an,k} of real numbers has the property

∞∑
k=m

|4an,k| ≤ K(θn)γn,m

for every positive integerm, then we call the sequence θn := {an,k} a γRBV S
and denote θn ∈ γRBV S.

Similarly, the authors of [9] introduced a new kind of sequences as follows.
For a fixed n, let γn := {γn,k} be a nonnegative sequence. If a null-

sequence θn := {an,k} of real numbers has the property

m−1∑
k=0

|4an,k| ≤ K(θn)γn,m

for every positive integer m, then we call the sequence θn := {an,k} a
γHBV S and denote θn ∈ γHBV S.

By an argument similar to Theorems 8 – 10 and using the notation

γn =

{
γn,0 when {an,k} ∈ γRBV S,
γn,n when {an,k} ∈ γHBV S,

we have the following generalizations of Theorems 1 – 3.
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Theorem 11. Let f ∈ Lp(ω̃)β with β < 1 − 1
p , {an,k} ∈ γHBV S (or

{an,k} ∈ γRBV S) and let ω̃ satisfy (1) and (2) with 0 < γ < β + 1
p . Then∣∣∣∣T̃n,Af(x)− f̃

(
x,

π

n+ 1

)∣∣∣∣ = Ox

(
(n+ 1)

β+ 1
p
+1
γnω̃

(
π

n+ 1

))
for considered x.

Theorem 12. Let f ∈ Lp(ω̃)β with β < 1 − 1
p , {an,k} ∈ γHBV S (or

{an,k} ∈ γRBV S) and let ω̃ satisfy (2), (3), and (4), with 0 < γ < β + 1
p

and q = p/(p− 1). Then∣∣∣T̃n,Af(x)− f̃(x)
∣∣∣ = Ox

(
(n+ 1)

β+ 1
p
+1
γnω̃

(
π

n+ 1

))
for considered x such that f̃(x) exists.

Theorem 13. Let f ∈ Lp(ω)β with β < 1 − 1
p , {an,k} ∈ γHBV S (or

{an,k} ∈ γRBV S) and let ω̃ satisfy (5), (6), and (7), where q = p/(p − 1).
Then

|Tn,Af(x)− f(x)| = Ox

(
(n+ 1)

β+ 1
p
+1
γnω

(
π

n+ 1

))
for considered x.

Remark 3. If γn = θn, then clearly γHBV S ≡ HBV S and γRBV S ≡
RBV S. Therefore Theorems 1 – 3 are also special cases of Theorems 11 – 13.

Remark 4. If we consider the Lp norms of the above-discussed deviations,
we can obtain the same estimations without any difficulty.
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