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A note on almost sure behavior of randomly
weighted sums of φ-mixing random variables with

φ-mixing weights

Marcin Przystalski

Abstract. Randomly weighted sums play an important role in vari-
ous applied and theoretical problems, e.g., in actuarial mathematics or
statistics. The almost sure convergence of randomly weighted sums is
usually studied under the assumption that sequences are independent
and identically distributed. In this note, we assume that both sequences
are φ-mixing. Under some additional conditions, we prove a strong law
of large numbers for sequences of randomly weighted sums.

1. Introduction

Let {Yi, i ≥ 1} be a sequence of random variables defined on a probability
space (Ω,F , P ). Let Fk

j be a σ-algebra generated by the random variables
Yl, l = j, . . . , k.

Define the φ-mixing coefficient (uniform mixing coefficient)

φ (m) = sup {|P (B|A)− P (B)|} ,

where the supremum is taken over A ∈ Fk
1 , B ∈ Fn

k+m, P (A) 6= 0, 1 ≤ k ≤
n−m.

The uniform mixing coefficient was introduced independently by Rozanov
and Volkonski [11] and Ibragimov [4]. Since then many authors have studied
sequences of φ-mixing random variables, and a number of useful results have
been established. In [8], Nagaev proved probability and maximal inequalities
for φ-mixing random variables. The summability of φ-mixing random vari-
ables was studied by Kiesel in [5, 6], whereas strong laws of large numbers
were obtained, e.g., in [5, 6, 7, 12].
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Randomly weighted partial sums
∑n

i=1AiXi play an important role in
various applied and theoretical problems. In actuarial mathematics, if Xi is
regarded as the net loss within the time period i of the company and each
Ai as the discount factor from time i to time 0, then

∑n
i=1AiXi can be in-

terpreted as the total discounted amount of the net loss from time 0 to time
n. For example, in the field of queueing theory, the

∑n
i=1AiXi can be used

to represent the total output for customer being served by n machines. In
statistics, Arenal-Gutiérez et al. [1] obtained a strong law of large numbers
for the bootstrap mean, assuming that {Xi, i ≥ 1} is a sequence of pair-
wise independent and identically distributed random variables. The latter
was further generalized by Rosalsky and Sreehari in [10]. In this note, we
study strong limit theorems of randomly weighted partial sums

∑n
i=1AiXi,

assuming that both sequences are weakly dependent, which generalize the
results obtained in [1, 10]. In contrast to [1], we assume that {Xi, i ≥ 1}
is φ-mixing. On the sequence of weights {Ai, i ≥ 1}, we assume that this
sequence is a sequence of positive, identically distributed (i.d.) φ-mixing
random variables such that Ai and Xi are independent, for each i ≥ 1. We
establish strong laws of large numbers for a non-identically distributed se-
quence {Xi, i ≥ 1} using the notion of a regular cover, which was introduced
by Pruss in [9].

Definition 1.1. Let X1, . . . , Xn be random variables, and X be a random
variable possibly defined on a different probability space. Then X1, . . . , Xn

are said to be a regular cover of X provided

E (G (X)) =
1

n

n∑
i=1

E (G (Xi)) , (1)

for any measurable function G for which both sides make sense.

2. Technical lemmas

Let {Yi, i ≥ 1} be a sequence of φ-mixing random variables. Set Sk =∑k
i=1 Yi and Mn = max1≤k≤n |Sk|.
Define

φ+ (m) = sup {P (B|A)− P (B)} ,
where the supremum is taken over A ∈ Fk

1 , B ∈ Fn
k+m, P (A) 6= 0, 1 ≤ k ≤

n−m.
In [8], it was pointed out that φ+ (n) < φ (n). Assume that φ+ (1) < 1

and let δ > 0 satisfy the condition δ + φ+ (1) < 1. Set ρ = δ + φ+ (1). Let
α be a number such that the following condition is satisfied:

P (2Mn > α) < δ.

Under the above notation, Nagaev [8] proved the following inequality.
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Lemma 2.1. For any p > 0 and 0 < ε < 1
6 such that s (ε) > p,

EMp
n < c1 (p)

n∑
i=1

E |Yi|p + c2 (p)αp,

where s (ε) = − log ρ/ log (1 + ε),

c1 (p) <
2p+1

ε3p+1ρ
B (p+ 1, s (ε)− p+ 1) ,

c2 (p) < ρ−1ε−pB (p+ 1, s (ε)− p) p+ 1,

and B (·, ·) is the Euler Beta function.

In the proof of the main result we will need the following lemma.

Lemma 2.2. Let {A, Ai, i ≥ 1} be a sequence of positive i.d. random
variables with EAp <∞, for some 1 ≤ p ≤ 2. Then

max1≤i≤nAi

n
→ 0 a.s.

Proof. Note that the condition EAp < ∞ implies
∑∞

n=1 P (An > εn) < ∞,
for every ε > 0. Hence, by the Borel–Cantelli lemma we have that

An

n
→ 0 a.s.

Thus, by Lemma 1 in [3] we get the assertion. �

Throughout this paper, C1 and C2 always stand for positive constants
which may differ from one place to another.

3. Main results

Theorem 3.1. Let {A, Ai, i ≥ 1} be a sequence of positive i.d. φ-mixing
random variables with EAp <∞, for some 1 ≤ p ≤ 2, and let {Xi, i ≥ 1} be
a sequence of φ-mixing random variables that is independent of {A, Ai, i≥1}.
Let X be a random variable, possibly defined on a different probability space,
satisfying condition (1). Moreover, additionally assume that EXn = 0, for
all n ≥ 1. Let b0 = 0 and bn be an increasing sequence of positive numbers
satisfying

bn
n
→∞ and bpn

∞∑
i=n

1

bpi
= O (n) . (2)

If s (ε) > p, for some 0 < ε < 1
6 , and E |X|p <∞, then

lim
n→∞

1

n1/pbn

n∑
i=1

AiXi = 0 a.s. (3)
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Proof. For n ≥ 1, set X ′i = XiI (|Xi| ≤ bi) and X ′′i = XiI (|Xi| > bi). Then

n∑
i=1

AiXi =
n∑

i=1

Ai

(
X ′i − EX ′i

)
+

n∑
i=1

AiX
′′
i +

n∑
i=1

AiEX
′
i.

In order to show that
(
n1/pbn

)−1∑n
i=1AiXi → 0 a.s., we only need to show

that all terms above are o
(
n1/pbn

)
a.s.

First, we show that

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

Ai

(
X ′i − EX ′i

)∣∣∣∣∣ > n1/pbnε

)
<∞, (4)

for all ε > 0.
Because X ′i = XiI (|Xi| ≤ bi) is also φ-mixing, by Theorem 5.2 in [2], we

have that {AiX
′
i, i ≥ 1} is also φ-mixing. Hence, by Markov’s inequality and

Lemma 2.1, we have that

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

Ai

(
X ′i − EX ′i

)∣∣∣∣∣>n1/pbnε
)
≤
∞∑
n=1

E |
∑n

i=1Ai (X ′i − EX ′i)|
p

nbpnεp

≤ C1

∞∑
n=1

EAp

nbpn

n∑
i=1

E
∣∣X ′i − EX ′i∣∣p

+ C2

∞∑
n=1

1

nbpn

≤ C1

∞∑
n=1

1

nbpn

n∑
i=1

E
∣∣X ′i∣∣p+ C2

∞∑
n=1

1

bpn

= I1 + I2.

Note that the second part of (2) ensures that I2 <∞. Hence, it remains to
show that I1 <∞.

Because bn is increasing, we have that bi ≤ bn, for all i ≤ n, and

I1 = C1

∞∑
n=1

1

nbpn

n∑
i=1

E
∣∣X ′i∣∣p

≤ C1

∞∑
n=1

1

nbpn

n∑
i=1

E |Xi|p I (|Xi| ≤ bn) .
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Let G (x) = |x|p I [|x| ≤ bn]; then by the definition of regular cover

I1 ≤ C1

∞∑
n=1

1

nbpn

n∑
i=1

E |Xi|p I (|Xi| ≤ bn)

≤ C1

∞∑
n=1

1

bpn
E
∣∣X ′∣∣p ,

where X ′ = XI (|X| ≤ bn).
Further,

I1 ≤ C1

∞∑
n=1

1

bpn
E
∣∣X ′∣∣p = C

∞∑
n=1

1

bpn

n∑
n=1

E |X|p I [bi−1 < |X| ≤ bi]

≤ C1

∞∑
n=1

1

bpn

n∑
i=1

bpiP (bi−1 < |X| ≤ bi)

= C1

∞∑
i=1

bpiP (bi−1 < |X| ≤ bi)
∞∑
n=i

1

bpn
. (5)

Then, by (5) and (2),

I1 ≤ C1

∞∑
i=1

iP (bi−1 < |X| ≤ bi)

= C1

∞∑
i=1

P (|X| > bi) ≤ C1E |X|p
∞∑
i=1

1

bpi
<∞,

and (4) holds. Thus,
(
n1/pbn

)−1∑n
i=1Ai (X ′i − EX ′i) converges completely

to 0, which implies that
∑n

i=1Ai (X ′i − EX ′i) is o
(
n1/pbn

)
a.s.

Next, by the definition of regular cover, condition E |X|p < ∞, and (2),
we have that

∞∑
n=1

P (|Xn| > bn) =
∞∑
n=1

∞∑
i=n

P (bi−1 < |Xn| ≤ bi)

=

∞∑
i=1

i∑
n=1

P (bi−1 < |Xn| ≤ bi)

=
∞∑
i=1

i∑
n=1

EI [bi−1 < |Xn| ≤ bi]

=
∞∑
i=1

iEI [bi−1 < |X| ≤ bi]

5
5
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=
∞∑
i=1

iP (bi−1 < |X| ≤ bi)

≤ E |X|p
∞∑
i=1

1

bpi
<∞.

Hence, by the Borel–Cantelli lemma,
∑n

i=1 |X ′′i | is bounded a.s. By (2) and
Lemma 2.2, it follows that

1

n1/pbn

∣∣∣∣∣
n∑

i=1

AiX
′′
i

∣∣∣∣∣ ≤ 1

n1/pbn
max
1≤i≤n

Ai

n∑
i=1

∣∣X ′′i ∣∣
=
n1−1/p

bn

max1≤i≤nAi

n

n∑
i=1

∣∣X ′′i ∣∣→ 0 a.s.

Finally, by Markov’s inequality, Lemma 2.1, condition EAp < ∞, and the
definition of regular cover,
∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

AiEX
′
i

∣∣∣∣∣ > n1/pbnε

)
≤ C1

∞∑
n=1

1

nbpn

n∑
i=1

EAp
i

∣∣EX ′i∣∣p + C2

∞∑
n=1

1

nbpn

≤ C1

∞∑
n=1

1

nbpn

n∑
i=1

E
∣∣X ′i∣∣p + C2

∞∑
n=1

1

nbpn
.

Hence, using the same arguments as in the estimation of I1 and I2, we obtain
that

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

AiEX
′
i

∣∣∣∣∣ > n1/pbnε

)
<∞,

for every ε > 0. Thus,
(
n1/pbn

)−1∑n
i=1AiEX

′
i converges completely to

0, which implies that
∑n

i=1AiEX
′
i is o

(
n1/pbn

)
a.s. This completes the

proof. �

In [9], it was pointed out that every i.d. sequence of random variables
satisfies the regular cover condition (1) with X = X1. Thus, from Theorem
3.1 we have the following corollary.

Corollary 3.2. Let {A, Ai, i ≥ 1} be a sequence of positive i.d. φ-mixing
random variables with EAp <∞, for some 1 ≤ p ≤ 2, and let {X, Xi, i ≥ 1}
be a sequence of i.d. φ-mixing random variables that is independent of
{A, Ai, i ≥ 1}. Moreover, additionally assume that EXn = 0, for all n ≥ 1.
Let b0 = 0 and bn be an increasing sequence of positive numbers satisfying
(2). If s (ε) > p, for some 0 < ε < 1

6 , and E |X|p <∞, then (3) holds.

It is known that every sequence of independent and identically distributed
(i.i.d.) random variables is φ-mixing with φ (n) = 0, for each n ≥ 1. Thus,
from Theorem 3.1 we obtain the following corollary.
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Corollary 3.3. Let {A, Ai, i ≥ 1} be a sequence of positive i.i.d. random
variables with EAp < ∞, for some 1 ≤ p ≤ 2, and let {Xi, i ≥ 1} be a
sequence of φ-mixing random variables that is independent of {A, Ai, i ≥ 1}.
Let X be a random variable, possibly defined on a different probability space,
satisfying condition (1). Moreover, additionally assume that EXn = 0, for
all n ≥ 1. Let b0 = 0 and bn be an increasing sequence of positive numbers
satisfying (2). If s (ε) > p, for some 0 < ε < 1

6 , and E |X|p < ∞, then (3)
holds.

We conclude with some remarks.

Remark 1. Using Theorem 5.2 in [2], under some additional conditions,
one can obtain the counterpart of Theorem 3.1 for other mixing coefficients.

Remark 2. It should be stressed that the assumption of independence of
{Ai, i ≥ 1} and {Xi, i ≥ 1} in Theorem 3.1 is very crucial. Assuming only
that both sequences are φ-mixing does not guarantee that {AiXi, i ≥ 1} will
be φ-mixing (see [2, Theorem 5.2], and discussion below the theorem).
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