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Generalizations of the Hermite—Hadamard type
inequalities for functions whose derivatives are
s-convex

M. W. ALOMARI, S.S. DRAGOMIR, AND U. S. KIRMACI

ABSTRACT. Some new results related to the right-hand side of the Hermite—
Hadamard type inequality for the class of functions whose derivatives at
certain powers are s-convex functions in the second sense are obtained.

1. Introduction

Let f: I CR — R be a convex mapping defined on the interval I of real
numbers and a, b € I, with a < b. The following double inequality is well
known in the literature as the Hermite-Hadamard inequality [9]:

f<a+b)§bia/abf(x)da:§f(a)+f(b). (1.1)

2 2
For recent results, refinements, counterparts, generalizations of the Hermite—
Hadamard inequality see [4] — [11] and [13] — [17].
Dragomir and Agarwal [5] established the following result connected with
the right-hand side of (1.1).

Theorem 1. Let f: I C R — R be a differentiable mapping on I°, where

a,b € I with a < b. If |f’'| is convex on [a,b], then the following inequality
holds:

fla+fe) 1 [
5 —ba/af(:c)dx

<@l o). 1)

Hudzik and Maligranda [12] considered among others the class of functions
which are s-convex in the second sense. This class is defined in the following
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way: a function f : R™ — R, where RT = [0, 00), is said to be s-convez in
the second sense if

flaz+By) <a’f (x) + B°f (y)

for all z,y € [0,00), a, 8 > 0 with a + 8 = 1 and for some fixed s € (0, 1].
The class of s-convex functions in the second sense is usually denoted by K2.

It can be easily seen that for s = 1, s-convexity reduces to the ordinary
convexity of functions defined on [0, co).

For recent results and generalizations concerning s-convex functions see
[1] — [7] and [13].

Dragomir and Fitzpatrick [8] proved a variant of Hadamard’s inequality
which holds for s-convex functions in the second sense.

Theorem 2. Suppose that f : [0,00) — [0,00) is an s-convex function
in the second sense, where s € (0,1), and let a,b € [0,00), a < b. If
f € L'[0,1], then the following inequalities hold:

a b a
231f< ;b) < [rwar < LBy

The constant k = Sj%l is the best possible in the second inequality in (1.3).

The above inequalities are sharp.

New inequalities of Hermite-Hadamard type for differentiable functions
based on concavity and s-convexity established by Kirmaci et al. [13] are
presented below.

Theorem 3. Let f : I C [0,00) = R be a differentiable mapping on I°

such that f' € Lla,b], where a,b € I with a <b. If |f'|? is s-convex on [a,b]
for some fized s € (0,1] and g > 1, then the following inequality holds:

'f(a)+f(b) _bia/abf(x)dx

2
b—a (1) 4
< —

Theorem 4. Let f : I C [0,00) — R be a differentiable mapping on I°
such that f' € La,b], where a,b € I with a <b. If |f'|? is s-convex on [a,b]

1
q

s+ (3)°
s
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for some fixed s € (0,1] and g > 1, then

‘f(a);f(b)_ fa/bf@)dw
< ] (o
[(!f o <a~|—b>
(5 )]
_a[<\f/(a)\q+ ()
(o) ]

Theorem 5. Let f : I C [0,00) — R be a differentiable mapping on I°

such that f' € La,b], where a,b € I with a <b. If |f'|? is s-convex on [a, b]
for some fized s € (0,1] and q > 1, then

fla)+ f(b

‘ 5 /f ) dx
b—a q—1 q% s=1
=7 [2(%—1)] 2

() (529)
22 (r(52) b (5)

The main aim of this paper is to establish new inequalities of Hermite—
Hadamard type for the class of functions whose derivatives at certain powers
are s-convex functions in the second sense.

2. Hermite—-Hadamard type inequalities for s-convex
functions

In order to prove our main results we consider the following lemma.



160 M. W. ALOMARI, S.S. DRAGOMIR, AND U. S. KIRMACI

Lemma 1. Let f : I C R — R be an absolutely continuous function on
I1°, where a,b € I with a <b. Then the following equality holds:

20 s

(2.1)

= r+1/0 [(r+ 1)t = 1] f' (tb+ (1 —t) a) dt

for every fized r € [0,1].
Proof. We note that

1
z_/ [(r+1)t—1]f’(tb+(1—t)a)dt
0

fb+(1—t)a 7’+1/ Pt (1— 1) a)di

b—a
b—a b—a/f + )a)

rf(b)+ f(a) r+1
Setting z = tb+ (1 — t) a, and dx = (b — a)dt gives
I:f()+rf B 'r—l—l /f

=[(r+1)t—1]

b—a
Therefore,
b—a I:f()+'rf /f
r+1 r+1 —a
which gives the desired representation (2.1). O

The next theorem gives a new refinement of the upper Hermite-Hadamard
inequality for s-convex functions.

Theorem 6. Let f : I C [0,00) — R be an absolutely continuous function
on I° and a,b € I with a < b. If |f'| is s-convex on [a,b] for some fized
€ (0,1], then

fla)+rf(b
‘ r+1 —a/f

(b—a) 1 s+1 .
S DG I+ <T(8+1)+2<'r+1> _1>‘f o)l

s+2
+<s—r+2(r+1)<7a:_1> +1> ’f’(a)’]

for every fized r € [0,1].
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Proof. From Lemma 1 we have
‘f +rf( / f
r+1 —a
/I + 1)t =1 [f (tb+ (1 —t)a)|dt

_7‘—|—1
—T+61l/ (L= (r+1)t)|f (tb+ (1 —t)a)|dt
b—a (!
+r+1/((r+1)t—1)‘f’(tb—|—(1—t)a)‘dt
S O R
—a !
+i+1/1 ((r+D)t=1) [t |f )|+ Q=) f (a)|] dt

sy

- %>s+1
o |7 ®)]

s+24 (r+1) [(73;1)5”—1]
* GrD (12

b—a |:7“(3+ 1)+ (Fll)SH—l

| (a)]

| (0)]

r+1 (s+1)(s+2)

r41) (TL)S+2
Y (ir 2)

ol
(b—a)

1 s+1 )
I ICES) ( <3+1)+2< +1> _1> | @)

s+2
+<s—r+2(r+1)(7,:_1> +1> ‘f’(a)‘]

which completes the proof.

Therefore, we can deduce the following results.
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Corollary 1. Let f : I C [0,00) — R be an absolutely continuous function
on I° and a,b € I with a < b. Assume that |f’| is s-convez on [a,b] for some
fized s € (0,1]. Then the following inequalities hold:

'f @)+ /(O _a/f \do

(s+27%) (b—
2@+1ﬂs+2

e _a/f

(b
S(s+1ﬂs+2

Proof. This is obvious from Theorem 6 by taking r =1 and r = 0. O

(2.2)

<

L1 0]+ |7 @]

and

£ ®)] + (s +1)|f (a)]] -

Remark 1. We note that the inequality (2.2) with s = 1 gives an im-
provement for the inequality (1.2).

A similar result is embodied in the following theorem.

Theorem 7. Let f : I C [0,00) — R be an absolutely continuous function

on I° and a,b € I with a < b. If |f'[”/®"Y is s-convezx on [a,b] for some
fizred s € (0,1] and p > 1, then the following inequality holds:

RN
= (s+1)1+3([lzr_+ai)(1 +p))7 <‘f/ @[+ (ii?“f) q>q (2:3)

o (}f O+ /(brtrrla) q>i]

for every fixred r € [0,1], where ¢ =p/(p —1).

Proof. Suppose that p > 1 and % +% = 1. From Lemma 1, using Holder’s
inequality, we have

fla)+rf(b
r+1 —a/f ) dz

—r+1
b—a
r+1

b—a -
< (A (1= (r+ 1) 0) |f (th+ (1 - t)a)| dt

/1(&+1ﬁ—1ﬂf@h+ﬂ—waﬂﬁ

r+1
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b—a o » =i .
< (/0 (1—(r+1)t) dt) (/0 |f/ (tb+ (1 —t)a)| dt)
—a 1 % 1
+i+1</1 ((r+1)t—1)pdt> (/1]f’(tb+(1—t)a)]th>

r+1 r+1

hSA

Q=

Since | f’| 7 is convex, we have

= [f (@) + | f (B
/0 |f (tb+ (1 —t)a)|"dt < 8+1( H)

b+
r (%)
s+1

q

and
1 O+ !
|f (tb+ (1 —t)a)|"dt <

r+1
Therefore, we get

fla)+rf(b
r+1 /f ) dz

- 1(b—a) 1
DT+ 1) (1 +p)

N
s (o (372)[ )]

which is required. O

Corollary 2. Let f : I C [0,00) — R be an absolutely continuous function
on I° and a,b € I with a < b. Assume that |f'|’/*~V is s-convex on [a, b]

for some fized s € (0,1] and p > 1. Let ¢ =p/(p —1). Then the following
inequalities hold:

fla+fo) 1 [
5 - _a/f(a:)dm

wn
(s+1) 14—pp

(‘f (%3
[ rwal <

-

(o
) )q]
(b—a)

(s + 1) (14 p)

and

Q|

(If" @]+ | @)
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Proof. This follows directly from Theorem 7 by taking r=1 and r=0. O

Remark 2. We observe that the inequality (2.4) is better than the in-
equality (1.4).

Our next result gives a new refinement for the upper Hermite-Hadamard
inequality.

Theorem 8. Let f: I C [0,00) — R be an absolutely continuous function

on I° and a,b € I with a < b. If |f’\p/(p_1) is s-convex on [a,b] for some
fized s € (0,1] and p > 1, then the following inequality holds:

fla)+rf(b
‘ r+1 —a/f

<

(s+1)'" (r+1) §(p+1)1+P (2.5)
< [+ 10" + £ @]+ [ 0)])
| @) + [+ 0+ O]

for every fixed r € [0,1], where g =p/(p —1).

'?3\'—‘

Proof. Since ]f'\p/(p_l) is s-convex on [a, b], we have

()] = () o+ () 1ror

This gives, by (2.3), that

OO [
: (s—|—1)1+flz([er_+a1)(1 +p)]% (‘f/( )|ql+ / (T:f) q>q
s (g [ (2
(b—a)

r s ") rs | £ (b q%
T s+ D) (1)t (p )M [([( ) | @]+ [ (0)])

(1 @)+ D 1| 0)])7]

and the proof is completed. O
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Corollary 3. Let f : I C [0,00) — R be an absolutely continuous function

on I° and a,b € I with a < b. If |f’\p/(p_1) is s-conver on [a,b] for some
fized s € (0,1] and p > 1, then the following inequality holds:

f(a)2 ba/f ) dz

(b—a)
< (L +27) [ (@) + 270 [ f ()]
e q[2<1+pnp[(< )£ @[ +27 |7 ®)])
@ |f @]+ (1 +27) |7 )],

where ¢ =p/(p —1).

Q|

(2.6)

Q=

Proof. Since | f/[P/®~Y is s-convex on [a, ],

,<az+b> @ OF

28 ’
which gives, in view of (2.4),

‘“‘”2 b—a/f ) da
< (s+1)1§f§_[2a()1+p)]; [<|f’ (@) + | (a—;b) q>q
b

+ (]f/(b)\q+

(b—a) —s\ | ¢/ q —s | ¢ ay:

< - -1 (142 a 2 b)|")«

s+ D) T2 4p)p [(( PRl en
+@ @]+ @ +27%) | @ })ﬂ

This completes the proof. O

Corollary 4. Let f : I C [0,00) — R be an absolutely continuous function

on I° and a,b € I with a < b. If |f'['®Y is s-convex on [a,b] for some
fized s € (0,1] and p > 1, then

f(a)+ f(b) I
5 —b_a/f(ac)dx

(142 S) (b—a)
TR
where ¢ =p/(p —1).

[ @)+ [ @] .
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Proof. Let a1 = (14+27%) |f" (a)|?, by =275 |f (b)|?, azg = 275 | f' (a)|? and
by = (1+27°)[f" (b)|".
Here, 0 < % < 1. Using the fact that

Zn: a; + b;) <Za +Zb
=1

for 0 < k <1, ay,a9,...,a, > 0 and by, by, ..., b, > 0, by the inequality (2.6)
we obtain

’f(a);f(b) _bla/abf(i)dx

(b—a) 14925 /aq 9—s /bq%
(s+ 1) 5 [2(1+p)> [(( +2) [f @+ 27 | o)

@ @] (1270 | @)Y)7]
(1+2-%)7 (b a)

IR
(s+ 1) [2(1+p)] |

which is required. O

<

[ (@) +[f

H
'UM—‘

Remark 3. 1. Using the technique in Corollary 4, one can obtain in a
similar manner another result by considering the inequality (2.5). However,
the details are left to the interested reader.

2. All of the above inequalities obviously hold for convex functions. Sim-
ply choose s = 1 in each of those results to get the desired results.

3. Interchanging a and b in Lemma 1, we obtain the equality

/f rf(a)+f(b)

r+1

e by (2.7)
=T+1/0 [(r+ 1)t =1 f (1 — )b+ ta) dt.

For this reason, if we interchange a and b in all above results, then, using
the equality (2.7), we can write new results.

3. Applications to special means

We consider the means for arbitrary real numbers «, 8 (o # ) as follows.

1) Arithmetic mean

A(O{,B): Y a?BER'
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2) Generalized log-mean

ﬁerl _ as+1
(s+1)(B—a)

Now, using results of Section 2, we give some applications to special means
of real numbers. In [13], the following example is given.
Let s € (0,1) and a,b,c € R . We define the function f : [0, 00) — R,

Ls(a,ﬁ):[ ]S,seR\{—l,O},a,BeR.

a if t=0,

ft)=
bt* +c if t > 0.

If 5> 0and 0 < ¢ < a, then f € K2. Hence, for a = c =0, b= 1, we have
f:00,1] = [0,1], f(t) =%, f € K.

Proposition 1. Let a,b € [0,1], a < b and 0 < s < 1. Then we have

L5 (a,0) = A(a®,b)| < s (b—a) 5 e —skj;f(;: . (MH n WH)

and
s S (b B a) s—1 s—1
L (a,b) — < — 7 1 b .
112 (00) = lal*l < gy (G D el ™ o)
Proof. The assertions follow from Corollary 1 applied to the s-convex
mapping f : [0,1] — [0,1], f(t) = ¢°. .

Proposition 2. Let a,b € [0,1], a < b and 0 < s < 1. Then for all ¢ > 1,
we have

|L§ (CL, b) —A (asv bs)|

1
< s(b—a) <!aI(I(sl)+ a+b q(81)> /i
= 1 1
(s+1)" 2 (p+ 1)) ?
(s—1 1/q
+( a—;b 1 )+’b’q(s—1)>
and
b— _ 1\ /e
L3 (@)~ fal* € —— 0= (s 1) o) g o)

(s+1) a2 (p+1)]p

Proof. The assertions follow from Corollary 2 applied to the s-convex
mapping f : [0,1] - [0,1], f(£) = . 0
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Proposition 3. Let a,b € [0,1], a < b and 0 < s < 1. Then for all g > 1,
we have

s(b—a)(1+2-¢ 1 o o
b-af )1<|a| L ).

L3 (a,0) = A(a®, )] <

1 1
(s+1) a2 (p+ 1)
Proof. The assertion follows from Corollary 4 applied to the s-convex
mapping f : [0,1] — [0,1], f(t) = ¢". L
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