On generalized sequence spaces defined by modulus functions

Enno Kolk

ABSTRACT. Let $(X, |\cdot|)$ be a seminormed space, $\Phi = (\phi_k)$ a sequence of moduli, and \mathcal{B} a sequence of infinite scalar matrices $B^i = (b_{kj}^i)$. Let (λ, g_{λ}) and (Λ, g_{Λ}) be solid F-seminormed (paranormed) spaces of single and double number sequences, respectively. V. Soomer and E. Kolk proved in 1996-1997 that the set of all scalar sequences $\mathbf{u} = (u_k)$ with $\Phi(\mathbf{u}) = (\phi_k(|u_k|)) \in \lambda$ is a linear space which may be topologized by the F-seminorm (paranorm) $g_{\lambda,\Phi}(\mathbf{u}) = g_{\lambda}(\Phi(\mathbf{u}))$ under certain restrictions on Φ or (λ, g_{λ}) . We generalize this result to the space of all X-valued sequences $\mathbf{x} = (x_k)$ with $(\phi_k([\mathcal{B}_k^i \mathbf{x}])) \in \Lambda$, where $\mathcal{B}_k^i \mathbf{x} = \sum_j b_{kj}^i x_j$. Applications are given in the case when Λ is the strong summability domain of a non-negative matrix method. Our corollaries and critical remarks outline results from more than thirty previous papers by many different authors.

1. Introduction

Let $\mathbb{N} = \{1, 2, ...\}$ and let \mathbb{K} be the field of real numbers \mathbb{R} or complex numbers \mathbb{C} . In the following we specify the domains of indices for the symbols lim, sup, inf and \sum only if they are different from \mathbb{N} . By ι we denote the identity mapping $\iota(z) = z$. In all definitions which contain infinite series we tacitly assume the convergence of these series.

An F-space is usually understood as a complete metrizable topological vector space over \mathbb{K} . The topology of an F-space E can be given by an F-norm, i.e., by the functional $g: E \to \mathbb{R}$ with axioms (see [29], p. 13)

(N1) g(0) = 0,

(N2)
$$g(x+y) \le g(x) + g(y)$$
 $(x, y \in E),$

Received October 20, 2013.

²⁰¹⁰ Mathematics Subject Classification. 46A45, 40A05, 40C05, 40F05.

Key words and phrases. Double sequence, F-seminorm, F-norm, matrix method of summability, modulus function, paranorm, seminorm, sequence space.

- (N3) $|\alpha| \le 1 \ (\alpha \in \mathbb{K}), \ x \in E \implies g(\alpha x) \le g(x),$
- (N4) $\lim_{n \to \infty} \alpha_n = 0 \ (\alpha_n \in \mathbb{K}), \ x \in E \implies \lim_{n \to \infty} g(\alpha_n x) = 0,$
- (N5) $g(x) = 0 \implies x = 0.$

A functional g with axioms (N1)–(N4) is called an F-seminorm. A paranorm on E is defined as a functional $g: E \to \mathbb{R}$ satisfying axioms (N1), (N2) and

- (N6) $g(-x) = g(x) \quad (x \in E),$
- (N7) $\lim_n \alpha_n = \alpha$ $(\alpha_n, \alpha \in \mathbb{K}), \ \lim_n g(x_n x) = 0$ $(x_n, x \in E) \implies$ $\lim_n g(\alpha_n x_n - \alpha x) = 0.$

A seminorm on E is a functional $g: E \to \mathbb{R}$ with axioms (N1), (N2) and

(N8)
$$g(\alpha x) = |\alpha|g(x) \quad (\alpha \in \mathbb{K}, x \in E).$$

An F-seminorm (paranorm, seminorm) g is called *total* if (N5) holds. So, an F-norm (norm) is a total F-seminorm (seminorm).

It is known (see [33], Remark 1) that F-seminorms are precisely the paranorms satisfying axiom (N3).

To avoid confusion with the module $|\cdot|$, following [33], we will often denote the seminorm of an element $x \in E$ by |x|.

Let $(X, |\cdot|)$ be a seminormed linear space over \mathbb{K} and let \mathbf{X} be a sequence of seminormed linear spaces $(X_k, |\cdot|_k)$ $(k \in \mathbb{N})$. Then the set $s^2(\mathbf{X})$ of all double sequences $\mathbf{x}^2 = (x_{ki}), x_{ki} \in X_k$ $(k, i \in \mathbb{N})$, and the set $s(\mathbf{X})$ of all sequences $\mathbf{x} = (x_k), x_k \in X_k$ $(k \in \mathbb{N})$, equipped with coordinatewise addition and scalar multiplication, are linear spaces (over \mathbb{K}). Any linear subspace of $s^2(\mathbf{X})$ is called a *generalized double sequence space* (GDS *space*) and any linear subspace of $s(\mathbf{X})$ is called a *generalized sequence space* (GS *space*). If $(X_k, |\cdot|_k) = (X, |\cdot|)$ $(k \in \mathbb{N})$, then we write X instead of \mathbf{X} . In the case $X = \mathbb{K}$ we omit the symbol X in our notation. So, for example, s^2 and s denote the linear spaces of all \mathbb{K} -valued double sequences $\mathbf{u}^2 = (u_{ki})$ and single sequences $\mathbf{u} = (u_k)$, respectively. As usual, linear subspaces of s^2 are called *double sequence spaces* (DS *spaces*) and linear subspaces of s are called *sequence spaces*. Well-known sequence spaces include the sets ℓ_{∞}, c, c_0 and ℓ^p (p > 0) of all bounded, convergent, convergent to zero and absolutely p-summable number sequences, respectively. Examples of DS spaces are

$$\mathcal{M} = \{ \mathbf{u}^2 \in s^2 : \tilde{u}_k = \sup_i |u_{ki}| < \infty \quad (k \in \mathbb{N}) \},\$$
$$U\lambda = \{ \mathbf{u}^2 \in \mathcal{M} : \tilde{u} = (\tilde{u}_k) \in \lambda \} \quad (\lambda \in \{\ell_\infty, c_0, \ell^p\}).$$

Let $\mathbb{R}^+ = [0, \infty)$. The idea of a modulus function was shaped by Nakano [37]. Following Ruckle [44] and Maddox [35] we say that a function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ is a modulus function (or, simply, a modulus), if

 $\begin{array}{ll} (\mathrm{M1}) \ \phi(t) = 0 \iff t = 0, \\ (\mathrm{M2}) \ \phi(t+u) \leq \phi(t) + \phi(u) \ (t, u \in \mathbb{R}^+), \end{array} \end{array}$

- (M3) ϕ is non-decreasing,
- (M4) ϕ is continuous from the right at 0.

For example, the function $\iota^p(t) = t^p$ is an unbounded modulus for $p \leq 1$ and the function $\phi(t) = t/(1+t)$ is a bounded modulus.

Since $|\phi(t) - \phi(u)| \leq \phi(|t-u|)$ $(t, u \in \mathbb{R}^+)$ by (M1)–(M3), the moduli are continuous everywhere on \mathbb{R}^+ . We also remark that the modulus functions are essentially the same concept as the moduli of continuity (see [18], p. 866).

A GS space $\lambda(\mathbf{X}) \subset s(\mathbf{X})$ is called *solid* if $(y_k) \in \lambda(\mathbf{X})$ whenever $(x_k) \in \lambda(\mathbf{X})$ and $|y_k|_k \leq |x_k|_k$ $(k \in \mathbb{N})$. Analogously, a GDS space $\Lambda(\mathbf{X}) \subset s^2(\mathbf{X})$ is called *solid* if $(y_{ki}) \in \Lambda(\mathbf{X})$ whenever $(x_{ki}) \in \Lambda(\mathbf{X})$ and $|y_{ki}|_k \leq |x_{ki}|_k$ $(k, i \in \mathbb{N})$. For example, it is easy to see that the sets

$$\mathcal{M}(\mathbf{X}) = \left\{ \mathbf{x}^2 \in s^2(\mathbf{X}) : \sup_i |x_{ki}|_k < \infty \ (k \in \mathbb{N}) \right\},$$
$$\Lambda(\Phi, \mathbf{X}) = \left\{ \mathbf{x}^2 \in s^2(\mathbf{X}) : \Phi(\mathbf{x}^2) = \left(\phi_k\left(|x_{ki}|_k \right) \right) \in \Lambda \right\}$$

and $\Lambda(\Phi, \mathcal{M}(\mathbf{X})) = \Lambda(\Phi, \mathbf{X}) \cap \mathcal{M}(\mathbf{X})$ are solid GDS spaces if $\Lambda \subset s^2$ is a solid DS space and $\Phi = (\phi_k)$ is a sequence of moduli.

Let $B = (b_{kj})$ be an infinite scalar matrix and let \mathcal{B} be a sequence of matrices $B^i = (b_{kj}^i)$. For an X-valued sequence $\mathbf{x} = (x_j)$ put $B\mathbf{x} = (B_k\mathbf{x})$ and $\mathcal{B}\mathbf{x} = (\mathcal{B}_k^i\mathbf{x})$, where $B_k\mathbf{x} = \sum_j b_{kj}x_j$ and $\mathcal{B}_k^i\mathbf{x} = \sum_j b_{kj}^ix_j$. Our aim is to determine F-seminorm topologies for the spaces of X-valued sequences \mathbf{x} with $\Phi(\mathcal{B}\mathbf{x})$ in Λ , or $\Phi(\mathbf{B}\mathbf{x})$ in λ , if Λ and λ are topologized by absolutely monotone F-seminorms. Main theorems are applicable in the case if λ and Λ are strong summability domains of a non-negative matrix $A = (a_{nk})$. Some special cases of such spaces are considered, for example, in [1]-[4], [6]-[16],[19]-[25], [27], [28], [30], [31], [36], [38]-[41], [43], [45] and [48]-[51]).

2. Main results

The most common summability method is the matrix method defined by an infinite scalar matrix $A = (a_{nk})$. If for a sequence $\mathbf{x} \in s(X)$ the series $A_n \mathbf{x} = \sum_k a_{nk} x_k \quad (n \in \mathbb{N})$ converge and the limit $\lim_n A_n \mathbf{x} = l$ exists in X, then we say that \mathbf{x} is summable to l by the method A (briefly, A-summable to l) and write A-lim $x_k = l$. A summability method (or a matrix) A is called regular in X if for all sequences $\mathbf{x} = (x_k)$ convergent in X we have

$$\lim_{k} x_k = l \implies \lim_{n} A_n \mathbf{x} = l.$$

A well-known example of a regular matrix method is the Cesàro method C_1 defined by the matrix $C_1 = (c_{nk})$, where, for any $n \in \mathbb{N}$, $c_{nk} = n^{-1}$ if $k \leq n$ and $c_{nk} = 0$ otherwise. A (trivial) regular method is defined by the *unit* matrix $I = (i_{nk})$, where $i_{nn} = 1$ and $i_{nk} = 0$ for $n \neq k$. Recall also that a

matrix $A = (a_{nk})$ is called *normal* if, for any $n \in \mathbb{N}$, $a_{nn} \neq 0$ and $a_{nk} = 0$ if k > n. For example, the Cesàro matrix C_1 is normal. Every scalar sequence (c_k) defines a *diagonal matrix* $D(c_k) = (d_{ni})$ by the equalities $d_{nn} = c_n$ and $d_{ni} = 0$ if $n \neq i$. Clearly, a diagonal matrix $D(c_k)$ is regular if and only if $\lim_k c_k = 1$, and it is normal if $c_k \neq 0$ for all $k \in \mathbb{N}$.

Another class of summability methods is determined by sequences $\mathcal{B} = (B^i)$ of infinite scalar matrices $B^i = (b_{nk}^i)$. Recall (see, for example, [5] and [47]) that a sequence $\mathbf{x} = (x_k) \in s(X)$ is called \mathcal{B} -summable to the point $l \in X$ if B^i -lim $x_k = l$ uniformly in i, i.e., if the series $B_n^i \mathbf{x} = \sum_k b_{nk}^i x_k \quad (n, i \in \mathbb{N})$ converge in X and

$$\lim_{n} |B_{n}^{i} \mathbf{x} - l| = 0 \text{ uniformly in } i.$$

The summability methods \mathcal{B} are also known as the *sequential matrix methods* (SM *methods*) of summability (see [17], p. 19). In the special case

$$b_{nk}^{i} = \begin{cases} \frac{1}{n}, & \text{if } i \le k \le n+i-1, \\ 0 & \text{otherwise} \end{cases}$$

the \mathcal{B} -summability reduces to the so-called *almost convergence* (see [34]). The almost convergence is a non-matrix method of summability. Any matrix method B can be considered as an SM method \mathcal{B} with $B^i = B$ $(i \in \mathbb{N})$. By the unit SM method \mathcal{I} we mean the SM method \mathcal{B} with $B^i = I$ $(i \in \mathbb{N})$.

Let $\mathbf{e}^k = (e_j^k)_{j \in \mathbb{N}}$ $(k \in \mathbb{N})$ be the sequences with the elements $e_j^k = 1$ if j = k and $e_j^k = 0$ otherwise. If we define, for an arbitrary sequence $\mathbf{z} = (z_k)$, the double sequence $\mathbf{z}^{(2)} = (z_{ki}^{(2)})$ with $z_{ki}^{(2)} = z_k$ $(k, i \in \mathbb{N})$, then every sequence \mathbf{e}^k $(k \in \mathbb{N})$ also determines a double sequence $\mathbf{e}^{k(2)} = (e_{ji}^k)_{j,i\in\mathbb{N}}$ such that, for all $i \in \mathbb{N}$, $e_{ji}^k = 1$ if j = k and $e_{ji}^k = 0$ if $j \neq k$. An F-seminormed sequence space (λ, g_{λ}) is called an AK-space, if λ contains the sequences \mathbf{e}^k $(k \in \mathbb{N})$ and for any $\mathbf{u} = (u_k) \in \lambda$ we have $\lim_n g_{\lambda} (\mathbf{u} - \mathbf{u}^{[n]}) = 0$, where $\mathbf{u}^{[n]} = \sum_{k=1}^n u_k \mathbf{e}^k$. Analogously, an F-seminormed DS space (Λ, g_{Λ}) is called an AK-space (see [42]), if Λ contains the sequences $\mathbf{e}^{k(2)}$ $(k \in \mathbb{N})$ and for any $\mathbf{u}^2 = (u_{ki}) \in \Lambda$ we have $\lim_n g_{\Lambda} (\mathbf{u}^2 - \mathbf{u}^{2[n]}) = 0$, where $\mathbf{u}^{2[n]} = \sum_{k=1}^n \mathbf{u}_k \mathbf{e}^{k(2)}$ with $\mathbf{u}_k = (u_{ki})_{i\in\mathbb{N}}$ and $\mathbf{u}_k \mathbf{e}^{k(2)} = (u_{ki}e_{ji}^k)_{j,i\in\mathbb{N}}$. Well-known AK-spaces are c_0 and ℓ^p $(p \geq 1)$ with respect to ordinary norms $\|\mathbf{u}\|_{\infty} = \sup_k |u_k|$ and $\|\mathbf{u}\|_p = (\sum_k |u_k|^p)^{1/p}$. It is not difficult to see that Uc_0 and $U\ell^p$ $(p \geq 1)$, topologized by norms $\|\mathbf{u}\|_{\infty} = \|\tilde{\mathbf{u}}\|_{\infty}$ and $\|\mathbf{u}\|_{\tilde{p}} = \|\tilde{\mathbf{u}}\|_p$, are examples of normed DS-AK-spaces.

Let $\Phi = (\phi_k)$ be a sequence of moduli. If λ is a solid sequence space, then

$$\lambda(\Phi) = \{ \mathbf{u} = (u_k) \in s : \Phi(\mathbf{u}) = (\phi_k(|u_k|)) \in \lambda \}$$

is also a solid sequence space. Soomer [46] and Kolk [32] proved that if λ is topologized by an absolutely monotone F-seminorm g_{λ} , i.e., $g_{\lambda}(\mathbf{v}) \leq g_{\lambda}(\mathbf{u})$ for all $\mathbf{u}, \mathbf{v} \in \lambda$ with $|v_k| \leq |u_k|$ ($k \in \mathbb{N}$), then $\lambda(\Phi)$ may be topologized by the absolutely monotone F-seminorm $g_{\lambda,\Phi}(\mathbf{u}) = g_{\lambda}(\Phi(\mathbf{u}))$ whenever (λ, g_{λ}) is an AK-space or the sequence Φ satisfies one of two (equivalent) conditions:

(M5) there exist a function ν and a number $\delta > 0$ such that $\phi_k(ut) \leq \nu(u)\phi_k(t)$ $(k \in \mathbb{N}, 0 < u < \delta, t > 0)$ and $\lim_{u \to 0+} \nu(u) = 0$,

(M6)
$$\lim_{u \to 0+} \sup_{t>0} \sup_{k} \frac{\phi_k(ut)}{\phi_k(t)} = 0.$$

In the following we prove the similar statements about the sets

$$\lambda(\Phi, B, X) = \left\{ \mathbf{x} \in s(X) : \Phi(B\mathbf{x}) = \left(\phi_k\left(\left| B_k \mathbf{x} \right| \right) \right) \in \Lambda \right\}, \\ \Lambda(\Phi, \mathcal{B}, X) = \left\{ \mathbf{x} \in s(X) : \Phi(\mathcal{B}\mathbf{x}) = \left(\phi_k\left(\left| \mathcal{B}_k^i \mathbf{x} \right| \right) \right) \in \Lambda \right\}, \\ \Lambda(\Phi, \mathcal{B}, \mathcal{M}(X)) = \left\{ \mathbf{x} \in s(X) : \mathcal{B}\mathbf{x} \in \mathcal{M}(X) \right\} \cap \Lambda(\Phi, \mathcal{B}, X),$$

where the sequence spaces λ , Λ are solid, B is a matrix method, and \mathcal{B} is an SM-method of summability.

Theorem 1. If λ and Λ are solid sequence space, then the sets $\lambda(\Phi, B, X)$, $\Lambda(\Phi, \mathcal{B}, X)$ and $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$ are GS spaces, i.e., linear subsets of s(X). Moreover, $\Lambda(\Phi, \mathcal{B}, X)$ and $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$ are solid if

$$|y_k| \le |x_k| \implies |\mathcal{B}_k^i \mathbf{y}| \le |\mathcal{B}_k^i \mathbf{x}| \ (k, i \in \mathbb{N}), \tag{1}$$

and $\lambda(\Phi, B, X)$ is solid if

$$|y_k| \le |x_k| \implies |B_k \mathbf{y}| \le |B_k \mathbf{x}| \quad (k \in \mathbb{N}).$$
 (2)

Proof. To prove the linearity of the set $\Lambda(\Phi, \mathcal{B}, X)$, fix $\alpha, \beta \in \mathbb{K}$ and $\mathbf{x}, \mathbf{y} \in \Lambda(\Phi, \mathcal{B}, X)$. Using the linearity of the operators \mathcal{B}_k^i , by axioms (M2) and (M3) we have

$$\begin{split} \phi_k \left(\left| \mathcal{B}_k^i \left(\alpha \mathbf{x} + \beta \mathbf{y} \right) \right| \right) &\leq \phi_k \left(|\alpha| \left| \mathcal{B}_k^i \mathbf{x} \right| \right) + \phi_k \left(|\beta| \left| \mathcal{B}_k^i \mathbf{y} \right| \right) \\ &\leq ([|\alpha|] + 1) \phi_k \left(\left| \mathcal{B}_k^i \mathbf{x} \right| \right) + ([|\beta|] + 1) \phi_k \left(\left| \mathcal{B}_k^i \mathbf{y} \right| \right) \end{split}$$

for all $k, i \in \mathbb{N}$, where [c] denotes the integer part of a number $c \in \mathbb{R}$. But this gives $\alpha \mathbf{x} + \beta \mathbf{y} \in \Lambda(\Phi, \mathcal{B}, X)$ because Λ is linear and solid. The linearity of the subset $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$ of $\Lambda(\Phi, \mathcal{B}, X)$ clearly follows from

$$\sup_{i} \left| \mathcal{B}_{k}^{i} \left(\alpha \mathbf{x} + \beta \mathbf{y} \right) \right| \leq \left| \alpha \right| \sup_{i} \left| \mathcal{B}_{k}^{i} \mathbf{x} \right| + \left| \beta \right| \sup_{i} \left| \mathcal{B}_{k}^{i} \mathbf{y} \right|.$$

Now let $\mathbf{x} \in \Lambda(\Phi, \mathcal{B}, X)$ and $\mathbf{y} \in s(X)$ be such that $|y_k| \leq |x_k|$ $(k \in \mathbb{N})$. Since the moduli ϕ_k are increasing, by (1) we get

$$\phi_k\left(\left|\mathcal{B}_k^i\mathbf{y}\right|\right) \le \phi_k\left(\left|\mathcal{B}_k^i\mathbf{x}\right|\right) \ (k, i \in \mathbb{N}),\tag{3}$$

and in view of solidity of Λ , the sequence $\Phi(\mathcal{B}\mathbf{y})$ is in Λ . Thus $\mathbf{y} \in \Lambda(\Phi, \mathcal{B}, X)$. Hence, $\Lambda(\Phi, \mathcal{B}, X)$ is solid if (1) holds. The solidity of $\mathbf{x}, \mathbf{y} \in \Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$ is obvious.

The statements about the set $\lambda(\Phi, B, X)$ follow similarly, with B_k instead of \mathcal{B}_k^i .

An F-seminorm g_{Λ} on a DS space Λ is said to be *absolutely monotone* if $g_{\Lambda}(\mathbf{v}^2) \leq g_{\Lambda}(\mathbf{u}^2)$ for all $\mathbf{u}^2, \mathbf{v}^2 \in \Lambda$ with $|v_{ki}| \leq |u_{ki}| \ (k, i \in \mathbb{N})$.

Theorem 2. Let Λ be a solid DS space which is topologized by an absolutely monotone F-seminorm g_{Λ} .

a) If a sequence of moduli $\Phi = (\phi_k)$ satisfies one of two (equivalent) conditions (M5) and (M6), then the GS space $\Lambda(\Phi, \mathcal{B}, X)$ may be topologized by the F-seminorm

$$g_{\Lambda,\mathcal{B}}\left(\mathbf{x}\right) = g_{\Lambda}\left(\Phi\left(\mathcal{B}\mathbf{x}
ight)
ight).$$

Moreover, if g_{Λ} is an F-norm on Λ , the space X is normed, and \mathcal{B} satisfies the condition

$$\mathcal{B}\mathbf{x} = 0 \implies \mathbf{x} = 0, \tag{4}$$

then $g_{\Lambda,\mathcal{B}}$ is an F-norm on $\Lambda(\Phi,\mathcal{B},X)$. The F-seminorm (or F-norm) $g_{\Lambda,\mathcal{B}}$ is absolutely monotone if (1) holds.

b) If (Λ, g_{Λ}) is an AK-space, then the GS space $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$ may be topologized by the F-seminorm $g_{\Lambda, \mathcal{B}}$ for an arbitrary sequence of moduli Φ . Moreover, if g_{Λ} is an F-norm in Λ , the space X is normed, and \mathcal{B} satisfies (4), then $g_{\Lambda, \mathcal{B}}$ is an F-norm on $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$. The F-seminorm (or Fnorm) $g_{\Lambda, \mathcal{B}}$ is absolutely monotone on GS space $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$ whenever \mathcal{B} satisfies (1).

Proof. a) First, we prove that $g_{\Lambda,\mathcal{B}}$ is an F-seminorm. Since g_{Λ} is an F-seminorm, (N1) holds by (M1). Because the operator \mathcal{B} is linear, axiom (N2) follows immediately from the subadditivity of ϕ_k and g_{Λ} . If $|\alpha| \leq 1$, then by (M3) we get

$$\phi_k\left(\left|\mathcal{B}_k^i\left(\alpha\mathbf{x}\right)\right|\right) = \phi_k\left(\left|\alpha\right|\left|\mathcal{B}_k^i\mathbf{x}\right|\right) \le \phi_k\left(\left|\mathcal{B}_k^i\mathbf{x}\right|\right) \quad (k, i \in \mathbb{N}).$$

Since g_{Λ} is absolutely monotone,

$$g_{\Lambda,\mathcal{B}}\left(\alpha\mathbf{x}\right) = g_{\Lambda}\left(\left(\phi_{k}\left(\left|\mathcal{B}_{k}^{i}\left(\alpha\mathbf{x}\right)\right|\right)\right)\right) \leq g_{\Lambda}\left(\left(\phi_{k}\left(\left|\mathcal{B}_{k}^{i}\mathbf{x}\right|\right)\right)\right) = g_{\Lambda,\mathcal{B}}\left(\mathbf{x}\right)$$

i.e., (N3) is true.

To prove (N4), let $\mathbf{x} \in \Lambda(\Phi, \mathcal{B}, X)$. Using the equivalence of (M5) and (M6) (see [32], Remark 1), we may assume that Φ satisfies (M5). Therefore, if $\lim_{n \to \infty} \alpha_n = 0$ ($\alpha_n \in \mathbb{K}$), we can fix an index n_0 such that $|\alpha_n| < \delta$ for all $n \ge n_0$. Then by (M5) we obtain

$$\phi_k\left(\left|\mathcal{B}_k^i\left(\alpha_n\mathbf{x}\right)\right|\right) \leq \nu\left(\left|\alpha_n\right|\right)\phi_k\left(\left|\mathcal{B}_k^i\mathbf{x}\right|\right)$$

for all $k, i \in \mathbb{N}$. So, since g_{Λ} is absolutely monotone, we get

$$g_{\Lambda} \left(\Phi \left(\mathcal{B} \left(\alpha_n \mathbf{x} \right) \right) \right) \le g_{\Lambda} \left(\nu \left(|\alpha_n| \right) \Phi \left(\mathcal{B} \mathbf{x} \right) \right) \quad (n \ge n_0).$$

But this yields $\lim_{n \to B} g_{\Lambda,\mathcal{B}}(\alpha_n \mathbf{x}) = 0$ because $\lim_{n \to B} \nu(|\alpha_n|) = 0$. Thus (N4) holds and $g_{\Lambda,\mathcal{B}}$ is an F-seminorm on $\Lambda(\Phi,\mathcal{B},X)$.

Let g_{Λ} be an F-norm and let $(X, \|\cdot\|_X)$ be a normed space. If $g_{\Lambda, \mathcal{B}}(\mathbf{x}) = 0$, then, using also (M1), we have

$$\left\|\mathcal{B}_{k}^{i}\mathbf{x}\right\|_{X} = 0 \ (k, i \in \mathbb{N}),$$

which gives $\mathbf{x} = 0$ by (4). So, $g_{\Lambda, \mathcal{B}}$ is an F-norm on $\Lambda(\Phi, \mathcal{B}, X)$ in this case.

Now, suppose that (1) is satisfied. Then (3) holds, and since g_{Λ} is absolutely monotone,

$$g_{\Lambda,\mathcal{B}}(\mathbf{y}) = g_{\Lambda}\left(\left(\phi_{k}\left(\left|\mathcal{B}_{k}^{i}\mathbf{y}\right|\right)\right)\right) \leq g_{\Lambda}\left(\left(\phi_{k}\left(\left|\mathcal{B}_{k}^{i}\mathbf{x}\right|\right)\right)\right) = g_{\Lambda,\mathcal{B}}\left(\mathbf{x}\right).$$

Consequently, F-seminorm (or F-norm) $g_{\Lambda,\mathcal{B}}$ is absolutely monotone if (1) holds.

b) By the proof of a) it suffices to show that the functional

$$g_{\Lambda,\mathcal{B}}: \Lambda(\Phi,\mathcal{B},\mathcal{M}(X)) \to \mathbb{K}$$

satisfies axiom (N4). Let $\lim_{n} \alpha_n = 0$ and let \mathbf{x} be an arbitrary element from $\Lambda(\Phi, \mathcal{B}, \mathcal{M}(X))$. Then $\Phi(\mathcal{B}\mathbf{x}) \in \Lambda$, and since Λ is an AK-space,

$$\lim_{n} g_{\Lambda} \left(\Phi(\mathcal{B}\mathbf{x}) - \Phi(\mathcal{B}\mathbf{x})^{[n]} \right) = 0.$$
(5)

Using the equality

$$\Phi(\mathcal{B}\mathbf{x}) - \Phi(\mathcal{B}\mathbf{x})^{[n]} = \Phi\left(\mathcal{B}\mathbf{x} - (\mathcal{B}\mathbf{x})^{[n]}\right)$$

by (5) we can find, for fixed $\varepsilon > 0$, an index m such that

$$g_{\Lambda}\left(\Phi\left(\mathcal{B}\mathbf{x} - (\mathcal{B}\mathbf{x})^{[m]}\right)\right) < \varepsilon/2.$$
(6)

The double sequence $\mathcal{B}\mathbf{x} \in \mathcal{M}(X)$ determines the single sequence (\tilde{z}_k) by $\tilde{z}_k = \sup_i |\mathcal{B}_k^i \mathbf{x}| \quad (k \in \mathbb{N}).$ Since

$$\lim_{n} \phi_k(|\alpha_n \tilde{z}_k|) = 0 \quad (k \in \mathbb{N})$$

and g_{Λ} satisfies (N4), we have that

$$\lim_{n} g_{\Lambda} \left(\phi_k \left(|\alpha_n \tilde{z}_k| \right) \mathbf{e}^{k(2)} \right) = 0 \quad (k \in \mathbb{N}).$$
⁽⁷⁾

Further, since g_{Λ} satisfies (N2) and is absolutely monotone, we may write

$$g_{\Lambda}\left(\Phi\left(\mathcal{B}\left(\alpha_{n}\mathbf{x}\right)\right)^{[m]}\right) = g_{\Lambda}\left(\sum_{k=1}^{m}\left(\phi_{k}\left(\left|\alpha_{n}\mathcal{B}_{k}^{i}\mathbf{x}\right|\right)\right)_{i}\mathbf{e}^{k(2)}\right)$$

$$\leq \sum_{k=1}^{m} g_{\Lambda} \left(\left(\phi_{k} \left(\left| \alpha_{n} \mathcal{B}_{k}^{i} \mathbf{x} \right| \right) \right)_{i} \mathbf{e}^{k(2)} \right)$$
$$\leq \sum_{k=1}^{m} g_{\Lambda} \left(\phi_{k} \left(\left| \alpha_{n} \tilde{z}_{k} \right| \right) \mathbf{e}^{k(2)} \right).$$

This yields

$$\lim_{n} g_{\Lambda} \left(\Phi \left(\mathcal{B} \left(\alpha_{n} \mathbf{x} \right) \right)^{[m]} \right) = 0$$

because of (7). Thus there exists an index n_0 such that, for all $n \ge n_0$,

$$|\alpha_n| \le 1 \text{ and } g_{\Lambda} \left(\Phi \left(|\alpha_n| \left(\mathcal{B} \mathbf{x} \right)^{[m]} \right) \right) < \varepsilon/2.$$
 (8)

Now, by (6) and (8) we get

$$\begin{split} g_{\Lambda,\mathcal{B}}\left(\alpha_{n}\mathbf{x}\right) &= g_{\Lambda}\left(\Phi\left(\left|\beta\left(\alpha_{n}\mathbf{x}\right)\right)\right) \\ &\leq g_{\Lambda}\left(\Phi\left(\left|\alpha_{n}\right|\left(\mathcal{B}\mathbf{x}-\left(\mathcal{B}\mathbf{x}\right)^{[m]}\right)\right)\right) + g_{\Lambda}\left(\Phi\left(\left|\alpha_{n}\right|\left(\mathcal{B}\mathbf{x}\right)^{[m]}\right)\right) \\ &\leq g_{\Lambda}\left(\Phi\left(\left|\mathcal{B}\mathbf{x}-\left(\mathcal{B}\mathbf{x}\right)^{[m]}\right)\right) + g_{\Lambda}\left(\Phi\left(\left|\alpha_{n}\right|\left(\mathcal{B}\mathbf{x}\right)^{[m]}\right)\right) \\ &< \varepsilon/2 + \varepsilon/2 = \varepsilon \end{split}$$

for $n \ge n_0$. Hence, $\lim_n g_{\Lambda,\mathcal{B}}(\alpha_n \mathbf{x}) = 0$, i.e., (N4) is true for $g_{\Lambda,\mathcal{B}}$.

Let $\lambda \subset s$ be a solid sequence space and let $B = (b_{kj})$ be an infinite scalar matrix. Denoting by $\lambda^{(2)}$ the set of all double sequences $\mathbf{x}^{(2)}$ with $\mathbf{x} \in \lambda$, and using the sequence $\underline{B} = (\underline{B}^i)$ of matrices $\underline{B}^i = (\underline{b}_{kj}^i)$ with the elements $\underline{b}_{kj}^i = b_{kj}$ $(i \in \mathbb{N})$ it is easy to see that $\lambda(\Phi, B, X)$ is isomorphic to the space $\lambda^{(2)}(\Phi, \underline{B}, X)$ of type $\Lambda(\Phi, \mathcal{B}, X)$. In addition, if λ is topologized by an (absolutely monotone) F-seminorm g_{λ} , then the equality

$$g_{\lambda,\underline{B}}\left(\mathbf{x}^{(2)}\right) = g_{\lambda}(\mathbf{x})$$

defines an (absolutely monotone) F-seminorm on $\lambda^{(2)}(\Phi, \underline{B}, X)$. Thus, since $\mathbf{x} \in \mathcal{M}(X)$ for every $\mathbf{x} \in \lambda^{(2)}(\Phi, \underline{B}, X)$ and $(\lambda^{(2)}(\Phi, \underline{B}, X), g_{\lambda,\underline{B}})$ is an AK-space if and only if $(\lambda(\Phi, B, X), g_{\lambda})$ is, Theorem 2 gives the following topologization theorem for $\lambda(\Phi, B, X)$.

Theorem 3. Let λ be a solid sequence space topologized by an absolutely monotone *F*-seminorm g_{λ} .

a) If a sequence of moduli $\Phi = (\phi_k)$ satisfies one of two (equivalent) conditions (M5) and (M6), then the GS space $\lambda(\Phi, B, X)$ may be topologized by the F-seminorm

$$g_{\lambda,B}\left(\mathbf{x}\right) = g\left(\lambda\left(B\mathbf{x}\right)\right).$$

Moreover, if g_{λ} is an F-norm on λ , the space X is normed, and B satisfies the condition

$$B\mathbf{x} = 0 \implies \mathbf{x} = 0, \tag{9}$$

then $g_{\lambda,B}$ is an F-norm on $\lambda(\Phi, B, X)$. The F-seminorm (or F-norm) $g_{\lambda,B}$ is absolutely monotone if (2) holds.

b) If (λ, g_{λ}) is an AK-space, then the GS space $\lambda(\Phi, X)$ may be topologized by the F-seminorm $g_{\lambda,B}$ for an arbitrary sequence of moduli Φ . Moreover, if g_{λ} is an F-norm, the space X is normed, and B satisfies (9), then $g_{\lambda,B}$ is an F-norm on $\lambda(\Phi, B, X)$. The F-seminorm (or F-norm) $g_{\lambda,B}$ is absolutely monotone whenever B satisfies (2).

Remark 1. It is not difficult to see that in Theorems 1-3 we may write **X** instead of X whenever the matrices B^i $(i \in \mathbb{N})$ and B are diagonal or, more generally, whenever each row of these matrices contains not more than one non-zero element.

Remark 2. Ghosh and Srivastava [27] considered, for one modulus ϕ and for a sequence **X** of Banach spaces $(X_k, \|\cdot\|_k)$ $(k \in \mathbb{N})$, the GS space

$$\lambda(\phi, \mathbf{X}) = \{ \mathbf{x} : \phi(\mathbf{x}) = (\phi(\|x_k\|_k)) \in \lambda \},\$$

where λ is a solid sequence space. They assert (see [27], Theorem 3.1) that if λ is topologized by an absolutely monotone paranorm g, then

$$g_{\phi}(\mathbf{x}) = g(\phi(\mathbf{x}))$$

is a paranorm on $\lambda(\phi, \mathbf{X})$. But this is not true in general. Indeed, if ϕ is a bounded modulus and the solid sequence space ℓ_{∞} is topologized by the absolutely monotone norm $g(\mathbf{u}) = \sup_k |u_k|$, then $\ell_{\infty}(\phi, \mathbf{X}) = s(\mathbf{X})$, and so, $\ell_{\infty}(\phi, \mathbf{X})$ contains an unbounded sequence $\mathbf{z} = (z_k)$. If now (z_{k_i}) is a subsequence of \mathbf{z} such that $z_{k_i} \neq 0$ and $\lim_i ||z_{k_i}||_{k_i} = \infty$, then, defining

$$\alpha_n = \begin{cases} (\|z_{k_i}\|_{k_i})^{-1}, & \text{if } n = k_i \quad (i \in \mathbb{N}), \\ 0 & \text{otherwise,} \end{cases}$$

we get the sequence (α_n) with $\lim_n \alpha_n = 0$. Since

$$\phi\left(\|\alpha_{k_i} z_{k_i}\|_{k_i}\right) = \phi(1) > 0 \quad (i \in \mathbb{N}),$$

we have that

$$\lim_{n} g_{\phi}(\alpha_{n} \mathbf{z}) = \lim_{n} \sup_{k} \|\alpha_{n} z_{k}\|_{k} \neq 0.$$

Thus g_{ϕ} does not satisfy axiom (N4) and, consequently, is not a paranorm on $\ell_{\infty}(\phi, \mathbf{X})$ if the modulus ϕ is bounded. Theorem 3 a) (for B = I) and Remark 1 show that if the solid sequence space λ is topologized by an absolutely monotone F-seminorm (or a paranorm with (N3)) g, then g_{ϕ} is an absolutely monotone F-seminorm (paranorm) on the GS space $\lambda(\phi, \mathbf{X})$ whenever (λ, g)

is an AK-space or the modulus ϕ satisfies one of the following (equivalent) conditions:

(M5°) there exists a function ν and a number $\delta > 0$ such that $\phi(ut) \le \nu(u)\phi(t)$ $(0 \le u < \delta, t \ge 0)$ and $\lim_{u\to 0+} \nu(u) = 0$, (M6°) $\lim_{u\to 0+} \sup_{t>0} \frac{\phi(ut)}{\phi(t)} = 0$.

These conditions clearly fail if ϕ is bounded, since by $\sup_{t>0} \phi(t) = M < \infty$ we have

$$\sup_{t>0} \frac{\phi(ut)}{\phi(t)} \ge M^{-1} \sup_{t>0} \phi(ut) = 1$$

for any fixed u > 0.

3. Applications related to strong summability domains

Let $A = (a_{nk})$ be a non-negative matrix, i.e., $a_{nk} \ge 0$ $(n, k \in \mathbb{N})$. We say that A is column-positive if for any $k \in \mathbb{N}$ there exists an index n_k such that $a_{n_k,k} > 0$. Obviously, any normal non-negative matrix is columnpositive, and a diagonal matrix $D(c_k)$ is column-positive if $c_k > 0$ for all $k \in \mathbb{N}$. A sequence $\mathbf{u} = (u_k) \in s$ is called strongly A-summable with index $p \ge 1$ to l if $\lim_{n} \sum_{k} a_{nk} |u_k - l|^p = 0$, and strongly A-bounded with index p if $\sup_{n} \sum_{k} a_{nk} |u_k|^p < \infty$. It is clear that the set $c_0^p[A]$ of all strongly Asummable with index p to zero sequences and the set $\ell_{\infty}^p[A]$ of all strongly A-bounded with index p sequences are solid linear spaces and $c_0^p[A] \subset \ell_{\infty}^p[A]$. Moreover, the functional

$$g^p_{[A]}(\mathbf{u}) = \sup_n \left(\sum_k a_{nk} |u_k|^p\right)^{1/p}$$

is a seminorm on $\ell_{\infty}^{p}[A]$ and $c_{0}^{p}[A]$, and it is a norm if A is column-positive.

Natural generalizations of sequence spaces $c_0^p[A]$ and $\ell_{\infty}^p[A]$ are related to arbitrary solid F-seminormed sequence spaces (λ, g_{λ}) and (Λ, g_{Λ}) . It is easy to see that the sets

$$\lambda^{p}[A] = \left\{ \mathbf{u} \in s : A^{1/p} \left(|\mathbf{u}|^{p} \right) = \left(\left(\sum_{k} a_{nk} |u_{k}|^{p} \right)^{1/p} \right)_{n \in \mathbb{N}} \in \lambda \right\},$$
$$\Lambda^{p}[A] = \left\{ \mathbf{u}^{2} \in s^{2} : A^{1/p} \left(|\mathbf{u}^{2}|^{p} \right) = \left(\left(\sum_{k} a_{nk} |u_{ki}|^{p} \right)^{1/p} \right)_{n,i \in \mathbb{N}} \in \Lambda \right\}$$

are solid linear subspaces of s and s^2 , respectively. In addition, if F-seminorms g_{λ} and g_{Λ} are absolutely monotone, then the functionals

$$g_{\lambda,[A]}^{p}(\mathbf{u}) = g_{\lambda}\left(A^{1/p}\left(|\mathbf{u}|^{p}
ight)
ight) \quad ext{and} \quad g_{\Lambda,[A]}^{p}(\mathbf{u}^{2}) = g_{\Lambda}\left(A^{1/p}\left(|\mathbf{u}^{2}|^{p}
ight)
ight)$$

define F-seminorms, respectively, on $\lambda^p[A]$ and $\Lambda^p[A]$. Moreover, if A is column-positive, then $g^p_{\lambda,[A]}$ (or $g^p_{\Lambda,[A]}$) is an F-norm (a norm) whenever the space λ (or Λ) is F-normed (normed).

As a special case of $\Lambda^p[A]$ we will consider the DS space

$$U\lambda^{p}[A] = \left\{ \mathbf{u}^{2} \in s^{2} : A^{1/p} \left(|\mathbf{u}^{2}|^{p} \right) \in U\lambda \right\},\$$

which may be topologized by the F-seminorm

$$g_{\lambda,[\tilde{A}]}^{p}(\mathbf{u}) = g_{\lambda}\left(\tilde{A}^{1/p}\left(|\mathbf{u}^{2}|^{p}\right)\right)$$

if a solid sequence space λ is topologized by an absolutely monotone F-seminorm g_{λ} and

$$\tilde{A}^{1/p}\left(|\mathbf{u}^2|^p\right) = \left(\sup_i \left(\sum_k a_{nk}|u_{ki}|^p\right)^{1/p}\right)_{n\in\mathbb{N}}$$

Let $\mathbf{p} = (p_k)$ be a bounded sequence of positive numbers with $r = \max\{1, \sup_k p_k\}$, let $B = (b_{nk})$ be an infinite scalar matrix, and let \mathcal{B} be an SM method. For a sequence of moduli $\Phi = (\phi_k)$ and solid sequence spaces $\lambda \subset s$, $\Lambda \subset s^2$, we consider, as some generalizations of $\lambda^p[A]$ and $\Lambda^p[A]$, the sets

$$\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X] = \left\{ \mathbf{x} \in s(X) : A^{1/r} \left(\Phi^{\mathbf{p}}(B\mathbf{x}) \right) \in \lambda \right\},$$
$$\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X] = \left\{ \mathbf{x} \in s(X) : A^{1/r} \left(\Phi^{\mathbf{p}}(\mathcal{B}\mathbf{x}) \right) \in \Lambda \right\},$$

where,

$$A^{1/r}(\Phi^{\mathbf{p}}(B\mathbf{x})) = \left(\left(\sum_{k} a_{nk} \left(\phi_{k} \left(\left| \sum_{j} b_{kj} x_{j} \right| \right) \right)^{p_{k}} \right)^{1/r} \right)_{n \in \mathbb{N}}, \\ A^{1/r}(\Phi^{\mathbf{p}}(\mathcal{B}\mathbf{x})) = \left(\left(\sum_{k} a_{nk} \left(\phi_{k} \left(\left| \sum_{j} b_{kj}^{i} x_{j} \right| \right) \right)^{p_{k}} \right)^{1/r} \right)_{n,i \in \mathbb{N}}.$$

Using the equalities $p_k = (p_k/r)r$ $(k \in \mathbb{N})$ and denoting by $\Phi^{\mathbf{p}/r}$ the sequence of moduli $\phi_k^{\mathbf{p}/r}(t) = (\phi_k(t))^{p_k/r}$ $(t \in \mathbb{R}^+, k \in \mathbb{N})$, we may write

$$\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X] = \left\{ \mathbf{x} \in s_B(X) : \Phi^{\mathbf{p}/r}(B\mathbf{x}) \in \lambda^r[A] \right\}$$
$$= \lambda^r[A] \left(\Phi^{\mathbf{p}/r}, B, X \right), \qquad (10)$$
$$\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X] = \left\{ \mathbf{x} \in s_{\mathcal{B}}(X) : \Phi^{\mathbf{p}/r}(\mathcal{B}\mathbf{x}) \in \Lambda^r[A] \right\}$$
$$= \Lambda^r[A] \left(\Phi^{\mathbf{p}/r}, \mathcal{B}, X \right). \qquad (11)$$

Thus, since the spaces $\lambda^{r}[A]$ and $\Lambda^{r}[A]$ are solid, Theorem 1 shows that $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X]$ and $\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$ are GS spaces. Remark 1 shows that we get the GS spaces $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, \mathbf{X}]$ and $\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, \mathbf{X}]$, for example, in the special case, when B is a diagonal matrix and \mathcal{B} is a sequence of diagonal matrices.

The representations (10) and (11) are also useful for the topologization of sequence spaces $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X]$ and $\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$. But first of all, we prove an auxiliary result about the property AK of the spaces $\left(\lambda^p[A], g^p_{\lambda, [A]}\right)$ and $\left(U\lambda^p[A], g^p_{\Lambda, [\tilde{A}]}\right)$.

Lemma 1. Let $p \ge 1$ and let $A = (a_{nk})$ be a non-negative infinite matrix. Suppose that $\lambda \subset s$ is a solid AK-space with respect to an absolutely monotone F-seminorm g_{λ} .

(i) *If*

$$\mathbf{a}_{k} = ((a_{nk})^{1/p})_{n \in \mathbb{N}} \in \lambda \quad (k \in \mathbb{N}),$$
(12)

then $(\lambda^p[A], g^p_{\lambda, A})$ is an AK-space.

(ii) If the matrix A is row-finite (i.e., for any $n \in \mathbb{N}$ there exists an index k_n with $a_{nk} = 0$ $(k > k_n)$), and (12) holds, then $(U\lambda^p[A], g^p_{\lambda,\tilde{A}})$ is an AK-space.

Proof. The proof of statement (i) is quite similar to the proof of Lemma 1 from [33] and therefore it is omitted.

To prove (ii), let $\mathbf{u}^2 \in U\lambda^p[A]$. Thus $\tilde{A}^{1/p}(|\mathbf{u}^2|^p) \in \lambda$, and since (λ, g_{λ}) is an AK-space,

$$\lim_{m} g_{\lambda} \left(\tilde{A}^{1/p} \left(|\mathbf{u}^{2}|^{p} \right) - \tilde{A}^{1/p} \left(|\mathbf{u}^{2}|^{p} \right)^{[m]} \right)$$
$$= \lim_{m} g_{\lambda} \left(\left(\underbrace{\widetilde{0, \dots, 0}}_{i}, \sup_{i} \left(\sum_{k} a_{m+1,k} |u_{ki}|^{p} \right)^{1/p}, \dots \right) \right) = 0.$$
(13)

By condition (12) and by

$$\tilde{A}^{1/p}\left(|\mathbf{e}^{j(2)}|^{p}\right) = \left(\sup_{i} (a_{nj})^{1/p}\right)_{n \in \mathbb{N}} = \mathbf{a}_{j} \quad (j \in \mathbb{N})$$

we conclude that $U\lambda^p[A]$ contains the sequences $\mathbf{e}^{j(2)}$. To prove the equality $\lim_m \mathbf{u}^{[m]} = \mathbf{u}$ in $U\lambda^p[A]$, we use the inequality

$$g_{\lambda,[\tilde{A}]}^{p}\left(\mathbf{u}^{2}-\mathbf{u}^{2[m]}\right) \leq \sum_{n=1}^{s} g_{\lambda}\left(\sup_{i}\left(\sum_{k=m+1}^{\infty} a_{nk}|u_{ki}|^{p}\right)^{1/p} \mathbf{e}^{n}\right) + g_{\lambda}\left(\left(\overbrace{0,\ldots,0}^{s},\sup_{i}\left(\sum_{k=m+1}^{\infty} a_{s+1,k}|u_{ki}|^{p}\right)^{1/p},\ldots\right)\right)\right)$$
$$= G_{sm}^{1} + G_{sm}^{2}.$$

Let $\varepsilon > 0$. As g_{λ} is absolutely monotone, we have

1

$$G_{mm}^2 \le g_{\lambda} \left(\tilde{A}^{1/p} \left(|\mathbf{u}^2|^p \right) - \tilde{A}^{1/p} \left(|\mathbf{u}^2|^p \right)^{[m]} \right),$$

and by (13) we get $\lim_{m} G_{mm}^2 = 0$. Thus, there exists a number $m_0 \in \mathbb{N}$ with

$$G_{m_0,m_0}^2 < \varepsilon$$

Since the matrix A is row-finite, we can find $m_1 \ge m_0$ such that for all $n = 1, 2, ..., m_0$ and $i \in \mathbb{N}$ one has

$$\sum_{k=m+1}^{\infty} a_{nk} |u_{ki}|^p = 0 \quad (m \ge m_1),$$

which yields

$$G^1_{m_0,m} = 0 \quad (m \ge m_1).$$

Hence, using the inequalities $G_{m_0,m}^2 \leq G_{m_0,m_0}^2$ $(m \geq m_0)$, we have that

$$g^{p}_{\lambda,[\tilde{A}]}\left(\mathbf{u}^{2}-\mathbf{u}^{2[m]}\right) \leq G^{1}_{m_{0},m}+G^{2}_{m_{0},m}<0+\varepsilon=\varepsilon$$

if $m \ge m_1$. Consequently, $\lim_m \mathbf{u}^{[m]} = \mathbf{u}$ in $U\lambda^p[A]$. The proof is completed.

Now we can determine F-seminorms on GS spaces $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X]$ and $\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$.

Proposition 1. Let $\Phi = (\phi_k)$ be a sequence of moduli and let $\mathbf{p} = (p_k)$ be a bounded sequence of positive numbers and $r = \max\{1, \sup_k p_k\}$. Let $A = (a_{nk})$ be a non-negative infinite matrix and let $B = (b_{nk})$ be an infinite matrix of scalars. Suppose that $(X, |\cdot|)$ is a seminormed space, \mathbf{X} is a sequence of seminormed spaces $(X_k, |\cdot|_k)$ $(k \in \mathbb{N})$, and $\lambda \subset s$ is a solid sequence space topologized by an absolutely monotone F-seminorm g_{λ} .

a) If the sequence of moduli $\Phi^{\mathbf{p}/r}$ satisfies one of conditions (M5) and (M6), then the GS space $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X]$ may be topologized by the F-seminorm

$$g_{\boldsymbol{\lambda},\boldsymbol{A},\boldsymbol{B}}^{\Phi,\mathbf{p}}(\mathbf{x})=g_{\boldsymbol{\lambda}}\left(\boldsymbol{A}^{1/r}\left(\Phi^{\mathbf{p}}\left(\boldsymbol{B}\mathbf{x}\right)\right)\right).$$

b) If (λ, g_{λ}) is an AK-space and condition (12) holds with p = r, then $g_{\lambda,A,B}^{\Phi,\mathbf{p}}$ is an F-seminorm on $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X]$ for an arbitrary sequence of moduli Φ .

If, in a) and b), g_{λ} is an F-norm, X is normed, A is column-positive, and (9) holds, then $g_{\lambda,A,B}^{\Phi,\mathbf{p}}$ is an F-norm on $\lambda[A^{1/r}, B, \Phi, \mathbf{p}, X]$. Moreover, for a diagonal matrix $B = D(c_k)$, we get the absolutely monotone F-seminorm (or F-norm) $g_{\lambda,A,D(c_k)}^{\Phi,\mathbf{p}}$ on the GS space $\lambda[A^{1/r}, D(c_k), \Phi, \mathbf{p}, \mathbf{X}]$.

Proof. Statement a) follows from (10) and Theorem 3 a) because

$$g_{\lambda[A]^{r},B}(\mathbf{x}) = g_{\lambda}\left(A^{1/r}\left(\left(\Phi^{\mathbf{p}/r}\left(B\mathbf{x}\right)\right)^{r}\right)\right) = g_{\lambda}\left(A^{1/r}\left(\Phi^{\mathbf{p}}\left(B\mathbf{x}\right)\right)\right)$$

for any $\mathbf{x} \in \lambda^{r}[A] (\Phi^{\mathbf{p}/r}, B, X)$. Analogously, we deduce statement b) from (11) and Theorem 3 b) in view of Lemma 1(i).

Let us investigate the topologization of spaces of type $\Lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$ in the case $\Lambda = U\lambda$.

Proposition 2. Let Φ , \mathbf{p} , A, X, and \mathbf{X} be the same as in Proposition 1 and let \mathcal{B} be a sequence of infinite matrices $B^i = (b^i_{nk})$.

a) If $\Phi^{\mathbf{p}/r}$ satisfies one of conditions (M5) and (M6), then the GS space $U\lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$ may be topologized by the F-seminorm

$$\begin{split} g_{_{U\lambda,A,\mathcal{B}}}^{\Phi,\mathbf{p}}(\mathbf{x}) &= g_{\lambda} \left(\tilde{A}^{1/r} \left(\Phi^{\mathbf{p}} \left(\mathcal{B}\mathbf{x} \right) \right) \right) \\ &= g_{\lambda} \left(\left(\sup_{i} \left(\sum_{k} a_{nk} \left(\phi_{k} \left(\left| \sum_{j} b_{kj}^{i} x_{j} \right| \right) \right)^{p_{k}} \right)^{1/r} \right)_{n \in \mathbb{N}} \right). \end{split}$$

b) Suppose that (λ, g_{λ}) is an AK-space and the moduli ϕ_k $(k \in \mathbb{N})$ are unbounded. If the matrix A is row-finite and column-positive, and (12) holds with p = r, then $g_{U\lambda,A,B}^{\Phi,\mathbf{p}}$ is an F-seminorm on $U\lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$.

If, in a) and b), g_{λ} is an F-norm, X is normed, and (4) is true, then $g_{U\lambda,A,\mathcal{B}}^{\Phi,\mathbf{p}}$ is an F-norm on $U\lambda[A^{1/r},\mathcal{B},\Phi,\mathbf{p},X]$. Moreover, $g_{U\lambda,A,\mathcal{B}}^{\Phi,\mathbf{p}}$ is an absolutely monotone F-seminorm (or F-norm) on the GS space $U\lambda[A^{1/r},\mathcal{B},\Phi,\mathbf{p},\mathbf{X}]$ if \mathcal{B} is a sequence of diagonal matrices.

Proof. Statement a) follows from Theorem 2a) in view of (11).

b) Under our assumptions, the space $(U\lambda^r[A], g^r_{\lambda, [\tilde{A}]})$ has the property AK by Lemma 1 (ii). In addition, since our non-negative matrix A is column-positive, for any fixed k there exists an index n_k such that $a_{n_k,k} > 0$. Thus, using the inequality

$$\left(\left(\phi_k \left(\left| \sum_j b_{kj}^i x_j \right| \right) \right)^{p_k} \right)^{1/r} \le (a_{n_k,k})^{-1/r} \sup_i \left(\sum_k a_{nk} \left(\phi_k \left(\left| \sum_j b_{kj}^i x_j \right| \right) \right)^{p_k} \right)^{1/r},$$

by $\tilde{A}^{1/r}\left(\Phi^{\mathbf{p}}\left(\mathcal{B}\mathbf{x}\right)\right) \in \mathcal{M}$ we get

$$\sup_{i} \left(\left(\phi_k \left(\left| \sum_{j} b_{kj}^i x_j \right| \right) \right)^{p_k} \right)^{1/r} < \infty.$$

But this yields

$$\sup_{i} \left| \sum_{j} b_{kj}^{i} x_{j} \right| < \infty \quad (k \in \mathbb{N})$$

because the moduli $\phi_k^{\mathbf{p}/r}(t) = (\phi_k(t))^{p_k/r}$ $(k \in \mathbb{N})$ are unbounded. Consequently, for any $\mathbf{x} \in U\lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X]$ we have $\mathcal{B}\mathbf{x} \in \mathcal{M}(X)$. Hence, by equality (11) we have

$$U\lambda[A^{1/r}, \mathcal{B}, \Phi, \mathbf{p}, X] = U\lambda^{r}[A] \left(\Phi^{\mathbf{p}/r}, \mathcal{B}, \mathcal{M}(X) \right),$$

and b) follows from Theorem 2 b).

4. Some special cases

In the following we apply Propositions 1 and 2 for the topologization of GS spaces

$$\lambda[A, B, \Phi, \mathbf{p}, X] = \{ \mathbf{x} \in s(X) : A(\Phi^{\mathbf{p}}(B\mathbf{x})) \in \lambda \},\$$
$$U\lambda[A, \mathcal{B}, \Phi, \mathbf{p}, X] = \{ \mathbf{x} \in s(X) : A(\Phi^{\mathbf{p}}(\mathcal{B}\mathbf{x})) \in U\lambda \},\$$

where

$$A(\Phi^{\mathbf{p}}(B\mathbf{x})) = \left(\sum_{k} a_{nk} \left(\phi_{k}\left(\left|\sum_{j} b_{kj}x_{j}\right|\right)\right)^{p_{k}}\right)_{n \in \mathbb{N}},$$
$$A(\Phi^{\mathbf{p}}(\mathcal{B}\mathbf{x})) = \left(\sum_{k} a_{nk} \left(\phi_{k}\left(\left|\sum_{j} b_{kj}^{i}x_{j}\right|\right)\right)^{p_{k}}\right)_{n,i \in \mathbb{N}},$$

In the special case $p_k = 1$ $(k \in \mathbb{N})$, the following corollaries of Propositions 1 and 2 are obvious.

Corollary 1. Let $A, \mathcal{B}, X, \mathbf{X}$, and λ be the same as in Proposition 1.

a) If the sequence of moduli Φ satisfies one of conditions (M5) and (M6), then the GS space

$$\lambda[A, B, \Phi, X] = \{\mathbf{x} \in s(X) : A\left(\Phi\left(B\mathbf{x}\right)\right) \in \lambda\}$$

may be topologized by the F-seminorm

$$g_{\lambda,A,B}^{\Phi}(\mathbf{x}) = g_{\lambda} \left(A\left(\Phi\left(B\mathbf{x}\right)\right) \right)$$
$$= g_{\lambda} \left(\left(\sum_{k} a_{nk} \left(\phi_{k} \left(\left| \sum_{j} b_{kj} x_{j} \right| \right) \right) \right)_{n \in \mathbb{N}} \right)$$

b) If (λ, g_{λ}) is an AK-space and condition (12) holds with p = 1, then $g_{\lambda,A,B}^{\Phi}$ is an F-seminorm on $\lambda[A, B, \Phi, X]$ for an arbitrary sequence of moduli Φ .

If, in a) and b), g_{λ} is an F-norm, X is normed, A is column-positive, and B satisfies (9), then $g_{\lambda,A,B}^{\Phi}$ is an F-norm on $\lambda[A, B, \Phi, X]$. Moreover, $g_{\lambda,A,B}^{\Phi}$ is an absolutely monotone F-seminorm (or F-norm) on the GS space $\lambda[A, B, \Phi, \mathbf{X}]$ if B is a diagonal matrix.

Corollary 2. Let Φ , A, X, X, and \mathcal{B} be the same as in Proposition 2.

a) If Φ satisfies one of conditions (M5) and (M6), then the sequence space $U\lambda[A, \mathcal{B}, \Phi, X]$ may be topologized by the F-seminorm

$$g_{U\lambda,A,\mathcal{B}}^{\Phi}(\mathbf{x}) = g_{\lambda} \left(\tilde{A} \left(\Phi \left(\mathcal{B} \mathbf{x} \right) \right) \right)$$
$$= g_{\lambda} \left(\left(\sup_{i} \sum_{k} a_{nk} \left(\phi_{k} \left(\left| \sum_{j} b_{kj} x_{j} \right| \right) \right) \right)_{n \in \mathbb{N}} \right).$$

b) Suppose that (λ, g_{λ}) is an AK-space and the moduli ϕ_k $(k \in \mathbb{N})$ are unbounded. If the matrix A is row-finite and column-positive, and (12) holds with p = 1, then $g_{U\lambda,A,\mathcal{B}}^{\Phi}$ is an F-seminorm on $U\lambda[A^{1/r}, \mathcal{B}, \Phi, X]$.

If, in a) and b), g_{λ} is an F-norm, X is normed, and \mathcal{B} satisfies (4), then $g_{U\lambda,A,\mathcal{B}}^{\Phi}$ is an F-norm on $U\lambda[A^{1/r},\mathcal{B},\Phi,X]$. Moreover, $g_{U\lambda,A,\mathcal{B}}^{\Phi}$ is an absolutely monotone F-seminorm (or F-norm) on the GS space $U\lambda[A^{1/r},\mathcal{B},\Phi,\mathbf{X}]$ if \mathcal{B} is a sequence of diagonal matrices.

First investigations of spaces of type $\lambda[A, B, \Phi, X]$ are related to the case B = I and $\phi_k = \phi$ ($k \in \mathbb{N}$). Ruckle [44] considered the space

$$\ell[I,\phi] = \{\mathbf{u} \in s : \sum_{k} \phi(|u_k|) < \infty\}$$

and Maddox [35] introduced the sequence spaces $c_0[C_1, \phi]$ and $\ell_{\infty}[C_1, \phi]$. The spaces $\lambda[A, \phi]$ and $\lambda[C_1, \phi, X]$ (X is a Banach space) are studied, respectively, in [10] and [11]. Corollary 1 allows to determine F-seminorm topologies for sequence spaces from [15] and [20]. It also extends Theorem 2.6 of [9], which determines the paranorm $g^{\phi}_{D(k^{-s}),I}$ on $\lambda[D(k^{-s}), I, \phi, \mathbf{X}]$ if s > 0 and λ is a Banach space with the property AK.

Further corollaries of Propositions 1 and 2 deal with the sequence **p** and are related to $\lambda \in \{\ell_{\infty}, c_0, \ell^r\}$. It is clear that ℓ_{∞} and c_0 are solid sequence spaces with the absolutely monotone norm $\|\mathbf{u}\|_{\infty} = \sup_k |u_k|$. Since, moreover, $(c_0, \|\cdot\|_{\infty})$ is an AK-space, and for $\lambda \in \{\ell_{\infty}, c_0\}$ we have

$$(|u_k|) \in \lambda \iff (|u_k|^q) \in \lambda \quad (q > 0),$$

Proposition 1 immediately yields the following corollary.

Corollary 3. Let Φ , \mathbf{p} , A, X, \mathbf{X} , and B be the same as in Proposition 1. a) If the sequence of moduli $\Phi^{\mathbf{p}/r}$ satisfies one of conditions (M5) and (M6), then the GS space $\ell_{\infty}[A, B, \Phi, \mathbf{p}, X]$ may be topologized by the F-seminorm

$$g_{\infty,A,B}^{\Phi,\mathbf{p}}(\mathbf{x}) = \sup_{n} \left(A\left(\Phi^{\mathbf{p}}\left(B\mathbf{x}\right)\right) \right) = \sup_{n} \left(\sum_{k} a_{nk} \left(\phi_{k}\left(\left|\sum_{j} b_{kj} x_{j}\right|\right) \right)^{p_{k}} \right)^{1/r} \right)$$

b) If the matrix A is such that

$$\lim_{n} a_{nk} = 0 \quad (k \in \mathbb{N}), \tag{14}$$

then $g_{\infty,A,B}^{\Phi,\mathbf{p}}$ is an F-seminorm on $c_0[A, B, \Phi, \mathbf{p}, X]$ for an arbitrary sequence of moduli Φ .

If, in a) and b), the space X is normed, A is column-positive, and B satisfies (9), then $g_{\infty,A,B}^{\Phi,\mathbf{p}}$ is an F-norm. Moreover, $g_{\infty,A,D(c_k)}^{\Phi,\mathbf{p}}$ is an absolutely monotone F-seminorm (F-norm) on $c_0[A, D(c_k), \Phi, \mathbf{p}, \mathbf{X}]$.

We may consider the space $\ell[A, B, \Phi, \mathbf{p}, X]$ as the space $\ell^r[A^{1/r}, B, \Phi, \mathbf{p}, X]$. So, since ℓ^r is solid AK-space with respect to the norm $\|\mathbf{u}\|_r = (\sum_k |u_k|^r)^{1/r}$, Proposition 1 b) gives the following corollary.

Corollary 4. Let Φ , \mathbf{p} , A, X, \mathbf{X} , and B be the same as in Proposition 1. If the matrix A is such that

$$\sum_{n} |a_{nk}| < \infty \quad (k \in \mathbb{N}),$$

then

$$g_{1,A,B}^{\Phi,\mathbf{p}} = \left(\sum_{n} |A^{1/r} \left(\Phi^{\mathbf{p}} \left(B\mathbf{x}\right)\right)|^{r}\right)^{1/r}$$
$$= \left(\sum_{n}\sum_{k} a_{nk} \left(\phi_{k} \left(\left|\sum_{j} b_{kj} x_{j}\right|\right)\right)^{p_{k}}\right)^{1/r}$$

is an F-seminorm on $\ell[A, B, \Phi, \mathbf{p}, X]$ for an arbitrary sequence of moduli Φ .

If the space X is normed, A is column-positive, and (9) holds, then $g_{1,A,B}^{\Phi,\mathbf{p}}$ is an F-norm. Moreover, $g_{1,A,D(c_k)}^{\Phi,\mathbf{p}}$ is an absolutely monotone F-seminorm (or F-norm) on $\ell[A, D(c_k), \Phi, \mathbf{p}, \mathbf{X}]$.

The GS spaces from Corollaries 3 and 4 have been studied earlier in the special cases when the role of matrix A was played not only by C_1 and different diagonal matrices, but also by the matrix of de la Vallée-Poussin and by the matrix of lacunary strong convergence. Recall that if $d = (d_k)$ is a non-decreasing sequence of positive numbers tending to ∞ with $d_1 = 1$ and $d_{n+1} \leq d_n + 1$, then the matrix of de la Vallée-Poussin $V_d = (v_{nk})$ is defined by the equalities $v_{nk} = 1/d_n$ if $k \in [n - d_n + 1, n]$ and $v_{nk} = 0$ otherwise. Further, a sequence of integers $\theta = (k_j)$ is called *lacunary* if $k_0 = 0, 0 < k_j < k_{j+1}$ and $h_j = k_j - k_{j-1} \rightarrow \infty$ as $j \rightarrow \infty$. A sequence $\mathbf{u} = (u_k)$ is said to be *lacunary strongly convergent* to a number l if (see [26])

$$\lim_{j} 1/h_j \sum_{i \in (k_{j-1}, k_j]} |u_i - l| = 0.$$

Thus, given the matrix $N_{\theta} = (w_{ji})$ with $w_{ji} = 1/h_j$ if $i \in (k_{j-1}, k_j]$ and by $w_{ji} = 0$ otherwise, the lacunary strong convergence is precisely the strong N_{θ} -summability. It is clear that both matrices V_d and N_{θ} are regular and column-positive. Moreover, V_d is normal and reduces to C_1 for $d_n = n$.

Corollary 3 permits to define, for example, an F-seminorm on the sequence spaces $c_0[V_d, B, \phi, \mathbf{p}]$ and $\ell_{\infty}[V_d, B, \phi, \mathbf{p}]$ from [16], and an F-norm on the GS space $c_0[N_{\theta}, I, \Phi, X]$ which is considered in [41] for a Banach space X. Corollary 3 also contains, as special cases, the results about the topologization of some sequence spaces of type $c_0[A, I, \phi, \mathbf{p}]$ from [10], [14], and [39].

In Theorem 1 of [14] it was asserted that for any non-negative regular matrix A the space $\ell_{\infty}[A, I, \phi; \mathbf{p}]$ may be topologized by the paranorm

$$g_{\infty,A}^{\phi,\mathbf{p}}(\mathbf{u}) = \sup_{n} \left(\sum_{k} a_{nk} \left(\phi\left(|u_{k}| \right) \right)^{p_{k}} \right)^{1/r}.$$

if $\inf_k p_k > 0$. But it is possible to prove, as in Remark 2, that this is not true for a bounded modulus ϕ if A = I, and $p_k = 1$ ($k \in \mathbb{N}$). By

Corollary 3 a) we can say that $g_{\infty,A}^{\phi,\mathbf{p}}$ is an F-seminorm (or a paranorm) on $\ell_{\infty}[A, I, \phi, \mathbf{p}]$ for any non-negative matrix A whenever the sequence of moduli $\phi^{p_k/r}(t) = (\phi(t))^{p_k/r}$ ($k \in \mathbb{N}$) satisfies one of conditions (M5) and (M6). If $\inf_k p_k > 0$, then it suffices to assume that the modulus ϕ satisfies one of conditions (M5°) and (M6°). In the case $p_k = 1$ ($k \in \mathbb{N}$) this result completes Theorem 10 (ii) of [10]. We also remark that Corollary 3 b) gives, for $p_k = 1$ ($k \in \mathbb{N}$), an F-seminorm on the sequence space $c_0[N_{\theta}, B, \Phi]$ from [15].

Corollary 4 generalizes the results from [6], [12], and [13], where the paranorm topologies are defined on $\ell[A, B, \Phi, \mathbf{p}, X]$ provided $\phi_k = \phi$ $(k \in \mathbb{N})$ and $A = D(k^{-s}), s \ge 0$.

Many papers from the mathematical literature are devoted to the investigation of sequence spaces from Corollaries 3 and 4 in the case when the matrix B is determined by various differences of sequences. For fixed $m, n \in \mathbb{N}$ the difference operator Δ_n^m is defined by (see [49])

$$\Delta_n^m \mathbf{x} = (\Delta_n^m x_k), \ \Delta_n^m x_k = \Delta_n^{m-1} x_k - \Delta_n^{m-1} x_{k+n}, \ \Delta_n^0 x_k = x_k \quad (k \in \mathbb{N}).$$

The difference operator $\Delta^m = \Delta_1^m$ was introduced already in [31] (m=1) and [25]. If $v = (v_k)$ is a fixed sequence of nonzero numbers, then $v\Delta_n^m$ denotes the difference operator defined by $v\Delta_n^m \mathbf{x} = (\Delta_n^m v_k x_k)$.

Since

$$v\Delta_n^m x_k = \sum_{i=0}^m (-1)^i \binom{m}{i} v_{k+ni} x_{k+ni} \quad (k \in \mathbb{N}),$$

 $v\Delta_n^m$ is the summability operator defined by the difference matrix $v\Delta_n^m = (v\delta_{kj})$, where $v\delta_{kj} = (-1)^i {m \choose i} v_j$ if j = k + ni, $(0 \le i \le m, k \in \mathbb{N})$ and $v\delta_{kj} = 0$ otherwise. It is not difficult to see that (9) fails if B is a difference operator $v\Delta_n^m$. Therefore, by means of Corollaries 3 and 4 it is not possible to determine F-norms in the case $B = v\Delta_n^m$. To overcome this difficulty we use a new class of summability matrices which contains all difference matrices.

Let $m \ge 0$ be a fixed integer. Following [33], we say that an infinite scalar matrix $B = (b_{ki})$ is *m*-normal if, for any $k \in \mathbb{N}$, $b_{k,k+m} \ne 0$ and $b_{ki} = 0$ if i > k + m. By this definition, 0-normal matrices are just normal matrices. For example, the difference matrix $v\Delta_n^m$ is *nm*-normal and $v\Delta^m$ is *m*-normal. Now, if the matrix B is *m*-normal, then $B\mathbf{x} = 0$ and $\mathbf{x} \in s_B(X)$ imply $\mathbf{x} = 0$ whenever $x_1 = \cdots = x_m = 0$. This approach and the definitions of norms from [31] and [25] lead us to the following proposition which complements Proposition 1 and Corollaries 3 and 4.

Proposition 3. Let Φ , \mathbf{p} , A, and X be the same as in Proposition 1. Assume that B is an m-normal infinite matrix with $m \ge 1$.

a) If the solid sequence space λ is topologized by an absolutely monotone *F*-seminorm g_{λ} , then statements a) and b) of Proposition 1 hold with

$$\hat{g}^{\Phi,\mathbf{p}}_{\boldsymbol{\lambda},\boldsymbol{A},\boldsymbol{B}}(\mathbf{x}) = \sum_{i=1}^{m} \left| x_i \right| + g^{\Phi,\mathbf{p}}_{\boldsymbol{\lambda},\boldsymbol{A},\boldsymbol{B}}(\mathbf{x})$$

instead of $g_{\lambda,A,B}^{\Phi,\mathbf{p}}(\mathbf{x})$. Then $\hat{g}_{\lambda,A,B}^{\Phi,\mathbf{p}}$ is an F-norm on $\lambda[A, B, \Phi, \mathbf{p}, X]$ whenever g_{λ} is F-norm, X is normed, and A is column-positive.

b) Statements of Corollaries 3 and 4 are true with

$$\hat{g}_{\nu,A,B}^{\Phi,\mathbf{p}}(\mathbf{x}) = \sum_{i=1}^{m} \left| x_i \right| + g_{\nu,A,B}^{\Phi,\mathbf{p}}(\mathbf{x}), \quad \nu \in \{\infty, 1\}$$

instead of $g_{\nu,A,B}^{\Phi,\mathbf{p}}(\mathbf{x}), \quad \nu \in \{\infty, 1\}$. If X is normed and A is column-positive, then these functionals determine F-norms, respectively, on $\ell_{\infty}[A, B, \Phi, \mathbf{p}, X]$, $c_0[A, B, \Phi, \mathbf{p}, X]$, and $\ell[A, B, \Phi, \mathbf{p}, X]$.

In 1) and 2), the term $\sum_{i=1}^{m} |x_i|$ may also be replaced with the expression $\max_{i=1,\dots,m} |x_i|$ or, more generally, with the expressions $\sum_{i=1}^{m} \varphi_i(|x_i|)$ or $\max_{i=1,\dots,m} \varphi_i(|x_i|)$, where φ_i $(i = 1,\dots,m)$ are moduli.

For example, the authors of [1], [21], and [22] determine paranorms of type $\hat{g}_{0,A,B}^{\Phi,\mathbf{p}}$ on some GS spaces $c_0[A, B, \Phi, \mathbf{p}, X]$ with $B = v\Delta^m$. At the same time the various spaces of type $c_0[A, v\Delta^m, \Phi, \mathbf{p}, X]$ and $\ell[A, v\Delta^m, \Phi, \mathbf{p}, X]$ from [2], [3], [4], [8], [20], [24], [43], and [48] are topologized, as in Corollaries 3 and 4, by the paranorms $g_{\nu,A,v\Delta^m}^{\Phi,\mathbf{p}}(\mathbf{x})$ ($\nu \in \{\infty, 1\}$). Proposition 3 b) allows us to define alternative paranorms (or F-seminorms) in the form $\hat{g}_{\nu,A,v\Delta^m}^{\Phi,\mathbf{p}}(\nu \in \{1, \infty\})$ on all these spaces. In addition, Corollary 3 and Proposition 3 b) determine F-seminorm (or paranorm) topologies on the spaces of type $\ell_{\infty}[A, v\Delta^m, \Phi, \mathbf{p}, X]$ from the papers [1], [2], [4], [8], [20], [21], [22], [24], and [43].

Tripathy, Mahanta, and Et [50] consider the generalized sequence space $m(\psi, p)[I, \Delta^n, \phi, X]$, where $(m(\psi, p), g_{m(\psi, p)})$ $(1 \leq p < \infty)$ is the solid Banach space defined in [51] by means of a special non-decreasing sequence $\psi = (\psi_k)$. Theorem 2 of [50] asserts that $\hat{g}^{\phi}_{m(\psi,p),I,\Delta^n}$ is a paranorm on $m(\psi, p)[I, \Delta^n, \phi]$ for any modulus ϕ . Besides this, Tripathy and Chandra ([48], Theorem 3.2) assert that the sequence space $\ell_{\infty}[I, D(c_k)\Delta_n^1, \phi, \mathbf{p}]$ may be topologized by the paranorm $g^{\phi, \mathbf{p}}_{\infty, I, D(c_k)\Delta_n^1}$ for every modulus ϕ . But these assertions are not true in general. Indeed, if p = n = 1 and $\psi_k = k$ $(k \in \mathbb{N})$, then (see [51], Corollary 11) $m(\psi, p) = \ell_{\infty}$ with $g_{m(\psi, p)} = \|\cdot\|_{\infty}$. Hence $m(\psi, p)[I, \Delta^n, \phi, \mathbb{K}]$ reduces to the space

$$\ell_{\infty}[I, \Delta^{1}, \phi] = \left\{ \mathbf{u} = (u_{k}) \in s : \Delta^{1} \mathbf{u} \in \ell_{\infty}(\phi) \right\},\$$

and

$$\hat{g}^{\phi}_{m(\psi,p),I,\Delta^n}(\mathbf{u}) = |u_1| + \sup_k \phi(|\Delta^1 u_k|)$$

Analogously, for n = 1 and $p_k = c_k = 1$ $(k \in \mathbb{N})$, $\ell_{\infty}[I, D(c_k)\Delta_n^1, \phi, \mathbf{p}]$ reduces also to $\ell_{\infty}[I, \Delta^1, \phi]$ with

$$g^{\phi,\mathbf{p}}_{{}^{\infty,I,D(c_k)\Delta_n^1}} = \sup_k \phi(|\Delta^1 u_k|).$$

Therefore, if the modulus ϕ is bounded, then $\ell_{\infty}[I, \Delta^1, \phi] = s$ and we can prove, as in Remark 2, that $\hat{g}^{\phi}_{m(\psi,p),I,\Delta^n}$ and $g^{\phi,\mathbf{p}}_{\infty,I,\Delta^1_n}$ are not paranorms. Proposition 3 a) and Corollary 3 a) show that Theorem 2 of [50], and Theorem 3.2 (about $\ell_{\infty}[I, D(c_k)\Delta^1_n, \phi, \mathbf{p}]$) from [48], are true whenever the modulus ϕ satisfies one of conditions (M5°) and (M6°).

Let us apply Proposition 2 and Corollary 2 to define F-seminorms and F-norms on the GS spaces

$$U\!\ell_{\infty}[A,\mathcal{B},\Phi,\mathbf{p},X] = \left\{ \mathbf{x} \in s(X) : \sup_{n,i} \sum_{k} a_{nk} \left(\phi_k \left(\left| \sum_{j} b^i_{kj} x_j \right| \right) \right)^{p_k} < \infty \right\}$$

and

$$Uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] = \{ \mathbf{x} \in s(X) : A(\Phi^{\mathbf{p}}(\mathcal{B}\mathbf{x})) \in Uc_0 \}$$

= $\mathcal{M}c_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] \cap uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X],$

where

$$\mathcal{M}c_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] = \left\{ \mathbf{x} \in s(X) : A(\Phi^{\mathbf{p}}(\mathcal{B}\mathbf{x})) \in \mathcal{M}(X) \right\},\$$
$$uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] = \left\{ \mathbf{x} \in s(X) : \lim_n \sum_k a_{nk} \left(\phi_k \left(\left| \sum_j b_{kj}^i x_j \right| \right) \right)^{p_k} = 0$$
uniformly in $i \}.$

Taking into account the inclusion

$$Uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] \subset U\ell_{\infty}[A, \mathcal{B}, \Phi, \mathbf{p}, X],$$
(15)

from Proposition 2 we get the following result.

Corollary 5. Let Φ , \mathbf{p} , A, \mathcal{B} , X, and \mathbf{X} be the same as in Proposition 2. a) If $\Phi^{\mathbf{p}/r}$ satisfies one of conditions (M5) and (M6), then on the GS space $U\ell_{\infty}[A, \mathcal{B}, \Phi, \mathbf{p}, X]$ we may define the F-seminorm

$$g_{\infty,A,\mathcal{B}}^{\Phi,\mathbf{p}}(\mathbf{x}) = \sup_{n,i} \sum_{k} a_{nk} \left(\phi_k \left(\big| \sum_j b_{kj}^i x_j \big| \right) \right)^{p_k}.$$

b) If the moduli ϕ_k $(k \in \mathbb{N})$ are unbounded, and the row-finite and column-positive matrix A satisfies (14), then $g_{\infty,A,B}^{\Phi,\mathbf{p}}$ is an F-seminorm on the space $Uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X]$.

If, in a) and b), X is normed and \mathcal{B} satisfies (4), then $g_{\infty,A,\mathcal{B}}^{\Phi,\mathbf{p}}$ is an *F*-norm. Moreover, $g_{\infty,A,\mathcal{B}}^{\Phi,\mathbf{p}}$ is an absolutely monotone *F*-seminorm (or *F*-norm) on $Uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, \mathbf{X}]$ if \mathcal{B} is a sequence of diagonal matrices.

Corollary 5 permits to determine F-seminorms (or paranorms), for example, on the spaces $U\ell_{\infty}[V_{\lambda}, \mathcal{F}_{C_1}, \Phi, X]$ and $Uc_0[V_{\lambda}, \mathcal{F}_{C_1}, \Phi, X]$ from [28], and also on similar spaces from [30].

For an infinite matrix $B = (b_{nk})$ let \widehat{B} be the sequence of matrices $\widehat{B}^i = (b_{n+i,k})_{n,k\in\mathbb{N}}$ $(i\in\mathbb{N})$. In this case we have $\widehat{B}\mathbf{x} = (B_{n+i}\mathbf{x})_{n,i\in\mathbb{N}}$, which, for B = I, gives $\widehat{I}\mathbf{x} = (x_{n+i})_{n,i\in\mathbb{N}}$. We can prove a stronger variant of Corollary 5 b) under the assumption that $p_k = 1$, $\phi_k = \phi$ $(k \in \mathbb{N})$, $A = C_1$ and $\mathcal{B} = \widehat{B}$. Then the GS space $uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X]$ reduces to (for the case B = I and $X = \mathbb{K}$ see [40])

$$uc_0[C_1, \widehat{B}, \phi, X] = \left\{ \mathbf{x} \in s(X) : \lim_n n^{-1} \sum_{k=1}^n \phi\left(\left| B_{k+i-1} \mathbf{x} \right| \right) = 0 \right.$$

uniformly in $i \}$.

Proposition 4. Let $B = (b_{nk})$ be an *m*-normal infinite matrix such that $K = \inf_n |b_{nn}| > 0$ and there exists an index $j_0 > m$ with $b_{nk} = 0$ ($k \le n + m - j_0, n > j_0 - m$). The functional

$$g_{\infty,C_1,\widehat{B}}^{\phi}(\mathbf{x}) = \sup_{n,i} n^{-1} \sum_{k=1}^{n} \phi\left(\left|B_{k+i-1}\mathbf{x}\right|\right) = \sup_{k} \phi\left(\left|B_k\mathbf{x}\right|\right)$$

defines an F-seminorm (F-norm if X is normed and m = 0) on the GS space $uc_0[C_1, \widehat{B}, \phi, X]$ if and only if the modulus ϕ is unbounded.

Proof. Since $\mathbf{x} \in uc_0[C_1, \widehat{B}, \phi, X]$ means that the sequence $\phi(B_k \mathbf{x}) = \left(\phi\left(|B_k \mathbf{x}|\right)\right)$ is almost convergent to zero, but every almost convergent sequence is bounded (see [17], Theorem 1.2.18), we clearly have

$$uc_0[C_1, \hat{B}, \phi, X] = Uc_0[C_1, \hat{B}, \phi, X].$$
 (16)

Moreover, by

$$\phi\left(\left|B_{i}\mathbf{x}\right|\right) \leq \sup_{n} n^{-1} \sum_{k=1}^{n} \phi\left(\left|B_{k+i-1}\mathbf{x}\right|\right) \leq \sup_{k} \phi\left(\left|B_{k}\mathbf{x}\right|\right) \quad (i \in \mathbb{N}),$$

we get

$$g^{\phi}_{\infty,C_1,\widehat{B}}(\mathbf{x}) = \sup_k \phi\left(\left|B_k\mathbf{x}\right|\right).$$
(17)

Sufficiency. If the modulus ϕ is unbounded, then $g^{\phi}_{\infty,C_1,\widehat{B}}$ is an F-seminorm on $uc_0[C_1,\widehat{B},\phi,X]$ by Proposition 3 b) because the matrix C_1 is normal and regular. In particular, since 0-normal matrix is normal and every normal matrix B satisfies (9), the functional $g^{\phi}_{\infty,C_1,\widehat{B}}$ defines an F-norm on $uc_0[C_1,\widehat{B},\phi,X]$ if X is normed and m=0.

Necessity. Assume that $g^{\phi}_{\infty,C_1,\widehat{B}}$ is an F-seminorm on $uc_0[C_1,\widehat{B},\phi,X]$ and define (see [35])

$$\hat{w}_0 = \{ \mathbf{u} = (u_k) \in s : \lim_n n^{-1} \sum_{k=1}^n |u_{k+i-1}| = 0 \text{ uniformly in } i \}.$$

If $\mathbf{v} = (v_k)$ is the sequence of numbers

$$v_k = \begin{cases} 1, & \text{if } k = 2^j \quad (j \in \mathbb{N}) \\ 0 & \text{otherwise,} \end{cases}$$

then for $2^j \le n < 2^{j+1}$ we have

$$\sup_{i} n^{-1} \sum_{k=1}^{n} |v_{k+i-1}| \le n^{-1} \sum_{k=1}^{n} |v_{k+1}| < \frac{j+1}{2^j} \to 0 \text{ as } j \to \infty,$$

and so, $\mathbf{v} \in \hat{w}_0$. By means of \mathbf{v} , using a fixed element $y_0 \in X$ with $|y_0| = 1$, we consider the X-valued sequence $\mathbf{y} = (y_k)$, $y_k = kv_ky_0$ $(k \in \mathbb{N})$. Now, assuming that the modulus ϕ is bounded and $M = \sup_{t>0} \phi(t)$, by the inequalities

$$\phi\left(\left|y_k\right|\right) \le \phi(k) \le M v_k \quad (k \in \mathbb{N})$$

we get $\phi(\mathbf{y}) \in \hat{w}_0$ because \hat{w}_0 is solid sequence space. Further, the equality $B\mathbf{z} = \mathbf{y}$ clearly determines a new X-valued sequence $\mathbf{z} = (z_k)$ with $z_1 = \cdots = z_m = 0$. This sequence \mathbf{z} is unbounded, since we can find an index i_0 such that, for $i > i_0$,

$$B_{2^i}\mathbf{z} = b_{2^i,2^i} z_{2^i} = y_{2^i} = 2^i y_0,$$

and so, $|z_{2^i}| = 2^i |b_{2^i,2^i}|^{-1} \ge 2^i/K$ if $i > i_0$. Moreover, $\mathbf{z} \in uc_0[C_1, \widehat{B}, \phi, X]$ by the representation

$$uc_0[C_1, B, \phi, X] = \hat{w}_0(B, \phi, X).$$

Thus, as in Remark 2, using equality (17) we can show, that $g^{\phi}_{\infty,C_1,\widehat{B}}$ does not satisfy axiom (N4), i.e., it is not an F-seminorm.

Assumptions of Proposition 4 are clearly satisfied for B = I and $B = \Delta^m$.

Corollary 6. The functional

$$g_{\infty,C_1,\hat{I}}^{\phi}(\mathbf{x}) = \sup_{n,i} n^{-1} \sum_{k=1}^{n} \phi\left(\left|x_{k+i-1}\right|\right) = \sup_{k} \phi\left(\left|x_k\right|\right)$$

defines an F-seminorm (F-norm if X is normed) on the GS space

$$uc_0[C_1, \widehat{I}, \phi, X] = \{ \mathbf{x} \in s(X) : \lim_n n^{-1} \sum_{k=1}^n \phi(|x_{k+i-1}|) = 0 \text{ uniformly in } i \}$$

if and only if the modulus ϕ is unbounded.

Et ([23], Theorem 2.3) asserts that the sequence space

$$[\hat{c},\phi,\mathbf{p}](\Delta^m) = \left\{ \mathbf{u} \in s : \lim_{n} 1/n \sum_{k=1}^{n} \left(\phi\left(|\Delta^m u_{k+i}|\right)\right)^{p_k} = 0 \text{ uniformly in } i \right\}$$

may be topologized by the paranorm

$$g_{\Delta}(\mathbf{u}) = \sup_{n,i} \left(\sum_{k=1}^{n} \left(\phi \left(|\Delta^{m} u_{k+i}| \right) \right)^{p_{k}} \right)^{1/r}$$

for any modulus ϕ . Proposition 4 (with $B = \Delta^m$) shows that this is not true if ϕ is bounded, since the space $[\hat{c}, \phi, \mathbf{p}](\Delta^m)$ reduces, for $p_k = 1$ ($k \in \mathbb{N}$), to $uc_0[C_1, \widehat{\Delta^m}, \phi, \mathbb{K}]$ with $g_\Delta = g^{\phi}_{\infty, C_1, \widehat{\Delta^m}}$. Corollary 6 allows us to say that similar inaccuracies may be found in theorems about the topologization of various spaces of type $uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X]$ from [7], [19], [36], [38], and [45], because all these spaces contain $uc_0[C_1, \widehat{I}, \phi, X]$ as a special case.

Remark 3. For the topologization of GS spaces $uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X]$ by F-seminorms (or paranorms) $g_{\infty,A,\mathcal{B}}^{\Phi,\mathbf{p}}$ it is necessary that

$$uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] \subset U\ell_{\infty}[A, \mathcal{B}, \Phi, \mathbf{p}, X]$$
(18)

or, equivalently,

$$uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X] = Uc_0[A, \mathcal{B}, \Phi, \mathbf{p}, X].$$

The following example shows that (18) is not true in general. Let $A_1 = (a_{nk})$ be the Cesàro matrix $C_1 = (c_{nk})$ which is modified by setting $c_{1k} = 0$ $(k \ge 2)$, and let $\Phi = (\phi_1, \phi, \phi, \dots)$ be the sequence of moduli, where $\phi_1(t) = t$ and ϕ is a bounded modulus. Then the unbounded sequence \mathbf{y} , defined in the proof of Proposition 4, belongs to $uc_0[A_1, \widehat{I}, \Phi, X]$ because, for $n \ge 2$, we have

$$\sum_{k} a_{nk} \phi_k \left(\left| y_{k+i-1} \right| \right) = n^{-1} \sum_{k=2}^n \phi \left(\left| y_{k+i-1} \right| \right).$$

But since (for n = 1)

$$\sup_{i} \sum_{k} a_{1k} \phi_k \left(\left| y_{k+i-1} \right| \right) = \sup_{i} \left| y_i \right| = \infty,$$

y is not in $U\ell_{\infty}[A_1, \widehat{I}, \Phi, X]$. This example allows us to state that the proofs of inclusions (18) from [19], [38], and [45] are not convincing, and the correctness of the definition of functional $g_{\infty,A,B}^{\Phi,\mathbf{p}}$ in [7] remains actually open.

Acknowledgement

Research was partially supported by Estonian Targeted Financing Project SF0180039s08.

References

- Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), 427–434.
- [2] Y. Altin and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31 (2005), 233–243.
- [3] Y. Altin, M. Işik, and R. Çolak, A new sequence space defined by a modulus, Staudia Univ. Babeş-Bolyai Math. 53(2) (2008), 3–13.
- [4] G. Atici and Ç. A. Bektaş, On some new generalized difference sequence spaces defined by a sequence of moduli, Math. Slovaca 61 (2011), 789–798.
- [5] H. T. Bell, Order summability and almost convergence, Proc. Amer. Math. Soc. 38 (1973), 548–552.
- [6] V. K. Bhardwaj, A generalization of a sequence space of Ruckle, Bull. Calcutta Math. Soc. 95 (2003), 411–420.
- [7] V. K. Bhardwaj and I. Bala, Strong invariant A-summability with respect to a sequence of modulus functions in a seminormed space, Demonstratio Math. 41 (2008), 869–877.
- [8] V. K. Bhardwaj and I. Bala, On some lacunary generalized difference sequence spaces defined by a modulus function in a locally convex space, Southeast Asian Bull. Math. 33 (2009), 665–683.
- [9] V. K. Bhardwaj and I. Bala, The sequence space $F(X_k, f, p, s)$ on seminormed spaces, Tamkang J. Math. **40** (2009), 247–256.
- [10] V. K. Bhardwaj and N. Singh, On some sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 30 (1999), 809–817.
- [11] V.K. Bhardwaj and N. Singh, Banach space valued sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 32 (2001), 1869–1882.
- [12] V. K. Bhardwaj and N. Singh, Some sequence spaces defined by $|\overline{N}, p_n|$ summability and a modulus function, Indian J. Pure Appl. Math. **32** (2001), 1789–1801.
- [13] T. Bilgin, The sequence space $\ell(p, f, q, s)$ on seminormed spaces, Bull. Calcutta Math. Soc. 86 (1994), 295–304.
- [14] T. Bilgin, On strong A-summability defined by a modulus, Chinese J. Math. 24 (1996), 159–166.
- [15] T. Bilgin, Lacunary strong A-convergence with respect to a sequence of modulus functions, Appl. Math. Comput. 151 (2004), 595–600.
- [16] T. Bilgin and Y. Altun, Strongly (V^λ, A, p)-summable sequence spaces defined by a modulus, Math. Model. and Anal. 12 (2007), 419–424.

- [17] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, Oxford, 2000.
- [18] Encyclopaedia of Mathematics, Vol. 1 (M. Hazewinkel, ed.), Kluwer Academic Publishers, Dordrecht, 1995.
- [19] A. Esi, Some new sequence spaces defined by a sequence of moduli, Turkish J. Math. 21 (1997), 61–68.
- [20] A. Esi, Some new type generalized difference sequence spaces defined by a modulus, An. Univ. Timişoara Ser. Mat.-Inform. 42(2) (2004), 27–34.
- [21] A. Esi and M. Işik, Some generalized difference sequence spaces, Thai J. Math. 3 (2005), 241–247.
- [22] A. Esi and B. C. Tripathy, Strongly almost convergent difference sequences associated with multiplier sequences, Math. Slovaca 57 (2007), 339–348.
- [23] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40 (2003),463–476.
- [24] M. Et, Y. Altin, and H. Altinok, On some generalized difference sequence spaces defined by a modulus function, Filomat 17 (2003), 23–33.
- [25] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377–386.
- [26] A. R. Freedman, J. J. Sember, and M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. 37 (1978), 508–520.
- [27] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. Pure Appl. Math. 30 (1999), 819–826.
- [28] M. Işik, Strongly almost (w, λ, q) -summable sequences, Math. Slovaca **61** (2011), 779–788.
- [29] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York and Basel, 1981.
- [30] V. Karakaya and N. Şimşek, On lacunary invariant sequence spaces defined by a sequence of modulus functions, Appl. Math. Comput. 156 (2004), 597–603.
- [31] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169–176.
- [32] E. Kolk, F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1547–1566.
- [33] E. Kolk, Topologies in generalized Orlicz sequence spaces, Filomat 25 (2011), 191–211.
- [34] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- [35] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166.
- [36] E. Malkowsky and E. Savas, Some λ-sequence spaces defined by a modulus, Arch. Math. (Brno) 36 (2000), 219–228.
- [37] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953), 29–49.
- [38] F. Nuray and E. Savas, Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math. 24 (1993), 657–663.
- [39] E. Öztürk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 25 (1994), 621–625.
- [40] S. Pehlivan, Strongly almost convergent sequences defined by a modulus and uniformly statistical convergence, Soochow J. Math. 20 (1994), 205–211.
- [41] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolinae 36 (1995), 69–76.
- [42] A. Raidjõe, Sequence Spaces Defined by Modulus Functions and Superposition Operators, Diss. Math. Univ. Tartu. 47, Tartu, 2006.

- [43] K. Raj and S. K. Sharma, Difference sequence spaces defined by a sequence of modulus functions, Proyectiones 30 (2011), 189–199.
- [44] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
- [45] E. Savas, On some generalized sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 30 (1999), 459–464.
- [46] V. Soomer, On the sequence space defined by a sequence of moduli and on the rate spaces, Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74.
- [47] M. Stieglitz, Eine Verallgemeinerung des Begriffs der Fastkonvergenz, Math. Japon. 18 (1973), 53–70.
- [48] B. C. Tripathy and P. Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequence defined by modulus function, Anal. Theory Appl. 27 (2011), 21–27.
- [49] B.C. Tripathy, A. Esi, and B.K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math. 31 (2005), 333–340.
- [50] B. C. Tripathy, S. Mahanta, and M. Et, On a class of generalized difference sequence space defined by modulus function, Hokkaido Math. J. 34 (2005), 667–677.
- [51] B. C. Tripathy and M. Sen, On a new class of sequences related to the space l^p, Tamkang J. Math. 33 (2002), 167–171.

Institute of Mathematics, University of Tartu, 50090 Tartu, Estonia E-mail address: enno.kolk@ut.ee