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Some remarks on Hp,s analytic function spaces in
the unit disk and related estimates

Miloš Arsenović and Romi F. Shamoyan

Abstract. We prove new projection theorems involving certain Hardy–
Lorentz analytic function spaces based on Lorentz classes on the unit
circle which are related to p-Carleson type measures. We also study the
action of fractional derivative in related analytic spaces in the unit disk
partially extending previously known assertions.

1. Definitions and preliminaries

The goal of this note is to provide new estimates for Bergman-type projec-
tions and the fractional derivative acting in certain Hardy–Lorentz analytic
function spaces based on Lorentz classes on the unit circle. Here we intro-
duce notation and recall definitions which are well known in literature. Then
we list preliminary results which will be used in proofs of main results of this
paper.

We denote, as usual, Borel measures on the unit disc D = {z ∈ C : |z| < 1}
by µ, normalized Lebesgue measure on D by dA(z) and the Lebesgue measure
on T = {z ∈ C : |z| = 1} by dm or dξ. If (X, dλ) is a measure space and
0 < p, q ≤ ∞, Lp,q(λ) denotes the Lorentz space on X with respect to
measure dλ. These spaces are complete metric spaces, if p > 1, q ≥ 1 they
are Banach spaces, see [5] for details on these spaces. In the special case
X = T with measure dm we use notation Lp,q(T) = Lp,q. For 0 < r < q we
will need the following equivalent quasinorm on Lq,∞ (see [5]):

‖f‖q,∞ = sup
I⊂T

1

|I|1−r/q

∫
I
|f(ξ)|rdξ. (1)
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146 HP,S ANALYTIC FUNCTION SPACES

Also, we have ∣∣∣∣∫
X
fgdλ

∣∣∣∣ ≤ ‖f‖Lp,1(λ)‖g‖Lp′,∞(λ),

where 1 < p < ∞, p′ denotes the exponent conjugate to p and (X, dλ) is a
measure space (see [5]). The convolution of functions f, g ∈ L1(T) is denoted
by f ∗ g. We note, for future use, Young’s inequality

‖f ∗ g‖r ≤ C‖f‖p‖g‖q, 1 < p, q, r <∞, 1/p+ 1/q = 1 + 1/r,

and its generalization to Lorentz spaces (see [10]),

‖f ∗ g‖r,s ≤ C‖f‖p,s1‖g‖q,s2 , 1/p+ 1/q = 1 + 1/r, 1/s1 + 1/s2 = 1/s, (2)

where, again, 1 < p, q, r <∞.
The following definitions are standard, these can be found, for example,

in [17], [4], [16], [14]. For an arc I ⊂ T we denote the tent over I by T (I),
the Carleson box over I by �I and the length of I by |I|. The Stolz angle,
of aperture t > 1 at ξ ∈ T is defined by

Γt(ξ) = {z ∈ D : |1− ξz| < t(1− |z|)}.

The space of all holomorphic functions on D is denoted by H(D). The non-
tangential maximal function of a function f ∈ H(D) is defined by

A∞f(ξ) = sup
z∈Γt(ξ)

|f(z)|, ξ ∈ T.

To any holomorphic function f with Taylor coefficients ak we associate an-
other holomorphic function g with coefficients (k + 1)αak, where α is real.
This function g is a fractional derivative of f of order α and it will be denoted
by Dαf . This definition can be easily extended also to functions analytic
in the unit polydisk (see, for example, [3] and references therein). Clearly,
Dαf ∈ H(D) for f ∈ H(D), α ∈ R.
Hp as usual stands for the classical Hardy space on the unit disc, 0 < p ≤

∞. We set also for all 0 < p ≤ ∞ and 0 < s ≤ ∞

Hp,s(T) = {f ∈ H(D) : A∞f ∈ Lp,s(T)} .

Spaces hp,s(T) are defined analogously, the only difference is that non-tangen-
tial supremum is replaced by the radial supremum.

Clearly Hp(T) ⊂ Hp,p(T), for all positive p. This follows directly from
the maximal theorem for Hardy spaces (see, for example, [14]).

Definition 1. A positive Borel measure µ in the unit disk is a p-Carleson
measure, 0 < p ≤ 1, if

‖µ‖p =

∥∥∥∥∥sup
ξ∈I

1

|I|p

∫
�I
dµ(z)

∥∥∥∥∥
L∞(T)

<∞.
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Definition 2. We define, for 0 < q < ∞, s < k, k ∈ N, s ∈ R and
0 < p ≤ 1, the following space of analytic functions on the unit disc:

F∞,qs,p,k =
{
f ∈ H(D) : |Dkf(z)|q(1− |z|)(k−s)q−1dA(z)

is a p-Carleson measure} ,

and, for f ∈ F∞,qs,p,k, ‖f‖F∞,qs,p,k
is the norm of the corresponding p-Carleson

measure.

We often write F∞,qs,p instead of F∞,qs,p,k when k is clear from the context. The

spaces F∞,qs,p,k include as special cases many important function spaces. For

example, F∞,20,p,1 = Qp(D), and Qp classes where studied by several authors

(see [16] and [3]). Also, F∞,20,1 = BMOA(D) . The relation

‖f‖F∞,ρs,p,k
� sup

I⊂T

1

|I|p

∫
I

∫
Γα(ξ)

|Dkf(z)|ρ(1− |z|)(k−s)ρ−2dA(z)dm(ξ)

follows from the following relations, valid for all 0 < p < 1 and all positive
Borel measures µ in D:

sup
I⊂T

1

|I|p

∫
�I
dµ(z) � sup

w∈D
(1− |w|)p

∫
D

dµ(z)

|1− wz|2p

� sup
I⊂T

1

|I|p

∫
I

∫
Γα(ξ)

dµ(z)

1− |z|
dm(ξ).

(3)

These relations provide direct connection between p-Carleson measures when
p < 1 and the so-called Luzin area integral, in fact, they provide characteriza-
tions of p-Carleson measures. Various other characterizations of p-Carleson
measures are known (see [16]). We would like to mention that various spaces
like mixed norm spaces, Bergman spaces and Hardy spaces can also be char-
acterized using the mentioned area integral (see [12] and references therein).

The proofs of these relations can be found in [2] or [16]. We will also need
the following assertion (see [12]):∫

D
|f(z)|p(1− |z|)αdµ(z) �

∫
T

∫
Γα(ξ)

|f(z)|p(1− |z|)α−1dµ(z)dξ, (4)

valid for all f ∈ H(D) and 0 < p, α <∞. We also have, for f ∈ H(D),(∫
D
|f(z)|(1− |z|)αdA(z)

)p
≤ C

∫
D
|f(z)|p(1− |z|)αp+2p−2dA(z), (5)

9
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where α > 1−2p
p and 0 < p ≤ 1. Next, for β > 0, q ≥ 1, α > −1, α > −1

q

and ε > 0 we have(∫
D

|f(w)|(1− |w|)α

|1− wz|β+2
dA(w)

)q
≤ C

∫
D

|f(w)|q(1− |w|)αq(1− |z|)−εq

|1− wz|(β−ε)q+2
dA(w)

(6)
for f ∈ H(D). For the above two inequalities we refer to [12], [3]. Note that
the estimate (5) is valid also if f is only harmonic. Namely, the proof of this
estimate is based only on subharmonicity of |f |, combined with properties
of so-called dyadic decomposition of the unit disk (see [3]). This remark is
relevant for our discussion after the proof of our first result below.

One of our aims is to use results on p-Carleson measures to obtain re-
sults on continuity for Bergman-type projections on Hardy–Lorentz analytic
function spaces with quasinorms which are based on Lorentz spaces on the
unit circle. We present proofs of some new results on p-Carleson measures
which were known before for particular values of parameters. Let us note
that characterizations of p-Carleson measures via Luzin’s area operator are
crucial for our considerations. We alert the reader to the fact that char-
acterizations of the classical analytic Hardy spaces and mixed norm spaces
Ap,qs (D) and F p,qs (D) via Luzin’s area operator are well known and have nu-
merous applications in the theory of analytic function spaces (see [12]). The
action of Bergman-type projections on various spaces of analytic functions
is a topic of great interest in function theory (see, for example, [12], [3], [14]
and references therein).

We will use also the following estimate from [2] (see also [12]). For f, g ∈
H(D) we have∫
D
|f(z)|p1 |g(z)|p2(1−|z|)αdA(z)�

∫
T

∫
Γ(ξ)
|f(z)|p1 |g(z)|p2(1−|z|)α−1dA(z)dξ,

(7)
where α > 0 and 0 < p1, p2 <∞.

Let us note that (4) and (7) are special cases of the following relation:

∫
D
G(z)dµ(z) �

∫
T

(∫
Γα(ξ)

G(z)

1− |z|
dµ(z)

)
dξ, (8)

valid for all Borel measures µ on D and all positive measurable functions
G on D. Under the same assumptions this yields the following one-sided
estimate ∫

D
|f(z)g(z)|dµ(z) ≤ C

∫
D

sup
Γt(ξ)
|f(z)|

∫
Γt(ξ)

|g(z)|
1− |z|

dµ(z)dξ. (9)
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There is also a “pointwise” version of (8):∫ 1

0
|G(rξ)|dµ(r) ≤ C

∫
Γt(ξ)
|G(z)| dµ̃(z)

1− |z|
, z ∈ D, G ∈ H(D), (10)

where dµ is a measure on [0, 1] and dµ̃ is the product of measures dµ(r) and
1

2π rdθ.

Definition 3 ([16]). Let 0 < p, q, r < ∞. T∞,qr,p (D) = T∞,qr,p denotes the
space of all measurable functions f on D such that

sup
I⊂T

1

|I|r

∫
T (I)

|f(z)|q

(1− |z|)p
dA(z) <∞.

For particular values of parameters these classes were extensively studied
(see, for example, [17], [16]).

The Bergman-type operator is one of the main objects on which we will
focus our attention in this paper. The action of various versions of operators
of this type in various domains in Cn was studied by many authors during
past several decades (see [17], [3], [16], [12], [14] and various references con-
tained in these papers). We are interested in the following Bergman-type
operator. Let

Lk,sg(w) = D−k
∫
D

(1− |z|)k−s−1g(z)

(1− wz)1+2(k−s) dA(z) = D−kL̃k,sg(w), w ∈ D,

where D−k denotes fractional integration of order k, where k is an integer.
This Bergman-type operator was investigated in [12]. It was proved there
that Lk,s maps T∞,q1,1 into F∞,qs,1 provided s ∈ R, k > s and 1 < q < ∞.

This was used in [12] to establish important duality between F∞,q
′

s and F 1,q
s ,

s ∈ R, 1/q + 1/q′ = 1. One of the main results of the present paper is
a partial extension of this result, moreover we provide a new approach to
estimates of such type. In addition, this approach allows to extend our result
below to the case of the unit polydisk in a standard way. We note that in
order to define such operators in a polydisk one has to increase the number of
variables in the definition above in a standard manner, see the last chapters
of [3].

Theorem 1 below, which can be found in [1], will be under attention in this
note. We will partially extend it in the next section. This theorem describes
how the operator of fractional integration acts on the scale of Hardy–Lorentz
analytic function spaces on the unit disc based on Lorentz spaces on the unit
circle.

Theorems of this kind have a long history, they are well known not only
in the spaces of analytic functions in the unit disk and higher dimension,
but also in various function spaces in Euclidean space Rn. For this topic
we refer reader to a classical book [15] and an extensive survey article [14].
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Results of this type have various interesting applications in function theory,
for example, in various embedding theorems. Note that the first results of
this kind in Bergman and Hardy and mixed norm analytic function spaces
in the unit disk can be found in the early work of Hardy and Littlewood (see
[4], [3]). Later these results were extended in various directions to various
other spaces and even various regions in Cn.

Theorem 1. 1) Let 0 < p < r < ∞, α = 1/p − 1/r. Then the operator
D−α of fractional integration is bounded from Hp,s1 to Hr,s2 for s1 = s2,
that is ‖D−αf‖Hr,s ≤ C‖f‖Hp,s for 0 < s ≤ ∞.

2) Let 0 < p < q < ∞ and t = 1/p − 1/q. Then the operator D−t is
bounded from hp,∞1 (T) to Hq,∞(T), where

hp,s1 (T) =

{
f ∈ H(D) : sup

r<1
‖f(rξ)‖Lp,s <∞

}
0 < s ≤ ∞.

We alert the reader that our results can be considered as a continuation
of intensive investigation started relatively recently in [7] and [8] of analytic
Hardy–Lorentz spaces in the unit disk, though the approach we present below
is completely different from those in the cited papers. Some new results on
these spaces can be found in a recent note [6].

2. Main results

In this section we collected all main results of this paper. We begin this
section with a continuity result for the Bergman-type operator Lk,s. In the
case of the unit ball and all values of k, but with special values of parameters
p = 1 and r = 1, this result can be found in [12], with a proof different from
ours. On the other hand, the fact that Bergman-type projections are contin-
uous in spaces of r-Carleson measures for 0 < r < 1 is known in the context
of Qp spaces and can be found, for example, in [18] and [17]. Nevertheless
we present a different, simpler proof which allows generalizations.

Theorem 2. Let 1 < p < 2, 1 < q < ∞, 0 < r < 1 and k > s + 1 − 1
q

and k > 1
q + s Then the operator Lk,s maps T∞,qr,p continuously into F∞,qs,r .

Proof. Let g ∈ T∞,qr,p and set φ = Lk,sg. Then we have

‖φ‖F∞,qs,r
= ‖Lk,sg‖F∞,qs,r

= ‖D−kL̃k,sg‖F∞,qs,r

= ‖ |Dk[D−kL̃k,sg](w)|q(1− |w|)(k−s)q−1dA(w)‖r
= ‖ |L̃k,sg(w)|q(1− |w|)(k−s)q−1dA(w)‖r.

Using (6) we obtain

|L̃k,sg(w)|q ≤ C
∫
D

|g(z)|q(1− |w|)−εq(1− |z|)(k−s−1)q

|1− wz|(2(k−s)−1−ε)q+2
dA(z)
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for every ε > 0, and our task is to prove that

dµ(w) =

∫
D

|g(z)|q(1− |w|)−εq(1− |z|)(k−s−1)q

|1− wz|(2(k−s)−1−ε)q+2
dA(z)(1− |w|)(k−s)q−1dA(w)

is an r-Carleson measure. We fix an aperture t > 1 and set Γ(ξ) = Γt(ξ).
Fubini’s theorem and (8) give, for any τ ∈ T, the following pointwise esti-
mate:

ψ(τ) =

∫
Γ(τ)

dµ(w)

1− |w|

=

∫
D
|g(z)|q(1− |z|)q(k−s−1)

∫
Γ(τ)

(1− |w|)(k−s)q−2−εq

|1− wz|q(−1−ε+2(k−s))+2
dA(w)dA(z)

≤ C
∫
T

∫
Γ(ξ)
|g(z)|q(1− |z|)q(k−s−1)−1

×
∫

Γ(τ)

(1− |w|)(k−s)q−2−εqdA(w)

|1− wz|q(−1−ε+2(k−s))+2
dA(z)dξ.

Set t1 = p+ (k − s− 1)q and t2 = −εq + (k − s)q + 2− p so that t1 + t2 =
(2(k − s) − 1 − ε)q + 2. Using a well-known estimate of the integral of
the Bergman kernel over Luzin’s cone (see [3]) and elementary inequality
|1− wz| ≥ 1− |z|, z, w ∈ D, we conclude that ψ(τ) is estimated by∫

T

∫
Γ(ξ)
|g(z)|q(1−|z|)q(k−s−1)−1−t1

∫
Γ(τ)

(1−|w|)−εq+(k−s)q+2−pdA(w)

|1− wz|t2
dA(z)dξ

≤ C
∫
T

∫
Γ(ξ)

|g(z)|q

(1− |z|)p+1

1

|1− τz|2−p
dA(z)dξ

≤ C
∫
T

sup
z∈Γ(ξ)

1

|1− τz|2−p

∫
Γ(ξ)

|g(z)|qdA(z)

(1− |z|)p+1
dξ

= C u ∗ v(τ),

where

u(ξ) = sup
z∈Γ(ξ)

1

|1− z|2−p
, ξ ∈ T,

and

v(ξ) =

∫
Γ(ξ)

|g(z)|qdA(z)

(1− |z|)p+1
, ξ ∈ T.

Therefore we proved the estimate

ψ(τ) =

∫
Γ(τ)

dµ(w)

1− |w|
≤ Cu ∗ v(τ), τ ∈ T. (11)

Since 2 − p < 1, we have u ∈ L1, and since g ∈ T∞,qr,p , we have v ∈ Lρ,∞,
where ρ = 1/(1 − r) > 1 due to 0 < r < 1. Next we use an estimate from

10
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the Lorentz space function theory (see [5]),

‖u ∗ v‖Lρ,∞ ≤ C‖u‖L1‖v‖ρ,∞,
which, together with (11), implies

‖ψ‖ρ,∞ ≤ C‖u‖1‖v‖ρ,∞ ≤ C‖g‖T∞,qr,p
.

Now one can apply (1), with ρ in place of q and r = 1 < ρ, to deduce that
the third quantity in (3) is finite for our measure dµ. Therefore dµ is an
r-Carleson measure and, moreover, ‖dµ‖r ≤ C‖g‖T∞,qr,p

. This completes the

proof. �

The above theorem, in various forms and for special values of parameters,
appeared in [12], [18] and later in books on Qp spaces we mentioned, it was
stated for functions in the unit ball as well. The above proof is based on
completely different ideas related to weak Lorentz spaces. This proof admits
generalizations to polydisk and, moreover, to various spaces defined by the
expressions∥∥∥∥∥∥

(∫
Γt(ξ)
|f(z)|r(1− |z|)sdA(z)

)1/r
∥∥∥∥∥∥
Lp,q

,

∥∥∥∥∥ sup
Γt(ξ)
|f(z)|(1− |z|)s

∥∥∥∥∥
Lp,q

,

where 0 < r, s, p, q < ∞. In fact, at the last step of the proof one uses
various substitutes for the inequality ‖f ∗ g‖Lv,∞ ≤ C‖g‖Lv,∞‖f‖L1 .

Next we can consider the same Lk,s Bergman-type operator acting on
harmonic subspaces of T∞,qr,p classes. These type projection theorems are also
well known in the literature (see, for example, [3]), where such projections
from harmonic spaces to analytic spaces are considered for classical Bergman
spaces. In the harmonic case we can get results analogous to the theorem
we just proved, using (5) instead of (6) at the first step of the proof and
remarks after (6).

The next two theorems contain some new results related to Theorem 1,
their proofs are based on ideas used in the proof of Theorem 2. Namely, we
extend certain known results on the action of fractional derivatives in the
classical Hardy and Bergman spaces to some new analytic spaces in the unit
disk based on Lorentz classes on the unit circle. We remark that some of
these results were stated without proofs in [13]. The idea here again is to
combine (3) with (1), i.e., to combine characterization of p-Carleson mea-
sures via Luzin’s area integral with description of an equivalent quasinorm
in weak Lorentz spaces.

Theorem 3. 1) Let 0 < s ≤ ∞, 1 < v, q, r <∞, 1/v+ 1/q = 1 + 1/r and
β ≥ 0. Then for f ∈ H(D) we have

‖ sup
z∈Γt(ξ)

|Dβ+1/q−1f(z)|(1− |z|)β‖Lr,s ≤ C‖f‖Hv,s . (12)
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2) If 1 < p < r, 0 < s, s1 ≤ ∞, 1/s−1/s1 ≥ 1/r−1/p+1 and 1/p−1/r <
α < 1, then for f ∈ H(D) we have

‖D−αf‖Hr,s ≤ C‖f‖Hp,s1 . (13)

Theorem 4. 1) Let 1 < p < q < ∞, α ≥ 0, τ > 0 and t = 1/p − 1/q.
Then for f ∈ H(D) we have∥∥∥∥∥ sup

z∈Γs(ξ)
|Dα−tf(z)|(1− |z|)α

∥∥∥∥∥
Lq,τ

≤ C‖f‖hp,τ (T). (14)

2) Let 0 < s ≤ ∞, θ > 0 and 1 < v < r. Then for f ∈ H(D) we have∥∥∥∥∥ sup
z∈Γt(ξ)

|D1/r−1/vf(z)|

∥∥∥∥∥
Lr,s

≤ C

∥∥∥∥∥∥
(∫

Γt(ξ)
|Dθf(z)|2(1− |z|)2θ−2dA(z)

)1/2
∥∥∥∥∥∥
Lv,s

.

(15)

Outline of proofs. We first focus our attention to estimates (12) and (14).
These estimates are proved using similar arguments so we will provide a
detailed proof of (12) and indicate small changes needed for the proof of (14).
We use dilates fρ(z) = f(ρz), where ρ < 1, in order to avoid difficulties with
boundary values of f which may not exist. Applying the Littlewood–Paley
inequality to fρ we pass from integration over the unit circle to integration
over the unit disk:

|D−α+τfρ(z)|(1− |z|)τ

= C

∣∣∣∣∫
T
fρ(ξ)

[
D−α+τ

(
1

1− ξz

)]
(1− |z|)τdξ

∣∣∣∣ dA(w)

≤ C
∫
D
|D−βfρ(w)|(1− |z|)

τ (1− |w|)2α−1−β

|1− wz|α+τ+1
dA(w).

(16)

Now using (2) and (7) and letting ρ→ 1 we obtain the estimate∥∥∥∥∥ sup
z∈Γt(ξ)

|D−α+τf(z)|(1− |z|)τ
∥∥∥∥∥
Lr,s

≤ C

∥∥∥∥∥ sup
w∈Γt(ξ)

|D−βf(w)|

∥∥∥∥∥
Lp,s1

×

∥∥∥∥∥
∫

Γt(ξ)

(1− |w|)2α−2−β

|1− wξ|α+1
dA(w)

∥∥∥∥∥
Lq,s2

= CI × J,

(17)

where 1/p+ 1/q = 1 + 1/r and 1/s1 + 1/s2 = 1/s. Clearly, J = J(α, β, s2, q)
and our next step is to show that J <∞ for a suitable choice of parameters
involved.



154 HP,S ANALYTIC FUNCTION SPACES

Let us prove (12). Set, in (17), β = 0 and α = 1 − 1/q. Now we apply
(17), with p replaced by v, s2 by +∞, τ by β and s1 by s, to obtain

‖ sup
z∈Γt(ξ)

|Dβ+1/q−1f(z)|(1− |z|)β‖Lr,s ≤ C‖f‖Hv,sJ,

where J is the Lq,∞ norm of the function

φ(ξ) =

∫
Γt(ξ)

(1− |w|)2α−2

|1− w|α+1
dA(w) =

∫
Γt(1)

(1− |w|)2α−2

|1− wξ|α+1
dA(w), ξ ∈ T.

(18)

Since α = 1− 1/q, we obtain, by elementary estimates, φ(ξ) ≤ C|1− ξ|−1/q.
Therefore we have ‖φ‖q,∞ < +∞ and (12) is proved.

It is of some interest to note that there is another proof of (12). Namely,
one can set β = α − 1 + 1/q in (17) where 2α > β. Then, using (3) and
so-called composition formula, see Lemma 2.5 in [11], we obtain

J ≤ C sup
w,w̃∈D

∫
D

(1− |z|)2α−β−1(1− |w̃|)1−1/qdA(z)

|1− zw|α+1|1− zw̃|2−2/q
≤ C <∞,

and this suffices to establish (12).
Note that the proof of (14) in Theorem 4 is similar to the first of the

above proofs of (12) in Theorem 3. Indeed, the integration over Luzin’s
cone should be replaced by integration over the unit interval in the above
arguments. Using (10) the integral over the unit interval can be estimated
from above by an integral over Luzin’s cone (see [12], [11]). Therefore we
obtain an analogue of (17) and proceed as in the above proof of (12), we
leave details to the interested reader.

Next we consider the estimate (13). Since Hp,s′1 ↪→ Hp,s′′1 for s′1 < s′′1, we
can assume that 1

s −
1
s1

= 1
r −

1
p + 1. Let us set, in (17), τ = β = 0 and

choose q and s2 so that 1
q = 1− (1

p −
1
r ) = 1

s2
. Note that q = s2. This choice

of parameters satisfies conditions required for (17), and we obtain

‖D−αf‖Hr,s ≤ C‖f‖Hp,s1J,

where J is the Lq,s2 norm of the function φ appearing in (18). As above, we
have an estimate φ(ξ) ≤ C|1 − ξ|α−1, ξ ∈ T, and the Lq,s2 norm is simply
the Lq norm due to equality q = s2. Since α−1 > −1/q, we see that J <∞,
and this proves (13). Note that the limit case α = 1/p− 1/r is excluded due
to the fact that here J is the Lq norm of φ, not a weak Lq norm of φ as in
the proof of (12).

The remaining estimate (15) can be proved in a similar manner. Let us
set a = 1/v − 1/r > 0. Letting ρ→ 1 we obtain, from (16) and (8),

|D−af(z)| ≤ C
∫
T

∫
Γt(ξ)
|Dθf(w)|(1− |w|)

2a−2+θdA(w)

|1− wz|a+1
dξ, z ∈ D. (19)



Hp,s ANALYTIC FUNCTION SPACES 155

Next we set

ψ(ξ) =

(∫
Γt(ξ)
|Dθf(w)|2(1− |w|)2θ−2dA(w)

)1/2

, ξ ∈ T

and deduce from (19), using Cauchy–Schwarz–Bunyakowsky inequality,

|D−af(z)| ≤ C
∫
T
ψ(ξ)

(∫
Γt(ξ)

(1− |w|)4a−2dA(w)

|1− wz|2(a+1)

)1/2

dξ, z ∈ D.

The inner integral can be estimated using well-known estimates of the in-
tegrals of weighted Bergman kernels over Luzin’s cones (see [3]), as in the
proof of Theorem 2:

sup
z∈Γt(η)

(∫
Γt(ξ)

(1− |w|)4a−2dA(w)

|1− wz|2(a+1)

)1/2

≤ C|η − ξ|a−1, ξ, η ∈ T.

Therefore,

h(η) = sup
z∈Γt(η)

|D−af(z)| ≤ C(ψ ∗ φ)(η), η ∈ T,

where φ(ξ) = |1 − ξ|a−1 is in L
1

1−a ,∞. Now the desired estimate follows
immediately from (2). �

These two theorems extend some known results from the case of Hardy
spaces or weighted Hardy spaces to the more general case of analytic Hardy–
Lorentz classes. Indeed, if in our results one replaces Lorentz spaces and
Lorentz (quasi) norms by standard Lp spaces and Lp norms, then these re-
sults can be found in literature (see, for example, [14], [12], [3] and references
therein). Part 1 of the first theorem in the special case β = 0 is contained in
Theorem 1. Also, the part 2 of the second theorem for r = v = s is contained
in [12] in the case of the unit ball.

We note also that some of the above estimates can be partially extended
to the case of several variables, namely to functions defined on the unit
polydisc in Cn. In fact, most of the arguments can be applied to each
of the variables separately. This type of procedure is quite common and
appeared in literature in various topics in function theory on polydomains.
We omit details. Also, some similar estimates using the same approach can
be obtained for the action of the operator Dα acting into (not from as we
had above) spaces with (quasi) norms∥∥∥∥∥

∫
Γt(ξ)
|F (w)|(1− |w|)r−2dA(w)

∥∥∥∥∥
Lp,s(T)

,

where all parameters p, r, s are positive.
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