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On generalized sequence spaces defined by
modulus functions

Enno Kolk

Abstract. Let
(
X, |̇ · |̇

)
be a seminormed space, Φ = (φk) a sequence

of moduli, and B a sequence of infinite scalar matrices Bi = (bikj). Let
(λ, gλ) and (Λ, gΛ) be solid F-seminormed (paranormed) spaces of single
and double number sequences, respectively. V. Soomer and E. Kolk
proved in 1996-1997 that the set of all scalar sequences u = (uk) with
Φ(u) = (φk(|uk|)) ∈ λ is a linear space which may be topologized by the
F-seminorm (paranorm) gλ,Φ(u) = gλ(Φ(u)) under certain restrictions
on Φ or (λ, gλ). We generalize this result to the space of all X-valued

sequences x = (xk) with
(
φk
(
|̇Bikx|̇

))
∈ Λ, where Bikx =

∑
j b
i
kjxj .

Applications are given in the case when Λ is the strong summability
domain of a non-negative matrix method. Our corollaries and critical
remarks outline results from more than thirty previous papers by many
different authors.

1. Introduction

Let N = {1, 2, . . . } and let K be the field of real numbers R or complex
numbers C. In the following we specify the domains of indices for the symbols
lim, sup, inf and

∑
only if they are different from N. By ι we denote the

identity mapping ι(z) = z. In all definitions which contain infinite series we
tacitly assume the convergence of these series.

An F-space is usually understood as a complete metrizable topological
vector space over K. The topology of an F-space E can be given by an
F-norm, i.e., by the functional g : E → R with axioms (see [29], p. 13)

(N1) g(0) = 0,
(N2) g(x+ y) ≤ g(x) + g(y) (x, y ∈ E),
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(N3) |α| ≤ 1 (α ∈ K), x ∈ E =⇒ g(αx) ≤ g(x),
(N4) limn αn = 0 (αn ∈ K), x ∈ E =⇒ limn g(αnx) = 0,
(N5) g(x) = 0 =⇒ x = 0.

A functional g with axioms (N1)–(N4) is called an F-seminorm. A paranorm
on E is defined as a functional g : E → R satisfying axioms (N1), (N2) and

(N6) g(−x) = g(x) (x ∈ E),
(N7) limn αn = α (αn, α ∈ K), limn g(xn − x) = 0 (xn, x ∈ E) =⇒

limn g(αnxn − αx) = 0.

A seminorm on E is a functional g : E → R with axioms (N1), (N2) and

(N8) g(αx) = |α|g(x) (α ∈ K, x ∈ E).

An F-seminorm (paranorm, seminorm) g is called total if (N5) holds. So, an
F-norm (norm) is a total F-seminorm (seminorm).

It is known (see [33], Remark 1) that F-seminorms are precisely the para-
norms satisfying axiom (N3).

To avoid confusion with the module |·|, following [33], we will often denote

the seminorm of an element x ∈ E by |̇x|̇.
Let (X, |̇ · |̇) be a seminormed linear space over K and let X be a sequence

of seminormed linear spaces
(
Xk, |̇ · |̇k

)
(k ∈ N). Then the set s2(X) of

all double sequences x2 = (xki), xki ∈ Xk (k, i ∈ N), and the set s(X) of
all sequences x = (xk), xk ∈ Xk (k ∈ N), equipped with coordinatewise
addition and scalar multiplication, are linear spaces (over K). Any linear
subspace of s2(X) is called a generalized double sequence space (GDS space)
and any linear subspace of s(X) is called a generalized sequence space (GS

space). If
(
Xk, |̇ · |̇k

)
=
(
X, |̇ · |̇

)
(k ∈ N), then we write X instead of X. In

the case X = K we omit the symbol X in our notation. So, for example, s2

and s denote the linear spaces of all K-valued double sequences u2 = (uki)
and single sequences u = (uk), respectively. As usual, linear subspaces of s2

are called double sequence spaces (DS spaces) and linear subspaces of s are
called sequence spaces. Well-known sequence spaces include the sets `∞, c, c0

and `p (p > 0) of all bounded, convergent, convergent to zero and absolutely
p-summable number sequences, respectively. Examples of DS spaces are

M = {u2 ∈ s2 : ũk = sup
i
|uki| <∞ (k ∈ N)},

Uλ = {u2 ∈M : ũ = (ũk) ∈ λ} (λ ∈ {`∞, c0, `
p}).

Let R+ = [0,∞). The idea of a modulus function was shaped by Nakano
[37]. Following Ruckle [44] and Maddox [35] we say that a function φ : R+ →
R+ is a modulus function (or, simply, a modulus), if

(M1) φ(t) = 0 ⇐⇒ t = 0,
(M2) φ(t+ u) ≤ φ(t) + φ(u) (t, u ∈ R+),
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(M3) φ is non-decreasing,
(M4) φ is continuous from the right at 0.

For example, the function ιp(t) = tp is an unbounded modulus for p ≤ 1
and the function φ(t) = t/(1 + t) is a bounded modulus.

Since |φ(t)−φ(u)| ≤ φ(|t−u|) (t, u ∈ R+) by (M1) – (M3), the moduli are
continuous everywhere on R+. We also remark that the modulus functions
are essentially the same concept as the moduli of continuity (see [18], p. 866).

A GS space λ(X) ⊂ s(X) is called solid if (yk) ∈ λ(X) whenever (xk) ∈
λ(X) and |̇yk |̇k ≤ |̇xk |̇k (k ∈ N). Analogously, a GDS space Λ(X) ⊂ s2(X) is

called solid if (yki) ∈ Λ(X) whenever (xki) ∈ Λ(X) and |̇yki |̇k ≤ |̇xki |̇k (k, i ∈
N). For example, it is easy to see that the sets

M (X) =

{
x2 ∈ s2(X) : sup

i
|̇xki |̇k <∞ (k ∈ N)

}
,

Λ (Φ,X) =
{
x2 ∈ s2(X) : Φ(x2) =

(
φk

(
|̇xki |̇k

))
∈ Λ

}
and Λ (Φ,M(X)) = Λ (Φ,X) ∩M (X)) are solid GDS spaces if Λ ⊂ s2 is a
solid DS space and Φ = (φk) is a sequence of moduli.

Let B = (bkj) be an infinite scalar matrix and let B be a sequence of
matrices Bi = (bikj). For an X-valued sequence x = (xj) put Bx = (Bkx)

and Bx = (Bikx), where Bkx =
∑

j bkjxj and Bikx =
∑

j b
i
kjxj . Our aim is

to determine F-seminorm topologies for the spaces of X-valued sequences x
with Φ(Bx) in Λ, or Φ(Bx) in λ, if Λ and λ are topologized by absolutely
monotone F-seminorms. Main theorems are applicable in the case if λ and Λ
are strong summability domains of a non-negative matrix A = (ank). Some
special cases of such spaces are considered, for example, in [1] – [4], [6] – [16],
[19] – [25], [27], [28], [30], [31], [36], [38] – [41], [43], [45] and [48] – [51]).

2. Main results

The most common summability method is the matrix method defined by
an infinite scalar matrix A = (ank). If for a sequence x ∈ s(X) the series
Anx =

∑
k ankxk (n ∈ N) converge and the limit limnAnx = l exists in X,

then we say that x is summable to l by the method A (briefly, A-summable to
l) and write A-limxk = l. A summability method (or a matrix) A is called
regular in X if for all sequences x = (xk) convergent in X we have

lim
k
xk = l =⇒ lim

n
Anx = l.

A well-known example of a regular matrix method is the Cesàro method C1

defined by the matrix C1 = (cnk), where, for any n ∈ N, cnk = n−1 if k ≤ n
and cnk = 0 otherwise. A (trivial) regular method is defined by the unit
matrix I = (ink), where inn = 1 and ink = 0 for n 6= k. Recall also that a
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matrix A = (ank) is called normal if, for any n ∈ N, ann 6= 0 and ank = 0 if
k > n. For example, the Cesàro matrix C1 is normal. Every scalar sequence
(ck) defines a diagonal matrix D(ck) = (dni) by the equalities dnn = cn and
dni = 0 if n 6= i. Clearly, a diagonal matrix D(ck) is regular if and only if
limk ck = 1, and it is normal if ck 6= 0 for all k ∈ N.

Another class of summability methods is determined by sequences B =
(Bi) of infinite scalar matrices Bi = (bink). Recall (see, for example, [5] and
[47]) that a sequence x = (xk) ∈ s(X) is called B-summable to the point l ∈
X if Bi-limxk = l uniformly in i, i.e., if the series Bi

nx =
∑

k b
i
nkxk (n, i ∈ N)

converge in X and

lim
n
|̇Bi

nx− l|̇ = 0 uniformly in i.

The summability methods B are also known as the sequential matrix methods
(SM methods) of summability (see [17], p. 19). In the special case

bink =

{
1
n , if i ≤ k ≤ n+ i− 1,

0 otherwise

the B-summability reduces to the so-called almost convergence (see [34]).
The almost convergence is a non-matrix method of summability. Any matrix
method B can be considered as an SM method B with Bi = B (i ∈ N). By
the unit SM method I we mean the SM method B with Bi = I (i ∈ N).

Let ek = (ekj )j∈N (k ∈ N) be the sequences with the elements ekj = 1 if

j = k and ekj = 0 otherwise. If we define, for an arbitrary sequence z = (zk),

the double sequence z(2) = (z
(2)
ki ) with z

(2)
ki = zk (k, i ∈ N), then every

sequence ek (k ∈ N) also determines a double sequence ek(2) = (ekji)j,i∈N such

that, for all i ∈ N, ekji = 1 if j = k and ekji = 0 if j 6= k. An F-seminormed

sequence space (λ, g
λ
) is called an AK-space, if λ contains the sequences

ek (k ∈ N) and for any u = (uk) ∈ λ we have limn gλ
(
u− u[n]

)
= 0, where

u[n] =
∑n

k=1 uke
k. Analogously, an F-seminormed DS space (Λ, gΛ) is called

an AK-space (see [42]), if Λ contains the sequences ek(2) (k ∈ N) and for any

u2 = (uki) ∈ Λ we have limn gΛ

(
u2 − u2[n]

)
= 0, where u2[n] =

∑n
k=1 uke

k(2)

with uk = (uki)i∈N and uke
k(2) = (ukie

k
ji)j,i∈N. Well-known AK-spaces are

c0 and `p (p ≥ 1) with respect to ordinary norms ‖u‖∞ = supk |uk| and

‖u‖p = (
∑

k |uk|p)
1/p. It is not difficult to see that Uc0 and U`p (p ≥ 1),

topologized by norms ‖u‖∞̃ = ‖ũ‖∞ and ‖u‖p̃ = ‖ũ‖p, are examples of
normed DS-AK-spaces.

Let Φ = (φk) be a sequence of moduli. If λ is a solid sequence space, then

λ(Φ) = {u = (uk) ∈ s : Φ(u) = (φk (|uk|)) ∈ λ}
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is also a solid sequence space. Soomer [46] and Kolk [32] proved that if λ is
topologized by an absolutely monotone F-seminorm g

λ
, i.e., g

λ
(v) ≤ g

λ
(u)

for all u,v ∈ λ with |vk| ≤ |uk| (k ∈ N), then λ(Φ) may be topologized by
the absolutely monotone F-seminorm g

λ,Φ
(u) = g

λ
(Φ(u)) whenever (λ, g

λ
) is

an AK-space or the sequence Φ satisfies one of two (equivalent) conditions:

(M5) there exist a function ν and a number δ > 0 such that φk(ut) ≤
ν(u)φk(t) (k ∈ N, 0 < u < δ, t > 0) and limu→0+ ν(u) = 0,

(M6) lim
u→0+

sup
t>0

sup
k

φk(ut)

φk(t)
= 0.

In the following we prove the similar statements about the sets

λ (Φ, B,X) =
{
x ∈ s(X) : Φ(Bx) =

(
φk

(
|̇Bkx|̇

))
∈ Λ

}
,

Λ(Φ,B, X) =
{
x ∈ s(X) : Φ(Bx) =

(
φk

(
|̇Bikx|̇

))
∈ Λ

}
,

Λ(Φ,B,M(X)) = {x ∈ s(X) : Bx ∈M(X)} ∩ Λ(Φ,B, X),

where the sequence spaces λ, Λ are solid, B is a matrix method, and B is
an SM-method of summability.

Theorem 1. If λ and Λ are solid sequence space, then the sets λ (Φ, B,X),
Λ(Φ,B, X) and Λ(Φ,B,M(X)) are GS spaces, i.e., linear subsets of s(X).
Moreover, Λ(Φ,B, X) and Λ(Φ,B,M(X)) are solid if

|̇yk |̇ ≤ |̇xk |̇ =⇒ |̇Biky|̇ ≤ |̇Bikx|̇ (k, i ∈ N), (1)

and λ (Φ, B,X) is solid if

|̇yk |̇ ≤ |̇xk |̇ =⇒ |̇Bky|̇ ≤ |̇Bkx|̇ (k ∈ N). (2)

Proof. To prove the linearity of the set Λ(Φ,B, X), fix α, β ∈ K and
x,y ∈ Λ(Φ,B, X). Using the linearity of the operators Bik, by axioms (M2)
and (M3) we have

φk

(
|̇Bik (αx + βy) |̇

)
≤ φk

(
|α||̇Bikx|̇

)
+ φk

(
|β||̇Biky|̇

)
≤ ([|α|] + 1)φk

(
|̇Bikx|̇

)
+ ([|β|] + 1)φk

(
|̇Biky|̇

)
for all k, i ∈ N, where [c] denotes the integer part of a number c ∈ R. But
this gives αx+ βy ∈ Λ(Φ,B, X) because Λ is linear and solid. The linearity
of the subset Λ(Φ,B,M(X)) of Λ(Φ,B, X) clearly follows from

sup
i
|̇Bik (αx + βy) |̇ ≤ |α| sup

i
|̇Bikx|̇+ |β| sup

i
|̇Biky|̇.

Now let x ∈ Λ(Φ,B, X) and y ∈ s(X) be such that |̇yk |̇ ≤ |̇xk |̇ (k ∈ N).
Since the moduli φk are increasing, by (1) we get

φk

(
|̇Biky|̇

)
≤ φk

(
|̇Bikx|̇

)
(k, i ∈ N), (3)

18
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and in view of solidity of Λ, the sequence Φ (By) is in Λ. Thus y ∈
Λ(Φ,B, X). Hence, Λ(Φ,B, X) is solid if (1) holds. The solidity of x,y ∈
Λ(Φ,B,M(X)) is obvious.

The statements about the set λ (Φ, B,X) follow similarly, with Bk instead
of Bik. �

An F-seminorm gΛ on a DS space Λ is said to be absolutely monotone if
gΛ

(
v2
)
≤ gΛ

(
u2
)

for all u2,v2 ∈ Λ with |vki| ≤ |uki| (k, i ∈ N).

Theorem 2. Let Λ be a solid DS space which is topologized by an abso-
lutely monotone F-seminorm gΛ.

a) If a sequence of moduli Φ = (φk) satisfies one of two (equivalent)
conditions (M5) and (M6), then the GS space Λ(Φ,B, X) may be topologized
by the F-seminorm

gΛ,B (x) = gΛ (Φ (Bx)) .

Moreover, if gΛ is an F-norm on Λ, the space X is normed, and B satisfies
the condition

Bx = 0 =⇒ x = 0, (4)

then gΛ,B is an F-norm on Λ (Φ,B, X). The F-seminorm (or F-norm) gΛ,B

is absolutely monotone if (1) holds.
b) If (Λ, gΛ) is an AK-space, then the GS space Λ(Φ,B,M(X)) may be

topologized by the F-seminorm gΛ,B for an arbitrary sequence of moduli Φ.
Moreover, if gΛ is an F-norm in Λ, the space X is normed, and B satisfies
(4), then gΛ,B is an F-norm on Λ(Φ,B,M(X)). The F-seminorm (or F-
norm) gΛ,B is absolutely monotone on GS space Λ(Φ,B,M(X)) whenever B
satisfies (1).

Proof. a) First, we prove that gΛ,B is an F-seminorm. Since gΛ is an F-
seminorm, (N1) holds by (M1). Because the operator B is linear, axiom (N2)
follows immediately from the subadditivity of φk and gΛ . If |α| ≤ 1, then by
(M3) we get

φk

(
|̇Bik (αx) |̇

)
= φk

(
|α||̇Bikx|̇

)
≤ φk

(
|̇Bikx|̇

)
(k, i ∈ N).

Since gΛ is absolutely monotone,

gΛ,B (αx) = gΛ

((
φk

(
|̇Bik (αx) |̇

)))
≤ gΛ

((
φk

(
|̇Bikx|̇

)))
= gΛ,B (x) ,

i.e., (N3) is true.
To prove (N4), let x ∈ Λ (Φ,B, X). Using the equivalence of (M5) and

(M6) (see [32], Remark 1), we may assume that Φ satisfies (M5). Therefore,
if limn αn = 0 (αn ∈ K), we can fix an index n0 such that |αn| < δ for all
n ≥ n0. Then by (M5) we obtain

φk

(
|̇Bik (αnx) |̇

)
≤ ν (|αn|)φk

(
|̇Bikx|̇

)



SEQUENCE SPACES DEFINED BY MODULUS FUNCTIONS 185

for all k, i ∈ N. So, since gΛ is absolutely monotone, we get

gΛ (Φ (B (αnx))) ≤ gΛ (ν (|αn|) Φ (Bx)) (n ≥ n0).

But this yields limn gΛ,B (αnx) = 0 because limn ν (|αn|) = 0. Thus (N4)
holds and gΛ,B is an F-seminorm on Λ(Φ,B, X).

Let gΛ be an F-norm and let (X, ‖ ·‖X ) be a normed space. If gΛ,B(x) = 0,
then, using also (M1), we have

‖Bikx‖X = 0 (k, i ∈ N),

which gives x = 0 by (4). So, gΛ,B is an F-norm on Λ (Φ,B, X) in this case.
Now, suppose that (1) is satisfied. Then (3) holds, and since gΛ is abso-

lutely monotone,

gΛ,B(y) = gΛ

((
φk

(
|̇Biky|̇

)))
≤ gΛ

((
φk

(
|̇Bikx|̇

)))
= gΛ,B (x) .

Consequently, F-seminorm (or F-norm) gΛ,B is absolutely monotone if (1)
holds.

b) By the proof of a) it suffices to show that the functional

gΛ,B : Λ(Φ,B,M(X))→ K

satisfies axiom (N4). Let limn αn = 0 and let x be an arbitrary element from
Λ(Φ,B,M(X)). Then Φ(Bx) ∈ Λ, and since Λ is an AK-space,

lim
n
gΛ

(
Φ(Bx)− Φ(Bx)[n]

)
= 0. (5)

Using the equality

Φ(Bx)− Φ(Bx)[n] = Φ
(
Bx− (Bx)[n]

)
,

by (5) we can find, for fixed ε > 0, an index m such that

gΛ

(
Φ
(
Bx− (Bx)[m]

))
< ε/2. (6)

The double sequence Bx ∈M(X) determines the single sequence (z̃k) by

z̃k = supi |̇Bikx|̇ (k ∈ N). Since

lim
n
φk(|αnz̃k|) = 0 (k ∈ N)

and gΛ satisfies (N4), we have that

lim
n
gΛ

(
φk (|αnz̃k|) ek(2)

)
= 0 (k ∈ N). (7)

Further, since gΛ satisfies (N2) and is absolutely monotone, we may write

gΛ

(
Φ (B (αnx))[m]

)
= gΛ

(
m∑
k=1

(
φk

(
|̇αnBikx|̇

))
i
ek(2)

)
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≤
m∑
k=1

gΛ

((
φk

(
|̇αnBikx|̇

))
i
ek(2)

)
≤

m∑
k=1

gΛ

(
φk (|αnz̃k|) ek(2)

)
.

This yields

lim
n
gΛ

(
Φ (B (αnx))[m]

)
= 0

because of (7). Thus there exists an index n0 such that, for all n ≥ n0,

|αn| ≤ 1 and gΛ

(
Φ
(
|αn| (Bx)[m]

))
< ε/2. (8)

Now, by (6) and (8) we get

gΛ,B (αnx) = gΛ (Φ (B (αnx)))

≤ gΛ

(
Φ
(
|αn|

(
Bx− (Bx)[m]

)))
+ gΛ

(
Φ
(
|αn|(Bx)[m]

))
≤ gΛ

(
Φ
(
Bx− (Bx)[m]

))
+ gΛ

(
Φ
(
|αn|(Bx)[m]

))
< ε/2 + ε/2 = ε

for n ≥ n0. Hence, limn gΛ,B(αnx) = 0, i.e., (N4) is true for gΛ,B . �

Let λ ⊂ s be a solid sequence space and let B = (bkj) be an infinite scalar

matrix. Denoting by λ(2) the set of all double sequences x(2) with x ∈ λ,
and using the sequence B = (Bi) of matrices Bi = (bikj) with the elements

bikj = bkj (i ∈ N) it is easy to see that λ (Φ, B,X) is isomorphic to the

space λ(2) (Φ, B,X) of type Λ (Φ,B, X). In addition, if λ is topologized by
an (absolutely monotone) F-seminorm g

λ
, then the equality

g
λ,B

(
x(2)

)
= g

λ
(x)

defines an (absolutely monotone) F-seminorm on λ(2) (Φ, B,X). Thus, since

x ∈ M(X) for every x ∈ λ(2) (Φ, B,X) and
(
λ(2) (Φ, B,X) , g

λ,B

)
is an

AK-space if and only if (λ (Φ, B,X) , g
λ
) is, Theorem 2 gives the following

topologization theorem for λ (Φ, B,X).

Theorem 3. Let λ be a solid sequence space topologized by an absolutely
monotone F-seminorm g

λ
.

a) If a sequence of moduli Φ = (φk) satisfies one of two (equivalent)
conditions (M5) and (M6), then the GS space λ(Φ, B,X) may be topologized
by the F-seminorm

g
λ,B

(x) = g (λ (Bx)) .
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Moreover, if g
λ

is an F-norm on λ, the space X is normed, and B satisfies
the condition

Bx = 0 =⇒ x = 0, (9)

then g
λ,B

is an F-norm on λ (Φ, B,X). The F-seminorm (or F-norm) g
λ,B

is absolutely monotone if (2) holds.
b) If (λ, g

λ
) is an AK-space, then the GS space λ(Φ, X) may be topologized

by the F-seminorm g
λ,B

for an arbitrary sequence of moduli Φ. Moreover, if
g
λ

is an F-norm, the space X is normed, and B satisfies (9), then g
λ,B

is
an F-norm on λ(Φ, B,X). The F-seminorm (or F-norm) g

λ,B
is absolutely

monotone whenever B satisfies (2).

Remark 1. It is not difficult to see that in Theorems 1 – 3 we may write
X instead of X whenever the matrices Bi (i ∈ N) and B are diagonal or,
more generally, whenever each row of these matrices contains not more than
one non-zero element.

Remark 2. Ghosh and Srivastava [27] considered, for one modulus φ and
for a sequence X of Banach spaces (Xk, ‖ · ‖k) (k ∈ N), the GS space

λ(φ,X) = {x : φ(x) = (φ(‖xk‖k)) ∈ λ},

where λ is a solid sequence space. They assert (see [27], Theorem 3.1) that
if λ is topologized by an absolutely monotone paranorm g, then

g
φ
(x) = g(φ(x))

is a paranorm on λ(φ,X). But this is not true in general. Indeed, if φ is
a bounded modulus and the solid sequence space `∞ is topologized by the
absolutely monotone norm g(u) = supk |uk|, then `∞(φ,X) = s(X), and
so, `∞(φ,X) contains an unbounded sequence z = (zk). If now (zki) is a
subsequence of z such that zki 6= 0 and limi ‖zki‖ki =∞, then, defining

αn =

{
(‖zki‖ki)

−1 , if n = ki (i ∈ N),

0 otherwise,

we get the sequence (αn) with limn αn = 0. Since

φ (‖αkizki‖ki) = φ(1) > 0 (i ∈ N),

we have that

lim
n
g
φ
(αnz) = lim

n
sup
k
‖αnzk‖k 6= 0.

Thus g
φ

does not satisfy axiom (N4) and, consequently, is not a paranorm on
`∞(φ,X) if the modulus φ is bounded. Theorem 3 a) (for B = I) and Remark
1 show that if the solid sequence space λ is topologized by an absolutely
monotone F-seminorm (or a paranorm with (N3)) g, then g

φ
is an absolutely

monotone F-seminorm (paranorm) on the GS space λ(φ,X) whenever (λ, g)

19
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is an AK-space or the modulus φ satisfies one of the following (equivalent)
conditions:

(M5◦) there exists a function ν and a number δ > 0 such that φ(ut) ≤
ν(u)φ(t) (0 ≤ u < δ, t ≥ 0) and limu→0+ ν(u) = 0,

(M6◦) lim
u→0+

sup
t>0

φ(ut)

φ(t)
= 0.

These conditions clearly fail if φ is bounded, since by supt>0 φ(t) = M <∞
we have

sup
t>0

φ(ut)

φ(t)
≥M−1 sup

t>0
φ(ut) = 1

for any fixed u > 0.

3. Applications related to strong summability domains

Let A = (ank) be a non-negative matrix, i.e., ank ≥ 0 (n, k ∈ N). We
say that A is column-positive if for any k ∈ N there exists an index nk
such that ank,k > 0. Obviously, any normal non-negative matrix is column-
positive, and a diagonal matrix D(ck) is column-positive if ck > 0 for all
k ∈ N. A sequence u = (uk) ∈ s is called strongly A-summable with index
p ≥ 1 to l if limn

∑
k ank|uk − l|p = 0, and strongly A-bounded with index

p if supn
∑

k ank|uk|p < ∞. It is clear that the set cp0[A] of all strongly A-
summable with index p to zero sequences and the set `p∞[A] of all strongly
A-bounded with index p sequences are solid linear spaces and cp0[A] ⊂ `p∞[A].
Moreover, the functional

gp
[A]

(u) = sup
n

(∑
k

ank|uk|p
)1/p

is a seminorm on `p∞[A] and cp0[A], and it is a norm if A is column-positive.
Natural generalizations of sequence spaces cp0[A] and `p∞[A] are related to

arbitrary solid F-seminormed sequence spaces (λ, g
λ
) and (Λ, gΛ). It is easy

to see that the sets

λp[A] =

u ∈ s : A1/p (|u|p) =

(∑
k

ank|uk|p
)1/p


n∈N

∈ λ

 ,

Λp[A] =

u2 ∈ s2 : A1/p
(
|u2|p

)
=

(∑
k

ank|uki|p
)1/p


n,i∈N

∈ Λ


are solid linear subspaces of s and s2, respectively. In addition, if F-semi-
norms g

λ
and gΛ are absolutely monotone, then the functionals

gp
λ,[A]

(u) = g
λ

(
A1/p (|u|p)

)
and gp

Λ,[A]
(u2) = gΛ

(
A1/p

(
|u2|p

))
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define F-seminorms, respectively, on λp[A] and Λp[A]. Moreover, if A is
column-positive, then gp

λ,[A]
(or gp

Λ,[A]
) is an F-norm (a norm) whenever the

space λ (or Λ) is F-normed (normed).
As a special case of Λp[A] we will consider the DS space

Uλp[A] =
{
u2 ∈ s2 : A1/p

(
|u2|p

)
∈ Uλ

}
,

which may be topologized by the F-seminorm

gp
λ,[Ã]

(u) = g
λ

(
Ã1/p

(
|u2|p

))
if a solid sequence space λ is topologized by an absolutely monotone
F-seminorm g

λ
and

Ã1/p
(
|u2|p

)
=

sup
i

(∑
k

ank|uki|p
)1/p


n∈N

.

Let p = (pk) be a bounded sequence of positive numbers with
r = max{1, supk pk}, let B = (bnk) be an infinite scalar matrix, and let
B be an SM method. For a sequence of moduli Φ = (φk) and solid sequence
spaces λ ⊂ s, Λ ⊂ s2, we consider, as some generalizations of λp[A] and
Λp[A], the sets

λ[A1/r, B,Φ,p, X] =
{
x ∈ s(X) : A1/r (Φp(Bx)) ∈ λ

}
,

Λ[A1/r,B,Φ,p, X] =
{
x ∈ s(X) : A1/r (Φp(Bx)) ∈ Λ

}
,

where,

A1/r(Φp(Bx)) =


∑

k

ank

φk
|̇∑

j

bkjxj |̇

pk
1/r


n∈N

,

A1/r(Φp(Bx)) =


∑

k

ank

φk
|̇∑

j

bikjxj |̇

pk
1/r


n,i∈N

.
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Using the equalities pk = (pk/r)r (k ∈ N) and denoting by Φp/r the

sequence of moduli φ
p/r
k (t) = (φk(t))

pk/r (t ∈ R+, k ∈ N), we may write

λ[A1/r, B,Φ,p, X] =
{
x ∈ sB(X) : Φp/r(Bx) ∈ λr[A]

}
= λr[A]

(
Φp/r, B,X

)
, (10)

Λ[A1/r,B,Φ,p, X] =
{
x ∈ sB(X) : Φp/r(Bx) ∈ Λr[A]

}
= Λr[A]

(
Φp/r,B, X

)
. (11)

Thus, since the spaces λr[A] and Λr[A] are solid, Theorem 1 shows that

λ[A1/r, B,Φ,p, X] and Λ[A1/r,B,Φ,p, X] are GS spaces. Remark 1 shows

that we get the GS spaces λ[A1/r, B,Φ,p,X] and Λ[A1/r,B,Φ,p,X], for
example, in the special case, when B is a diagonal matrix and B is a sequence
of diagonal matrices.

The representations (10) and (11) are also useful for the topologization of

sequence spaces λ[A1/r, B,Φ,p, X] and Λ[A1/r,B,Φ,p, X]. But first
of all, we prove an auxiliary result about the property AK of the spaces(
λp[A], gp

λ,[A]

)
and

(
Uλp[A], gp

Λ,[Ã]

)
.

Lemma 1. Let p ≥ 1 and let A = (ank) be a non-negative infinite ma-
trix. Suppose that λ ⊂ s is a solid AK-space with respect to an absolutely
monotone F-seminorm g

λ
.

(i) If

ak = ((ank)
1/p)n∈N ∈ λ (k ∈ N), (12)

then (λp[A], gp
λ,A

) is an AK-space.

(ii) If the matrix A is row-finite (i.e., for any n ∈ N there exists an index
kn with ank = 0 (k > kn)), and (12) holds, then (Uλp[A], gp

λ,Ã
) is an AK-

space.

Proof. The proof of statement (i) is quite similar to the proof of Lemma
1 from [33] and therefore it is omitted.

To prove (ii), let u2 ∈ Uλp[A]. Thus Ã1/p
(
|u2|p

)
∈ λ, and since (λ, g

λ
) is

an AK-space,

lim
m
g
λ

(
Ã1/p

(
|u2|p

)
− Ã1/p

(
|u2|p

)[m]
)

= lim
m
g
λ

 m︷ ︸︸ ︷
0, . . . , 0, sup

i

(∑
k

am+1,k|uki|p
)1/p

, . . .

 = 0.
(13)

By condition (12) and by

Ã1/p
(
|ej(2)|p

)
=

(
sup
i

(anj)
1/p

)
n∈N

= aj (j ∈ N)
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we conclude that Uλp[A] contains the sequences ej(2). To prove the equality

limm u[m] = u in Uλp[A], we use the inequality

gp
λ,[Ã]

(
u2 − u2[m]

)
≤

s∑
n=1

g
λ

sup
i

( ∞∑
k=m+1

ank|uki|p
)1/p

en


+ g

λ

 s︷ ︸︸ ︷
0, . . . , 0, sup

i

( ∞∑
k=m+1

as+1,k|uki|p
)1/p

, . . .


= G1

sm +G2
sm.

Let ε > 0. As g
λ

is absolutely monotone, we have

G2
mm ≤ gλ

(
Ã1/p

(
|u2|p

)
− Ã1/p

(
|u2|p

)[m]
)
,

and by (13) we get limmG
2
mm = 0. Thus, there exists a number m0 ∈ N

with

G2
m0,m0

< ε.

Since the matrix A is row-finite, we can find m1 ≥ m0 such that for all
n = 1, 2, . . . ,m0 and i ∈ N one has

∞∑
k=m+1

ank|uki|p = 0 (m ≥ m1),

which yields

G1
m0,m = 0 (m ≥ m1).

Hence, using the inequalities G2
m0,m ≤ G

2
m0,m0

(m ≥ m0), we have that

gp
λ,[Ã]

(
u2 − u2[m]

)
≤ G1

m0,m +G2
m0,m < 0 + ε = ε

if m ≥ m1. Consequently, limm u[m] = u in Uλp[A]. The proof is completed.
�

Now we can determine F-seminorms on GS spaces λ[A1/r, B,Φ,p, X] and

Λ[A1/r,B,Φ,p, X].

Proposition 1. Let Φ = (φk) be a sequence of moduli and let p = (pk)
be a bounded sequence of positive numbers and r = max{1 , supk pk}. Let
A = (ank) be a non-negative infinite matrix and let B = (bnk) be an infinite

matrix of scalars. Suppose that (X, |̇ · |̇) is a seminormed space, X is a

sequence of seminormed spaces (Xk, |̇ · |̇k) (k ∈ N), and λ ⊂ s is a solid
sequence space topologized by an absolutely monotone F-seminorm g

λ
.

20
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a) If the sequence of moduli Φp/r satisfies one of conditions (M5) and

(M6), then the GS space λ[A1/r, B,Φ,p, X] may be topologized by the F-
seminorm

gΦ,p
λ,A,B

(x) = g
λ

(
A1/r (Φp (Bx))

)
.

b) If (λ, g
λ
) is an AK-space and condition (12) holds with p = r, then

gΦ,p
λ,A,B

is an F-seminorm on λ[A1/r, B,Φ,p, X] for an arbitrary sequence of

moduli Φ.
If, in a) and b), g

λ
is an F-norm, X is normed, A is column-positive, and

(9) holds, then gΦ,p
λ,A,B

is an F-norm on λ[A1/r, B,Φ,p, X]. Moreover, for a

diagonal matrix B = D(ck), we get the absolutely monotone F-seminorm (or

F-norm) gΦ,p
λ,A,D(ck)

on the GS space λ[A1/r, D(ck),Φ,p,X].

Proof. Statement a) follows from (10) and Theorem 3 a) because

g
λ[A]r,B

(x) = g
λ

(
A1/r

((
Φp/r (Bx)

)r))
= g

λ

(
A1/r (Φp (Bx))

)
for any x ∈ λr[A]

(
Φp/r, B,X

)
. Analogously, we deduce statement b) from

(11) and Theorem 3 b) in view of Lemma 1(i). �

Let us investigate the topologization of spaces of type Λ[A1/r,B,Φ,p, X]
in the case Λ = Uλ.

Proposition 2. Let Φ, p, A, X, and X be the same as in Proposition 1
and let B be a sequence of infinite matrices Bi = (bink).

a) If Φp/r satisfies one of conditions (M5) and (M6), then the GS space

Uλ[A1/r,B,Φ,p, X] may be topologized by the F-seminorm

gΦ,p
Uλ,A,B

(x) = g
λ

(
Ã1/r (Φp (Bx))

)
= g

λ


sup

i

∑
k

ank

φk
|̇∑

j

bikjxj |̇

pk
1/r


n∈N

 .

b) Suppose that (λ, g
λ
) is an AK-space and the moduli φk (k ∈ N) are

unbounded. If the matrix A is row-finite and column-positive, and (12) holds

with p = r, then gΦ,p
Uλ,A,B

is an F-seminorm on Uλ[A1/r,B,Φ,p, X].

If, in a) and b), g
λ

is an F-norm, X is normed, and (4) is true,

then gΦ,p
Uλ,A,B

is an F-norm on Uλ[A1/r,B,Φ,p, X]. Moreover, gΦ,p
Uλ,A,B

is

an absolutely monotone F-seminorm (or F-norm) on the GS space

Uλ[A1/r,B,Φ,p,X] if B is a sequence of diagonal matrices.

Proof. Statement a) follows from Theorem 2 a) in view of (11).
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b) Under our assumptions, the space
(
Uλr[A], gr

λ,[Ã]

)
has the property AK

by Lemma 1 (ii). In addition, since our non-negative matrix A is column-
positive, for any fixed k there exists an index nk such that ank,k > 0. Thus,
using the inequalityφk

|̇∑
j

bikjxj |̇

pk
1/r

≤ (ank,k)
−1/r sup

i

∑
k

ank

φk
|̇∑

j

bikjxj |̇

pk
1/r

,

by Ã1/r (Φp (Bx)) ∈M we get

sup
i

φk
|̇∑

j

bikjxj |̇

pk
1/r

<∞.

But this yields

sup
i
|̇
∑
j

bikjxj |̇ <∞ (k ∈ N)

because the moduli φ
p/r
k (t) = (φk(t))

pk/r (k ∈ N) are unbounded. Conse-

quently, for any x ∈ Uλ[A1/r,B,Φ,p, X] we have Bx ∈ M(X). Hence, by
equality (11) we have

Uλ[A1/r,B,Φ,p, X] = Uλr[A]
(

Φp/r,B,M (X)
)
,

and b) follows from Theorem 2 b). �

4. Some special cases

In the following we apply Propositions 1 and 2 for the topologization of
GS spaces

λ[A,B,Φ,p, X] = {x ∈ s(X) : A (Φp(Bx)) ∈ λ} ,
Uλ[A,B,Φ,p, X] = {x ∈ s(X) : A (Φp(Bx)) ∈ Uλ} ,

where

A(Φp(Bx)) =

∑
k

ank

φk
|̇∑

j

bkjxj |̇

pk

n∈N

,

A(Φp(Bx)) =

∑
k

ank

φk
|̇∑

j

bikjxj |̇

pk

n,i∈N

.
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In the special case pk = 1 (k ∈ N), the following corollaries of Proposi-
tions 1 and 2 are obvious.

Corollary 1. Let A, B, X, X, and λ be the same as in Proposition 1.
a) If the sequence of moduli Φ satisfies one of conditions (M5) and (M6),

then the GS space

λ[A,B,Φ, X] = {x ∈ s(X) : A (Φ (Bx)) ∈ λ}
may be topologized by the F-seminorm

gΦ
λ,A,B

(x) = g
λ

(A (Φ (Bx)))

= g
λ

∑
k

ank

φk
|̇∑

j

bkjxj |̇


n∈N

 .

b) If (λ, g
λ
) is an AK-space and condition (12) holds with p = 1, then

gΦ
λ,A,B

is an F-seminorm on λ[A,B,Φ, X] for an arbitrary sequence of moduli

Φ.
If, in a) and b), g

λ
is an F-norm, X is normed, A is column-positive,

and B satisfies (9), then gΦ
λ,A,B

is an F-norm on λ[A,B,Φ, X]. Moreover,

gΦ
λ,A,B

is an absolutely monotone F-seminorm (or F-norm) on the GS space

λ[A,B,Φ,X] if B is a diagonal matrix.

Corollary 2. Let Φ, A, X, X, and B be the same as in Proposition 2.
a) If Φ satisfies one of conditions (M5) and (M6), then the sequence space

Uλ[A,B,Φ, X] may be topologized by the F-seminorm

gΦ
Uλ,A,B

(x) = g
λ

(
Ã (Φ (Bx))

)
= g

λ

sup
i

∑
k

ank

φk
|̇∑

j

bkjxj |̇


n∈N

 .

b) Suppose that (λ, g
λ
) is an AK-space and the moduli φk (k ∈ N) are

unbounded. If the matrix A is row-finite and column-positive, and (12) holds

with p = 1, then gΦ
Uλ,A,B

is an F-seminorm on Uλ[A1/r,B,Φ, X].

If, in a) and b), g
λ

is an F-norm, X is normed, and B satisfies (4), then

gΦ
Uλ,A,B

is an F-norm on Uλ[A1/r,B,Φ, X]. Moreover, gΦ
Uλ,A,B

is an absolutely

monotone F-seminorm (or F-norm) on the GS space Uλ[A1/r,B,Φ,X] if B
is a sequence of diagonal matrices.

First investigations of spaces of type λ[A,B,Φ, X] are related to the case
B = I and φk = φ (k ∈ N). Ruckle [44] considered the space

`[I, φ] = {u ∈ s :
∑
k

φ(|uk|) <∞}
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and Maddox [35] introduced the sequence spaces c0[C1, φ] and `∞[C1, φ]. The
spaces λ[A, φ] and λ[C1, φ,X] (X is a Banach space) are studied, respectively,
in [10] and [11]. Corollary 1 allows to determine F-seminorm topologies for
sequence spaces from [15] and [20]. It also extends Theorem 2.6 of [9], which
determines the paranorm gφ

D(k−s),I
on λ[D(k−s), I, φ,X] if s > 0 and λ is a

Banach space with the property AK.

Further corollaries of Propositions 1 and 2 deal with the sequence p and
are related to λ ∈ {`∞, c0, `

r}. It is clear that `∞ and c0 are solid se-
quence spaces with the absolutely monotone norm ‖u‖∞ = supk |uk|. Since,
moreover, (c0, ‖ · ‖∞) is an AK-space, and for λ ∈ {`∞, c0} we have

(|uk|) ∈ λ ⇐⇒ (|uk|q) ∈ λ (q > 0),

Proposition 1 immediately yields the following corollary.

Corollary 3. Let Φ, p, A, X, X, and B be the same as in Proposition 1.
a) If the sequence of moduli Φp/r satisfies one of conditions (M5) and

(M6), then the GS space `∞[A,B,Φ,p, X] may be topologized by the F-
seminorm

gΦ,p
∞,A,B (x) = sup

n
(A (Φp (Bx))) = sup

n

∑
k

ank

φk
|̇∑

j

bkjxj |̇

pk
1/r

.

b) If the matrix A is such that

lim
n
ank = 0 (k ∈ N), (14)

then gΦ,p
∞,A,B is an F-seminorm on c0[A,B,Φ,p, X] for an arbitrary sequence

of moduli Φ.
If, in a) and b), the space X is normed, A is column-positive, and B

satisfies (9), then gΦ,p
∞,A,B is an F-norm. Moreover, gΦ,p

∞,A,D(ck)
is an absolutely

monotone F-seminorm (F-norm) on c0[A,D(ck),Φ,p,X].

We may consider the space `[A,B,Φ,p, X] as the space `r[A1/r, B,Φ,p, X].

So, since `r is solid AK-space with respect to the norm ‖u‖r = (
∑

k |uk|r)
1/r,

Proposition 1 b) gives the following corollary.

Corollary 4. Let Φ, p, A, X, X, and B be the same as in Proposition 1.
If the matrix A is such that∑

n

|ank| <∞ (k ∈ N),

21
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then

gΦ,p
1,A,B

=

(∑
n

|A1/r (Φp (Bx)) |r
)1/r

=

∑
n

∑
k

ank

φk
|̇∑

j

bkjxj |̇

pk
1/r

is an F-seminorm on `[A,B,Φ,p, X] for an arbitrary sequence of moduli Φ.
If the space X is normed, A is column-positive, and (9) holds, then gΦ,p

1,A,B

is an F-norm. Moreover, gΦ,p
1,A,D(ck)

is an absolutely monotone F-seminorm

(or F-norm) on `[A,D(ck),Φ,p,X].

The GS spaces from Corollaries 3 and 4 have been studied earlier in the
special cases when the role of matrix A was played not only by C1 and
different diagonal matrices, but also by the matrix of de la Vallée-Poussin
and by the matrix of lacunary strong convergence. Recall that if d = (dk)
is a non-decreasing sequence of positive numbers tending to ∞ with d1 = 1
and dn+1 ≤ dn + 1, then the matrix of de la Vallée-Poussin Vd = (vnk) is
defined by the equalities vnk = 1/dn if k ∈ [n − dn + 1, n] and vnk = 0
otherwise. Further, a sequence of integers θ = (kj) is called lacunary if
k0 = 0, 0 < kj < kj+1 and hj = kj − kj−1 → ∞ as j → ∞. A sequence
u = (uk) is said to be lacunary strongly convergent to a number l if (see [26])

lim
j

1/hj
∑

i∈(kj−1,kj ]

|ui − l| = 0.

Thus, given the matrix Nθ = (wji) with wji = 1/hj if i ∈ (kj−1, kj ] and by
wji = 0 otherwise, the lacunary strong convergence is precisely the strong
Nθ-summability. It is clear that both matrices Vd and Nθ are regular and
column-positive. Moreover, Vd is normal and reduces to C1 for dn = n.

Corollary 3 permits to define, for example, an F-seminorm on the sequence
spaces c0[Vd, B, φ,p] and `∞[Vd, B, φ,p] from [16], and an F-norm on the GS
space c0[Nθ, I,Φ, X] which is considered in [41] for a Banach space X. Corol-
lary 3 also contains, as special cases, the results about the topologization of
some sequence spaces of type c0[A, I, φ,p] from [10], [14], and [39].

In Theorem 1 of [14] it was asserted that for any non-negative regular
matrix A the space `∞[A, I, φ;p] may be topologized by the paranorm

gφ,p∞,A(u) = sup
n

(∑
k

ank (φ (|uk|))pk
)1/r

.

if infk pk > 0. But it is possible to prove, as in Remark 2, that this is
not true for a bounded modulus φ if A = I, and pk = 1 (k ∈ N). By
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Corollary 3 a) we can say that gφ,p∞,A is an F-seminorm (or a paranorm) on

`∞[A, I, φ,p] for any non-negative matrix A whenever the sequence of moduli

φpk/r(t) = (φ(t))pk/r (k ∈ N) satisfies one of conditions (M5) and (M6). If
infk pk > 0, then it suffices to assume that the modulus φ satisfies one
of conditions (M5◦) and (M6◦). In the case pk = 1 (k ∈ N) this result
completes Theorem 10 (ii) of [10]. We also remark that Corollary 3 b) gives,
for pk = 1 (k ∈ N), an F-seminorm on the sequence space c0[Nθ, B,Φ] from
[15].

Corollary 4 generalizes the results from [6], [12], and [13], where the para-
norm topologies are defined on `[A,B,Φ,p, X] provided φk = φ (k ∈ N)
and A = D(k−s), s ≥ 0.

Many papers from the mathematical literature are devoted to the in-
vestigation of sequence spaces from Corollaries 3 and 4 in the case when
the matrix B is determined by various differences of sequences. For fixed
m,n ∈ N the difference operator ∆m

n is defined by (see [49])

∆m
n x = (∆m

n xk), ∆m
n xk = ∆m−1

n xk −∆m−1
n xk+n, ∆0

nxk = xk (k ∈ N).

The difference operator ∆m = ∆m
1 was introduced already in [31] (m=1) and

[25]. If v = (vk) is a fixed sequence of nonzero numbers, then v∆m
n denotes

the difference operator defined by v∆m
n x = (∆m

n vkxk).
Since

v∆m
n xk =

m∑
i=0

(−1)i
(
m

i

)
vk+nixk+ni (k ∈ N),

v∆m
n is the summability operator defined by the difference matrix v∆m

n =
(vδkj), where vδkj = (−1)i

(
m
i

)
vj if j = k + ni, (0 ≤ i ≤ m, k ∈ N) and

vδkj = 0 otherwise. It is not difficult to see that (9) fails if B is a difference
operator v∆m

n . Therefore, by means of Corollaries 3 and 4 it is not possible
to determine F-norms in the case B = v∆m

n . To overcome this difficulty
we use a new class of summability matrices which contains all difference
matrices.

Let m ≥ 0 be a fixed integer. Following [33], we say that an infinite scalar
matrix B = (bki) is m-normal if, for any k ∈ N, bk,k+m 6= 0 and bki = 0 if
i > k + m. By this definition, 0-normal matrices are just normal matrices.
For example, the difference matrix v∆m

n is nm-normal and v∆m is m-normal.
Now, if the matrix B is m-normal, then Bx = 0 and x ∈ sB(X) imply x = 0
whenever x1 = · · · = xm = 0. This approach and the definitions of norms
from [31] and [25] lead us to the following proposition which complements
Proposition 1 and Corollaries 3 and 4.

Proposition 3. Let Φ, p, A, and X be the same as in Proposition 1.
Assume that B is an m-normal infinite matrix with m ≥ 1.
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a) If the solid sequence space λ is topologized by an absolutely monotone
F-seminorm g

λ
, then statements a) and b) of Proposition 1 hold with

ĝΦ,p
λ,A,B

(x) =

m∑
i=1

|̇xi |̇+ gΦ,p
λ,A,B

(x)

instead of gΦ,p
λ,A,B

(x). Then ĝΦ,p
λ,A,B

is an F-norm on λ[A,B,Φ,p, X] whenever

g
λ

is F-norm, X is normed, and A is column-positive.
b) Statements of Corollaries 3 and 4 are true with

ĝΦ,p
ν,A,B

(x) =
m∑
i=1

|̇xi |̇+ gΦ,p
ν,A,B

(x), ν ∈ {∞, 1}

instead of gΦ,p
ν,A,B

(x), ν ∈ {∞, 1}. If X is normed and A is column-positive,

then these functionals determine F-norms, respectively, on `∞[A,B,Φ,p, X],
c0[A,B,Φ,p, X], and `[A,B,Φ,p, X].

In 1) and 2), the term
∑m

i=1 |̇xi |̇ may also be replaced with the expression

maxi=1,...,m |̇xi |̇ or, more generally, with the expressions
∑m

i=1 ϕi

(
|̇xi |̇
)

or

maxi=1,...,m ϕi

(
|̇xi |̇
)

, where ϕi (i = 1, . . . ,m) are moduli.

For example, the authors of [1], [21], and [22] determine paranorms of type
ĝΦ,p

0,A,B
on some GS spaces c0[A,B,Φ,p, X] with B = v∆m. At the same time

the various spaces of type c0[A, v∆m,Φ,p, X] and `[A, v∆m,Φ,p, X] from
[2], [3], [4], [8], [20], [24], [43], and [48] are topologized, as in Corollaries 3
and 4, by the paranorms gΦ,p

ν,A,v∆m
(x) (ν ∈ {∞, 1}). Proposition 3 b) allows

us to define alternative paranorms (or F-seminorms) in the form ĝΦ,p
ν,A,v∆m

(ν ∈ {1, ∞}) on all these spaces. In addition, Corollary 3 and Proposition
3 b) determine F-seminorm (or paranorm) topologies on the spaces of type
`∞[A, v∆m,Φ,p, X] from the papers [1], [2], [4], [8], [20], [21], [22], [24], and
[43].

Tripathy, Mahanta, and Et [50] consider the generalized sequence space
m(ψ, p)[I,∆n, φ,X], where

(
m(ψ, p), gm(ψ,p)

)
(1 ≤ p < ∞) is the solid

Banach space defined in [51] by means of a special non-decreasing sequence
ψ = (ψk). Theorem 2 of [50] asserts that ĝφ

m(ψ,p),I,∆n
is a paranorm on

m(ψ, p)[I,∆n, φ] for any modulus φ. Besides this, Tripathy and Chandra
([48], Theorem 3.2) assert that the sequence space `∞[I,D(ck)∆

1
n, φ,p] may

be topologized by the paranorm gφ,p
∞,I,D(ck)∆1

n

for every modulus φ. But these

assertions are not true in general. Indeed, if p = n = 1 and ψk = k (k ∈ N),
then (see [51], Corollary 11) m(ψ, p) = `∞ with gm(ψ,p) = ‖ · ‖∞. Hence
m(ψ, p)[I,∆n, φ,K] reduces to the space

`∞[I,∆1, φ] =
{
u = (uk) ∈ s : ∆1u ∈ `∞(φ)

}
,
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and

ĝφ
m(ψ,p),I,∆n

(u) = |u1|+ sup
k
φ(|∆1uk|).

Analogously, for n = 1 and pk = ck = 1 (k ∈ N), `∞[I,D(ck)∆
1
n, φ,p]

reduces also to `∞[I,∆1, φ] with

gφ,p
∞,I,D(ck)∆1

n

= sup
k
φ(|∆1uk|).

Therefore, if the modulus φ is bounded, then `∞[I,∆1, φ] = s and we can
prove, as in Remark 2, that ĝφ

m(ψ,p),I,∆n
and gφ,p

∞,I,∆1
n

are not paranorms.

Proposition 3 a) and Corollary 3 a) show that Theorem 2 of [50], and Theo-
rem 3.2 (about `∞[I,D(ck)∆

1
n, φ,p]) from [48], are true whenever the mod-

ulus φ satisfies one of conditions (M5◦) and (M6◦).

Let us apply Proposition 2 and Corollary 2 to define F-seminorms and
F-norms on the GS spaces

U`∞[A,B,Φ,p, X]=

x ∈ s(X) : sup
n,i

∑
k

ank

φk
|̇∑

j

bikjxj |̇

pk

<∞


and

Uc0[A,B,Φ,p, X]={x ∈ s(X) : A(Φp(Bx)) ∈ Uc0}
=Mc0[A,B,Φ,p, X] ∩ uc0[A,B,Φ,p, X],

where

Mc0[A,B,Φ,p, X]={x ∈ s(X) : A(Φp(Bx)) ∈M(X)} ,

uc0[A,B,Φ,p, X]=

x ∈ s(X) : lim
n

∑
k

ank

φk
|̇∑

j

bikjxj |̇

pk

= 0

uniformly in i} .

Taking into account the inclusion

Uc0[A,B,Φ,p, X] ⊂ U`∞[A,B,Φ,p, X], (15)

from Proposition 2 we get the following result.

Corollary 5. Let Φ, p, A, B, X, and X be the same as in Proposition 2.
a) If Φp/r satisfies one of conditions (M5) and (M6), then on the GS space

U`∞[A,B,Φ,p, X] we may define the F-seminorm

gΦ,p
∞,A,B(x) = sup

n,i

∑
k

ank

φk
|̇∑

j

bikjxj |̇

pk

.

22
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b) If the moduli φk (k ∈ N) are unbounded, and the row-finite and
column-positive matrix A satisfies (14), then gΦ,p

∞,A,B is an F-seminorm on

the space Uc0[A,B,Φ,p, X].
If, in a) and b), X is normed and B satisfies (4), then gΦ,p

∞,A,B is an

F-norm. Moreover, gΦ,p
∞,A,B is an absolutely monotone F-seminorm (or F-

norm) on Uc0[A,B,Φ,p,X] if B is a sequence of diagonal matrices.

Corollary 5 permits to determine F-seminorms (or paranorms), for exam-
ple, on the spaces U`∞[Vλ,FC1 ,Φ, X] and Uc0[Vλ,FC1 ,Φ, X] from [28], and
also on similar spaces from [30].

For an infinite matrix B = (bnk) let B̂ be the sequence of matrices B̂i =

(bn+i,k)n,k∈N (i ∈ N). In this case we have B̂x = (Bn+ix)n,i∈N, which, for

B = I, gives Îx = (xn+i)n,i∈N. We can prove a stronger variant of Corollary
5 b) under the assumption that pk = 1, φk = φ (k ∈ N), A = C1 and

B = B̂. Then the GS space uc0[A,B,Φ,p, X] reduces to (for the case B = I
and X = K see [40])

uc0[C1, B̂, φ,X] =

{
x ∈ s(X) : lim

n
n−1

n∑
k=1

φ
(
|̇Bk+i−1x|̇

)
= 0

uniformly in i} .

Proposition 4. Let B = (bnk) be an m-normal infinite matrix such that
K = infn |bnn| > 0 and there exists an index j0 > m with bnk = 0 (k ≤
n+m− j0, n > j0 −m). The functional

gφ
∞,C1,B̂

(x) = sup
n,i

n−1
n∑
k=1

φ
(
|̇Bk+i−1x|̇

)
= sup

k
φ
(
|̇Bkx|̇

)
defines an F-seminorm (F-norm if X is normed and m = 0) on the GS space

uc0[C1, B̂, φ,X] if and only if the modulus φ is unbounded.

Proof. Since x ∈ uc0[C1, B̂, φ,X] means that the sequence φ(Bkx) =(
φ
(
|̇Bkx|̇

))
is almost convergent to zero, but every almost convergent se-

quence is bounded (see [17], Theorem 1.2.18), we clearly have

uc0[C1, B̂, φ,X] = Uc0[C1, B̂, φ,X]. (16)

Moreover, by

φ
(
|̇Bix|̇

)
≤ sup

n
n−1

n∑
k=1

φ
(
|̇Bk+i−1x|̇

)
≤ sup

k
φ
(
|̇Bkx|̇

)
(i ∈ N),

we get

gφ
∞,C1,B̂

(x) = sup
k
φ
(
|̇Bkx|̇

)
. (17)
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Sufficiency. If the modulus φ is unbounded, then gφ
∞,C1,B̂

is an F-seminorm

on uc0[C1, B̂, φ,X] by Proposition 3 b) because the matrix C1 is normal
and regular. In particular, since 0-normal matrix is normal and every nor-
mal matrix B satisfies (9), the functional gφ

∞,C1,B̂
defines an F-norm on

uc0[C1, B̂, φ,X] if X is normed and m = 0.

Necessity. Assume that gφ
∞,C1,B̂

is an F-seminorm on uc0[C1, B̂, φ,X] and

define (see [35])

ŵ0 = {u = (uk) ∈ s : lim
n
n−1

n∑
k=1

|uk+i−1| = 0 uniformly in i}.

If v = (vk) is the sequence of numbers

vk =

{
1, if k = 2j (j ∈ N)

0 otherwise,

then for 2j ≤ n < 2j+1 we have

sup
i
n−1

n∑
k=1

|vk+i−1| ≤ n−1
n∑
k=1

|vk+1| <
j + 1

2j
→ 0 as j →∞,

and so, v ∈ ŵ0. By means of v, using a fixed element y0 ∈ X with |̇y0 |̇ = 1,
we consider the X-valued sequence y = (yk), yk = kvky0 (k ∈ N). Now,
assuming that the modulus φ is bounded and M = supt>0 φ(t), by the
inequalities

φ
(
|̇yk |̇
)
≤ φ(k) ≤Mvk (k ∈ N)

we get φ(y) ∈ ŵ0 because ŵ0 is solid sequence space. Further, the equality
Bz = y clearly determines a new X-valued sequence z = (zk) with z1 =
· · · = zm = 0. This sequence z is unbounded, since we can find an index i0
such that, for i > i0,

B2iz = b2i,2iz2i = y2i = 2iy0,

and so, |̇z2i |̇ = 2i|b2i,2i |−1 ≥ 2i/K if i > i0. Moreover, z ∈ uc0[C1, B̂, φ,X]
by the representation

uc0[C1, B̂, φ,X] = ŵ0(B,φ,X).

Thus, as in Remark 2, using equality (17) we can show, that gφ
∞,C1,B̂

does

not satisfy axiom (N4), i.e., it is not an F-seminorm. �

Assumptions of Proposition 4 are clearly satisfied for B = I and B = ∆m.
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Corollary 6. The functional

gφ
∞,C1,Î

(x) = sup
n,i

n−1
n∑
k=1

φ
(
|̇xk+i−1 |̇

)
= sup

k
φ
(
|̇xk |̇

)
defines an F-seminorm (F-norm if X is normed) on the GS space

uc0[C1, Î, φ,X] = {x ∈ s(X) : lim
n
n−1

n∑
k=1

φ(|̇xk+i−1 |̇) = 0 uniformly in i}

if and only if the modulus φ is unbounded.

Et ([23], Theorem 2.3) asserts that the sequence space

[ĉ, φ,p](∆m) =

{
u ∈ s : lim

n
1/n

n∑
k=1

(φ (|∆muk+i|))pk = 0 uniformly in i

}
may be topologized by the paranorm

g∆(u) = sup
n,i

(
n∑
k=1

(φ (|∆muk+i|))pk
)1/r

for any modulus φ. Proposition 4 (with B = ∆m) shows that this is not true
if φ is bounded, since the space [ĉ, φ,p](∆m) reduces, for pk = 1 (k ∈ N),

to uc0[C1, ∆̂m, φ,K] with g∆ = gφ
∞,C1,∆̂

m
. Corollary 6 allows us to say that

similar inaccuracies may be found in theorems about the topologization of
various spaces of type uc0[A,B,Φ,p, X] from [7], [19], [36], [38], and [45],

because all these spaces contain uc0[C1, Î, φ,X] as a special case.

Remark 3. For the topologization of GS spaces uc0[A,B,Φ,p, X] by
F-seminorms (or paranorms) gΦ,p

∞,A,B it is necessary that

uc0[A,B,Φ,p, X] ⊂ U`∞[A,B,Φ,p, X] (18)

or, equivalently,

uc0[A,B,Φ,p, X] = Uc0[A,B,Φ,p, X].

The following example shows that (18) is not true in general. Let A1 = (ank)
be the Cesàro matrix C1 = (cnk) which is modified by setting c1k = 0 (k ≥
2), and let Φ = (φ1, φ, φ, . . . ) be the sequence of moduli, where φ1(t) = t
and φ is a bounded modulus. Then the unbounded sequence y, defined in

the proof of Proposition 4, belongs to uc0[A1, Î,Φ, X] because, for n ≥ 2, we
have ∑

k

ankφk

(
|̇yk+i−1 |̇

)
= n−1

n∑
k=2

φ
(
|̇yk+i−1 |̇

)
.
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But since (for n = 1)

sup
i

∑
k

a1kφk

(
|̇yk+i−1 |̇

)
= sup

i
|̇yi |̇ =∞,

y is not in U`∞[A1, Î,Φ, X]. This example allows us to state that the proofs
of inclusions (18) from [19], [38], and [45] are not convincing, and the cor-
rectness of the definition of functional gΦ,p

∞,A,B in [7] remains actually open.
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