ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
Volume 17, Number 2, December 2013
Available online at http://acutm.math.ut.ee

On generalized sequence spaces defined by
modulus functions

EnNO KoLK

ABSTRACT. Let (X7 | . |) be a seminormed space, ® = (¢) a sequence

of moduli, and B a sequence of infinite scalar matrices B* = ( 793) Let
(A, g,) and (A, g, ) be solid F-seminormed (paranormed) spaces of single
and double number sequences, respectively. V. Soomer and E. Kolk
proved in 1996-1997 that the set of all scalar sequences u = (uy) with
®(u) = (dr(Juk|)) € X is a linear space which may be topologized by the
F-seminorm (paranorm) g, ,(u) = g, (®(u)) under certain restrictions
on ® or (A g,). We generalize this result to the space of all X-valued
sequences x = () with (qﬁk (lBin)) € A, where Bix = > b, ;.
Applications are given in the case when A is the strong summability
domain of a non-negative matrix method. Our corollaries and critical
remarks outline results from more than thirty previous papers by many
different authors.

1. Introduction

Let N = {1,2,...} and let K be the field of real numbers R or complex
numbers C. In the following we specify the domains of indices for the symbols
lim, sup, inf and ) only if they are different from N. By ¢ we denote the
identity mapping ¢(z) = z. In all definitions which contain infinite series we
tacitly assume the convergence of these series.

An F-space is usually understood as a complete metrizable topological
vector space over K. The topology of an F-space E can be given by an
F-norm, i.e., by the functional g : E — R with axioms (see [29], p. 13)

(N1) g(0) =0,
(N2) g(z +y) <g(z)+9(y) (z,y€E),
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(N3) |o| €1 (e €K), z€ E = g(azx) < g(x),

(N4) limp ap, =0 (ap, € K), z € E = lim, g(anz) =0,

(N5) g(z) =0 = x=0.
A functional g with axioms (N1)—(N4) is called an F-seminorm. A paranorm
on FE is defined as a functional g : E — R satisfying axioms (N1), (N2) and

(N6) g(—z) = g(z) (v € E),

(N7) limp o, = @ (ap, ¢ € K), lim, g(zp, —2) =0 (2p,2 € E) =

lim,, g(apz, — ax) = 0.

A seminorm on E is a functional g : E — R with axioms (N1), (N2) and

(N8) g(ax) = |alg(zr) (e €K, x € E).
An F-seminorm (paranorm, seminorm) g is called total if (N5) holds. So, an
F-norm (norm) is a total F-seminorm (seminorm).

It is known (see [33], Remark 1) that F-seminorms are precisely the para-
norms satisfying axiom (N3).

To avoid confusion with the module |-|, following [33], we will often denote
the seminorm of an element x € E by |z|.

Let (X, ]-|) be a seminormed linear space over K and let X be a sequence

of seminormed linear spaces <Xk,\ . |k) (k € N). Then the set s?(X) of

all double sequences x? = (x1;), zx; € X (k,i € N), and the set s(X) of
all sequences x = (zy), zp € X (k € N), equipped with coordinatewise
addition and scalar multiplication, are linear spaces (over K). Any linear
subspace of s?(X) is called a generalized double sequence space (GDS space)
and any linear subspace of s(X) is called a generalized sequence space (GS

space). If (Xk, |- \k) = (X, |- |> (k € N), then we write X instead of X. In

the case X = K we omit the symbol X in our notation. So, for example, s>
and s denote the linear spaces of all K-valued double sequences u? = (ug;)
and single sequences u = (uy), respectively. As usual, linear subspaces of s2
are called double sequence spaces (DS spaces) and linear subspaces of s are
called sequence spaces. Well-known sequence spaces include the sets £, ¢, ¢
and P (p > 0) of all bounded, convergent, convergent to zero and absolutely
p-summable number sequences, respectively. Examples of DS spaces are
M ={u? € s®: a4 =sup|up| < oo (keN)},

1

Ur={u?> e M:i=(ig) €} (A€ {loo, co, P}).

Let RT = [0,00). The idea of a modulus function was shaped by Nakano
[37]. Following Ruckle [44] and Maddox [35] we say that a function ¢ : RT —
R* is a modulus function (or, simply, a modulus), if

(M1) ¢(t) =0 < t =0,
(M2) ¢(t +u) < ¢(t) + d(u) (t,ueRT),
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(M3) ¢ is non-decreasing,
(M4) ¢ is continuous from the right at 0.

For example, the function ((t) = t¥ is an unbounded modulus for p < 1
and the function ¢(t) =t/(1 +t) is a bounded modulus.

Since |p(t) —d(u)| < ¢(|t—u|) (t,u € RT) by (M1)—(M3), the moduli are
continuous everywhere on R™. We also remark that the modulus functions
are essentially the same concept as the moduli of continuity (see [18], p. 866).

A GS space A(X) C s(X) is called solid if (yx) € A(X) whenever (zy) €
A(X) and |yrlx < |zklr (k € N). Analogously, a GDS space A(X) C s2(X) is
called solid if (yr;) € A(X) whenever (zx;) € A(X) and \ykllk <lzwle (ki€
N). For example, it is easy to see that the sets

M(X) = {X2 € s3(X): sup |zhile < 00 (k€ N)} ,

A(®,X) = {x2 € s2(X) : ®(x2) = (¢k <|xk|k>> = A}

and A (®, M(X)) = A (®,X) N M (X)) are solid GDS spaces if A C s? is a
solid DS space and ® = (¢) is a sequence of moduli.

Let B = (bg;) be an infinite scalar matrix and let B be a sequence of
matrices B = (b}cj) For an X-valued sequence x = (z;) put Bx = (Byx)
and Bx = (B}x), where Byx = >, byjz; and Byx = 3, by x;. Our aim is
to determine F-seminorm topologies for the spaces of X-valued sequences x
with ®(Bx) in A, or ®(Bx) in A, if A and A are topologized by absolutely
monotone F-seminorms. Main theorems are applicable in the case if A and A
are strong summability domains of a non-negative matrix A = (a,x). Some

special cases of such spaces are considered, for example, in [1]—[4], [6]—[16],
[19] - [25], [27], [28], [30], [31], [36], [38] - [41], [43], [45] and [48] - [51]).

2. Main results

The most common summability method is the matrix method defined by
an infinite scalar matrix A = (anx). If for a sequence x € s(X) the series
Apx =) paprxy (n € N) converge and the limit lim,, A,x = [ exists in X,
then we say that x is summable to | by the method A (briefly, A-summable to
[) and write A-limxy = . A summability method (or a matrix) A is called
regular in X if for all sequences x = (x) convergent in X we have

limz, =1 = limA,x=1.
k n

A well-known example of a regular matrix method is the Cesaro method C}
defined by the matrix C; = (cn), where, for any n € N, ¢, =n~tif k<n
and ¢, = 0 otherwise. A (trivial) regular method is defined by the wunit
matriz I = (ing), where i,, = 1 and i, = 0 for n # k. Recall also that a
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matrix A = (a,y) is called normal if, for any n € N, ay,, # 0 and a,, = 0 if
k > n. For example, the Cesaro matrix C] is normal. Every scalar sequence
(cr) defines a diagonal matriz D(ci) = (dn;) by the equalities d,, = ¢, and
dp; = 0if n # 4. Clearly, a diagonal matrix D(c) is regular if and only if
limg ¢ = 1, and it is normal if ¢ # 0 for all k£ € N.

Another class of summability methods is determined by sequences B =
(B?) of infinite scalar matrices B = (b ). Recall (see, for example, [5] and
[47]) that a sequence x = (x1) € s(X) is called B-summable to the point | €
X if B-lim xy, = [ uniformly in 4, i.e., if the series Bix = >, b’ x), (n,i € N)
converge in X and

lim iBfo — li = 0 uniformly in 3.
n

The summability methods B are also known as the sequential matriz methods
(SM methods) of summability (see [17], p. 19). In the special case

i
nk —

Loifi<k<n+i-1,
0 otherwise

the B-summability reduces to the so-called almost convergence (see [34]).
The almost convergence is a non-matrix method of summability. Any matrix

method B can be considered as an SM method B with B* = B (i € N). By
the unit SM method Z we mean the SM method B with B’ =1 (i € N).

Let ef = (ef)jeN (k € N) be the sequences with the elements e;‘? = 1if

j=kand e? = 0 otherwise. If we define, for an arbitrary sequence z = (zy),

the double sequence z(?) = (z,(j)) with z,(j) = z; (k,i € N), then every

sequence e® (k € N) also determines a double sequence e*(?) = (e;?i) j.ieN such
that, for all ¢ € N, eé?i =1if j =k and e?z- =0if j # k. An F-seminormed
sequence space (A,g,) is called an AK-space, if A\ contains the sequences
e’ (k € N) and for any u = (u;) € A we have lim, g, (u — u[”]) = 0, where
ul” = Dy uge®. Analogously, an F-seminormed DS space (A, g,) is called
an AK-space (see [42]), if A contains the sequences €*?) (k € N) and for any
u? = (ug;) € A we have lim,, g, (u2 — uz[”}) = 0, where u2® = pya u,ek?
with u;, = (ug;)ieny and upef? = (Uk:z’@é?i)j,z’eN- Well-known AK-spaces are
cop and /P (p > 1) with respect to ordinary norms ||ul|sc = supy |ug| and
Jall, = (3, [uxP)/P. Tt is not difficult to see that Ucy and U (p > 1),
topologized by norms |lul|x, = ||@|le and |Jul|; = ||ul[,, are examples of
normed DS-AK-spaces.

Let ® = (¢) be a sequence of moduli. If ) is a solid sequence space, then

@) ={u= (up) € s: D(u) = (¢k (Juxl)) € A}
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is also a solid sequence space. Soomer [46] and Kolk [32] proved that if A is
topologized by an absolutely monotone F-seminorm g,, i.e., g,(v) < g, (u)
for all u,v € A with |vg| < |ug| (kK € N), then A(®) may be topologized by
the absolutely monotone F-seminorm g, ,(u) = g, (®(u)) whenever (1, g,) is

an AK-space or the sequence ® satisfies one of two (equivalent) conditions:
(M5) there exist a function v and a number § > 0 such that ¢ (ut) <
v(iu)or(t) (keN, 0 <wu <4, t>0)and lim,_o4 v(u) =0,
. ¢x(ut)
M6) lim sup su =0
( ) u—0+ t>g kp qbk(t)
In the following we prove the similar statements about the sets

A(®, B, X) = {x € s(X) : ®(Bx) = (¢>k ({kai)) € A} ,
A(®,B, X) = {x € s(X) : B(Bx) = (¢k (]B,ixi)) c A} :
A(®, B, M(X)) = {x € s(X) : Bx € M(X)} N A(®, B, X),

where the sequence spaces A\, A are solid, B is a matrix method, and B is
an SM-method of summability.

Theorem 1. If X and A are solid sequence space, then the sets A (®, B, X),
A(®,B,X) and A(®,B, M(X)) are GS spaces, i.e., linear subsets of s(X).
Moreover, A(®,B,X) and A(®,B, M (X)) are solid if

lukl < Janl = Byl < Bix] (ki € N), (1)
and \ (®, B, X) is solid if
le| < Jzx] = [Bryl < [Bix] (k€N). (2)

Proof. To prove the linearity of the set A(®,B,X), fix o, € K and
x,y € A(®,B,X). Using the linearity of the operators Bj, by axioms (M2)
and (M3) we have

on (181 (ax+ 8y)1) < on (0liBixl) + o (1811B1v1)
< (laf) + Vox (1Bixl) + (18] + Vo (1Biv])
d

for all k,7 € N, where [c] denotes the integer part of a number ¢ € R. But
this gives ax + Sy € A(®, B, X) because A is linear and solid. The linearity
of the subset A(®, B, M(X)) of A(®, B, X) clearly follows from

sup | By (ax + By) | < |a|sup |Bx| + []sup [Bry].
(2 1 (2

Now let x € A(®,B,X) and y € s(X) be such that |y| < ax] (k € N).
Since the moduli ¢y, are increasing, by (1) we get

o (1Biy]) < on (1Bix]) (ki€ 3)
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and in view of solidity of A, the sequence ® (By) is in A. Thus y €
A(®,B,X). Hence, A(®,B,X) is solid if (1) holds. The solidity of x,y €
A(®, B, M(X)) is obvious.

The statements about the set A (®, B, X) follow similarly, with By, instead
of Bj. O

An F-seminorm ¢, on a DS space A is said to be absolutely monotone if
g, (v?) < g, (u?) for all u?,v? € A with |vg,| < |ug;| (k,i € N).

Theorem 2. Let A be a solid DS space which is topologized by an abso-
lutely monotone F-seminorm g, .

a) If a sequence of moduli ® = (¢r) satisfies one of two (equivalent)
conditions (M5) and (M6), then the GS space A(®, B, X) may be topologized
by the F-seminorm

I (X) =g, (2 (Bx)).
Moreover, if g, is an F-norm on A, the space X is normed, and B satisfies
the condition
Bx=0 = x=0, (4)
then g,  is an F-norm on A(®,B, X). The F-seminorm (or F-norm) g, .
is absolutely monotone if (1) holds.

b) If (A,g,) is an AK-space, then the GS space A(®,B, M(X)) may be
topologized by the F-seminorm g, 5 for an arbitrary sequence of moduli .
Moreover, if g, is an F-norm in A, the space X is normed, and B satisfies
(4), then g, z is an F-norm on A(®,B, M(X)). The F-seminorm (or F-
norm) g, » is absolutely monotone on GS space A(®, B, M(X)) whenever B
satisfies (1).

Proof. a) First, we prove that g, , is an F-seminorm. Since g, is an F-
seminorm, (N1) holds by (M1). Because the operator B is linear, axiom (N2)
follows immediately from the subadditivity of ¢y, and g,. If || < 1, then by
(M3) we get

o (1Bi (0x)1) = o (Il Bix]) < ox (1Bix]) (ki € ).
Since g, is absolutely monotone,

9ne (%) = g, (o0 (BL(ax)1))) < g0 (@ (1Bix])) ) = 900 0,

i.e., (N3) is true.

To prove (N4), let x € A(®,B,X). Using the equivalence of (M5) and
(M6) (see [32], Remark 1), we may assume that & satisfies (M5). Therefore,
if lim,, oo, = 0 (o, € K), we can fix an index ng such that |a,| < § for all
n > ng. Then by (M5) we obtain

o (1BE () [) < v (o) o (1Bix])
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for all k,7 € N. So, since g, is absolutely monotone, we get

9a (@ (B (anx))) < g, (v (lan]) ® (Bx)) (n = no).

But this yields lim,, g, 5 (anXx) = 0 because lim, v (|a,|) = 0. Thus (N4)
holds and g, , is an F-seminorm on A(®, B, X).

Let g, be an F-norm and let (X, ||-[|,) be a normed space. If g, 5(x) =0,
then, using also (M1), we have

HBIZcXHX =0 (k’i € N)’

which gives x = 0 by (4). So, g, 5 is an F-norm on A (®, B, X) in this case.
Now, suppose that (1) is satisfied. Then (3) holds, and since g, is abso-
lutely monotone,

9r5(Y) = 9, ((cbk (iB;i.VD)) <y, ((cbk (iBiXi))) = gps (%)

Consequently, F-seminorm (or F-norm) g, , is absolutely monotone if (1)
holds.

b) By the proof of a) it suffices to show that the functional
Grs P MNP, B, M(X)) — K

satisfies axiom (N4). Let lim,, a;, = 0 and let x be an arbitrary element from
A(®, B, M(X)). Then ®(Bx) € A, and since A is an AK-space,

lim g, (®(Bx) — 2(Bx)" ) = 0. 5)
Using the equality
o(Bx) — ®(Bx)l" = @ (Bx _ (Bx)m) ,
by (5) we can find, for fixed € > 0, an index m such that
9 (‘I’ (BX - (Bx)[m})) <e/2. (6)

The double sequence Bx € M(X) determines the single sequence (Zj) by
Zp = sup; |Bix| (k € N). Since

lim ¢y (Jan2]) =0 (k € N)
and g, satisfies (N4), we have that
lim g, (6r (lanZyl) @) =0 (k€ N). (7)
Further, since g, satisfies (N2) and is absolutely monotone, we may write

0 (11800017) = (§5 5 01, )
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91 (o (lanBix])) &)

9x (0 (Janzi]) ).

WE

B
Il
—

NE

e
Il
—

This yields
liTrlngA (<I) (B (anx))[m}) =0

because of (7). Thus there exists an index ng such that, for all n > ng,
lom| <1 and g, (cp (\an\ (Bx)[m})) <e/2. (8)
Now, by (6) and (8) we get
gas (%) = g, (2 (B(0nx))
< g, (@ (lonl (Bx = B)™))) + g, (@ (Jonl(Bx)™))
< g, (@ (Bx— (B)"™)) + g, (@ (lal (Bx)"))

<e/2+¢e/2=¢

for n > ng. Hence, lim, g, ;(anXx) = 0, i.e., (N4) is true for g, .. O

Let A C s be a solid sequence space and let B = (by;) be an infinite scalar
matrix. Denoting by M@ the set of all double sequences x® with x € A,
and using the sequence B = (B*) of matrices B = (j;j) with the elements
b};j = by; (i € N) it is easy to see that X (®, B, X) is isomorphic to the
space A\ (®, B, X) of type A (®,B,X). In addition, if A is topologized by
an (absolutely monotone) F-seminorm g, , then the equality

9.5 (x?) =9,

defines an (absolutely monotone) F-seminorm on A2 (®, B, X). Thus, since
x € M(X) for every x € A% (®,B,X) and (/\(2) (®,B,X),g,,) is an
AXK-space if and only if (\(®, B, X),g,) is, Theorem 2 gives the following
topologization theorem for A (®, B, X).

Theorem 3. Let A be a solid sequence space topologized by an absolutely
monotone F-seminorm g, .

a) If a sequence of moduli ® = (¢r) satisfies one of two (equivalent)
conditions (M5) and (M6), then the GS space A\(®, B, X') may be topologized
by the F-seminorm

98 (X) =g (A (BX)) :
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Moreover, if g, is an F-norm on X, the space X is normed, and B satisfies
the condition

Bx=0 = x=0, 9)
then g, 5 is an F-norm on A (®, B, X). The F-seminorm (or F-norm) g, ,
is absolutely monotone if (2) holds.

b) If (A, g,) is an AK-space, then the GS space \(®, X)) may be topologized
by the F-seminorm g,  for an arbitrary sequence of moduli ®. Moreover, if
g, is an F-norm, the space X is normed, and B satisfies (9), then N
an F-norm on \(®, B, X). The F-seminorm (or F-norm) g, , is absolutely
monotone whenever B satisfies (2).

Remark 1. It is not difficult to see that in Theorems 1—-3 we may write
X instead of X whenever the matrices B' (i € N) and B are diagonal or,
more generally, whenever each row of these matrices contains not more than
one non-zero element.

Remark 2. Ghosh and Srivastava [27] considered, for one modulus ¢ and
for a sequence X of Banach spaces (Xp, | - ||[x) (k € N), the GS space

M@, X) = {x: 0(x) = (o(llzkllx)) € A},

where A is a solid sequence space. They assert (see [27], Theorem 3.1) that
if A\ is topologized by an absolutely monotone paranorm g, then

9,(%) = 9(o(x))

is a paranorm on A(¢,X). But this is not true in general. Indeed, if ¢ is
a bounded modulus and the solid sequence space f is topologized by the
absolutely monotone norm g(u) = supy, |ug|, then lo (¢, X) = s(X), and
50, loo(¢, X) contains an unbounded sequence z = (z;). If now (z,) is a
subsequence of z such that z;, # 0 and lim; ||z, ||x, = oo, then, defining

. :{<||z,ﬁrki>—1, if n="k (i€N),

0 otherwise,

we get the sequence (ay,) with lim,, a;, = 0. Since

¢ (lloww;zn; lk;) = #(1) >0 (i €N),
we have that
lim g, (anz) = limsup ||an 2i|[ # 0.
n n k

Thus g, does not satisfy axiom (N4) and, consequently, is not a paranorm on
loo (¢, X) if the modulus ¢ is bounded. Theorem 3 a) (for B = I) and Remark
1 show that if the solid sequence space A is topologized by an absolutely
monotone F-seminorm (or a paranorm with (N3)) g, then g, is an absolutely
monotone F-seminorm (paranorm) on the GS space A(¢, X) whenever (A, g)
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is an AK-space or the modulus ¢ satisfies one of the following (equivalent)
conditions:
(M5°) there exists a function v and a number § > 0 such that ¢(ut) <
v(u)o(t) (0 <wu<d, t>0)and limy, o4 v(u) =0,
. ¢(ut)
M6°) lim su = 0.
(M67) Jim, sup =2
These conditions clearly fail if ¢ is bounded, since by sup,sq ¢(t) = M < co

we have
t
sup olut) > M 'sup p(ut) =1
>0 (1) >0

for any fixed u > 0.

3. Applications related to strong summability domains

Let A = (anx) be a non-negative matrix, i.e., anr > 0 (n,k € N). We
say that A is column-positive if for any k € N there exists an index ny
such that a,, ; > 0. Obviously, any normal non-negative matrix is column-
positive, and a diagonal matrix D(ck) is column-positive if ¢, > 0 for all
k € N. A sequence u = (ug) € s is called strongly A-summable with index
p > 1 to lif lim, >, ang|ur — 1P = 0, and strongly A-bounded with index
p if sup, > ank|uglP < oo. It is clear that the set cfj[A] of all strongly A-
summable with index p to zero sequences and the set 5,[A] of all strongly
A-bounded with index p sequences are solid linear spaces and cfj[A] C (5 [A].
Moreover, the functional

1/p
ng] (u) = s%p (Zk: ank]uk]p>

is a seminorm on ¢5.[A] and c§[A], and it is a norm if A is column-positive.

Natural generalizations of sequence spaces cf[A] and (5 [A] are related to
arbitrary solid F-seminormed sequence spaces (A, g,) and (A, g, ). It is easy
to see that the sets

1/p
N[A]={ues: AYP(juP) = (Zank|uk|p) €Xp,
k neN
1/p
AP[A] = Ju? € 5 AV (ju?p) = (wa) A
k .
n, €N

are solid linear subspaces of s and s2, respectively. In addition, if F-semi-
norms g, and g, are absolutely monotone, then the functionals

() =g, (A7 () and 2 0%) = g, (A7 (7))
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define F-seminorms, respectively, on AP[A] and AP[A]. Moreover, if A is

column-positive, then 9 (or Ih, A]) is an F-norm (a norm) whenever the

space A (or A) is F-normed (normed).
As a special case of AP[A] we will consider the DS space

UNP[A] = {u2 €521 AVP (ju2P) € UA},
which may be topologized by the F-seminorm

g @) =g, (A7 (jup))

A 4]

if a solid sequence space A is topologized by an absolutely monotone
F-seminorm g, and

1/p
t k

neN

Let p = (px) be a bounded sequence of positive numbers with
r = max{l, supypr}, let B = (byx) be an infinite scalar matrix, and let
B be an SM method. For a sequence of moduli ® = (¢) and solid sequence
spaces A C s, A C 52, we consider, as some generalizations of A\P[A] and
AP[A], the sets

9

NAYT B, ®,p, X] = {x e s(X) : AYT (BP(Bx)) e A},
J

A[AY"B,8,p,X] = {x € 5(X) : AV (2P (Bx)) € A

where,

pry\ 1/7
AV @P(Bx)) = | | D an [ o [ 1D brjasl :
k J

neN
e\ 1/7

AV @PBx) = | S aw [ on | 1D byl
k J

n,i€N
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Using the equalities p = (px/r)r (k € N) and denoting by ®P/" the
sequence of moduli qﬁE/T(t) = (¢p(t))P/" (t € R, k € N), we may write
NAYT B, ®,p, X] = {x € sp(X) : ®P/"(Bx) € X"[A]}
— \"[A] (@P/", B,X) , (10)
A[AY" B, ®,p, X] = {x € s5(X) : BP/7(Bx) € AT’[A]}
= A"[A] (@P/T, B, X) . (11)
Thus, since the spaces A"[A] and A"[A] are solid, Theorem 1 shows that
)\[Al/”,B,@,p,X] and A[Al/’”,B,@,p,X] are GS spaces. Remark 1 shows
that we get the GS spaces A[AY" B, ®,p,X] and A[AY",B,®,p,X], for
example, in the special case, when B is a diagonal matrix and B is a sequence
of diagonal matrices.

The representations (10) and (11) are also useful for the topologization of
sequence spaces )\[AI/T,B,@,p,X] and A[AY" B, ®,p,X]. But first
of all, we prove an auxiliary result about the property AK of the spaces
()\p[A],gf,[AJ and (U)\p[A],gi’M])

Lemma 1. Let p > 1 and let A = (ank) be a non-negative infinite ma-

triz. Suppose that A C s is a solid AK-space with respect to an absolutely
monotone F-seminorm g, .

(i) If
ar = ((@)P)nen € X (k€N), (12)
then (AP[A], g% ) is an AK-space.

(ii) If the matriz A is row-finite (i.e., for any n € N there exists an index
kn with ap, =0 (k> ky)), and (12) holds, then (U)\p[A],ng) is an AK-
space.

Proof. The proof of statement (i) is quite similar to the proof of Lemma
1 from [33] and therefore it is omitted.

To prove (i), let u> € UNP[A]. Thus A'/? (Ju?[P) € A, and since (X, g,) is
an AK-space,

lim g, <;11/p (ju2f?) — A7 (|u2|p)[m]>

P 1/p (13)
= li#LngA 0,...,0,sup (Zam+1’k|uki|p> e = 0.
¢ k

By condition (12) and by

Al/p (|ej(2) Ip> = (sqp(anj)l/p) =a; (JeN)

neN
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we conclude that UNP[A] contains the sequences e’(?). To prove the equality
lim,,, ul™ = u in UN[A], we use the inequality

o] 1/p
9y (02 w) < Zg sup( > ||) "
7 ¢ k=m+1
/_i‘ 00 1/p
+g 0 0 Sup< Z a |u ']p>
A yeeey Uy BU s+1,k|Wki PR

¢ k=m+1
_ 1 2
- Gsm + Gsm'

Let € > 0. As g, is absolutely monotone, we have
G < g, (AV7 (ju2P) — A7 (ju2p)™)

and by (13) we get lim,, G2,,, = 0. Thus, there exists a number my € N
with

G? < e.

mo,mo

Since the matrix A is row-finite, we can find m; > mg such that for all
n=12,...,mg and ¢ € N one has

e ¢}

D anklurg? =0 (m>m),
k=m+1
which yields
G%nom =0 (m>m).

Hence, using the inequalities G%n m < G?

mo,mo (m > myg), we have that

7 (u2 - u2[m]> < Grigm T Grgm <0+e=¢
if m > m;. Consequently, lim,, ul™ = u in UN[A]. The proof is completed.
O

Now we can determine F-seminorms on GS spaces A[A'/", B, ®, p, X] and
A[AYT B, ®,p, X].

Proposition 1. Let ® = (¢y) be a sequence of moduli and let p = (py)
be a bounded sequence of positive numbers and r = max{l, sup; pr}. Let
A = (ank) be a non-negative infinite matriz and let B = (byk) be an infinite
matriz of scalars. Suppose that (X, | ]) is a seminormed space, X is a
sequence of seminormed spaces (Xi, |- |r) (k € N), and A C s is a solid
sequence space topologized by an absolutely monotone F-seminorm g, .
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a) If the sequence of moduli ®P/" satisfies one of conditions (M5) and
(M6), then the GS space AN[AY", B, ®, p,X] may be topologized by the F-

seminorm
grP,(x) = g, (AV7 (2P (Bx)).

b) If (XA, g,) is an AK-space and condition (12) holds with p = r, then
gffB 1s an F-seminorm on )\[AI/T,B,<I>,p7X] for an arbitrary sequence of
moduli ®.

If, in a) andb), g, is an F-norm, X is normed, A is column-positive, and
(9) holds, then gfﬁB is an F-norm on A\[AY" B, ® p, X]. Moreover, for a
diagonal matriz B = D(cy), we get the absolutely monotone F-seminorm (or

F-norm) g®P on the GS space )\[Al/r, D(cy), ®,p, X].

A, A,D(cg)

Proof. Statement a) follows from (10) and Theorem 3 a) because

Gugars () = g, (A7 (97 (Bx)) ")) = g, (417 (@7 (Bx)))

for any x € \"[4] (<I>p/ ", B, X). Analogously, we deduce statement b) from
(11) and Theorem 3b) in view of Lemma 1(i). O

Let us investigate the topologization of spaces of type A[Al/", B,®,p, X]
in the case A = UA.

Proposition 2. Let ¢, p, A, X, and X be the same as in Proposition 1
and let B be a sequence of infinite matrices B' = (bt ).

a) If ®P/" satisfies one of conditions (M5) and (M6), then the GS space
UNAY" B, ®,p, X] may be topologized by the F-seminorm

goP, (%) = g, (417 (2P (Bx)))
pr\ 1/7
=g, | |sup Zank o7 !Zbiﬁj!
i % ;
neN

b) Suppose that (N, g,) is an AK-space and the moduli ¢, (k € N) are
unbounded. If the matriz A is row-finite and column-positive, and (12) holds
with p =, then ¢®P  is an F-seminorm on U/\[Al/T,B, o, p, X].

UN,A,B
If, in a) and b), g, is an F-norm, X is normed, and (4) is true,

then g&is is an F-norm on UA[AI/T,B,¢,p7X]. Moreover, gg’zg is
an absolutely monotone F-seminorm (or F-norm) on the GS space

UNAY" B, ®,p,X] if B is a sequence of diagonal matrices.

Proof. Statement a) follows from Theorem 2a) in view of (11).
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b) Under our assumptions, the space (U)\T [A], g: [ A]) has the property AK

by Lemma 1 (ii). In addition, since our non-negative matrix A is column-
positive, for any fixed k there exists an index ny such that ay, > 0. Thus,
using the inequality

\ Zb?ﬂﬁﬂ
J

pr\ /7

pr\ /7
< () " sup [ D an | n |Zb ;] ;
! k
by AT (®P (Bx)) € M we get
pr\ /7
sup [ | on [ 1D 0k, < oo0.
J

7

But this yields
sup|Zb}'€jxj] <oo (keN)
g
because the moduli qbg/r(t) = (¢x(t))P*/"  (k € N) are unbounded. Conse-

quently, for any x € UNAY", B, ®, p, X] we have Bx € M(X). Hence, by
equality (11) we have

UNAY", B, ®,p, X] = UN'[A] ((I)P/",B,M (X)) ,
and b) follows from Theorem 2Db). O

4. Some special cases

In the following we apply Propositions 1 and 2 for the topologization of
GS spaces

A4, B, ®,p, X] = {x € s(X) : A(®P(Bx)) € A},
UNA, B,®,p, X] = {x € s(X) : A(DP(Bx)) € U\},

where

A(®P(Bx)) Zank b

A((I)p BX Zank gf)k ( Zb@fﬂ

).
s
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In the special case p, =1 (k € N), the following corollaries of Proposi-
tions 1 and 2 are obvious.

Corollary 1. Let A, B, X, X, and X be the same as in Proposition 1.
a) If the sequence of moduli ® satisfies one of conditions (M5) and (M6),
then the GS space

AMA, B, @, X|={xes(X): A(®(Bx)) € A\}
may be topologized by the F-seminorm

Iy ap (X) =g, (A( (Bx)))

=g [ | D am [ & [ 1D bayal
k J neN

b) If (A, g,) is an AK-space and condition (12) holds with p = 1, then

® s an F-seminorm on A[A, B, ®, X| for an arbitrary sequence of moduli

g,\,A,B

.

If, in a) and b), g, is an F-norm, X is normed, A is column-positive,
and B satisfies (9), then Gy ap S an F-norm on A, B, ®, X]. Moreover,
g;bA , 158 an absolutely monotone F-seminorm (or F-norm) on the GS space
MA, B, ®,X] if B is a diagonal matriz.

Corollary 2. Let &, A, X, X, and B be the same as in Proposition 2.
a) If @ satisfies one of conditions (M5) and (M6), then the sequence space
UMNA, B, ®, X| may be topologized by the F-seminorm

gg)A,A,B (x) = gx (‘Zl (@ (Bx)))

=g, | [5up ank | o | 1D brjasl
Yok J neN

b) Suppose that (A, g,) is an AK-space and the moduli ¢, (k € N) are
unbounded. If the matriz A is row-finite and column-positive, and (12) holds
with p =1, then gS/\,A,B is an F-seminorm on UNAY", B, ®, X].

If, in a) and b), g, is an F-norm, X is normed, and B satisfies (4), then
gg’A,A’B is an F-norm on U)\[Al/r, B, ®, X]. Moreover, gg’A,A’B is an absolutely
monotone F-seminorm (or F-norm) on the GS space UNAY", B, ®,X] if B
s a sequence of diagonal matrices.

First investigations of spaces of type A[A, B, ®, X| are related to the case
B=1and ¢ =¢ (k€ N). Ruckle [44] considered the space

UL gl ={u€s: ) o|uxl) < oo}
k
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and Maddox [35] introduced the sequence spaces ¢o[C1, ¢] and £ [C1, ¢]. The
spaces A[4, ¢] and A\[C1, ¢, X] (X is a Banach space) are studied, respectively,
in [10] and [11]. Corollary 1 allows to determine F-seminorm topologies for
sequence spaces from [15] and [20]. It also extends Theorem 2.6 of [9], which
determines the paranorm gﬁ(,(s) ,on AMD(k™*),1,¢,X]if s >0 and X is a

Banach space with the property AK.

Further corollaries of Propositions 1 and 2 deal with the sequence p and
are related to A € {ls, co, £"}. Tt is clear that ¢ and ¢y are solid se-
quence spaces with the absolutely monotone norm |lul|oc = supy, |ux|. Since,
moreover, (co, || - [|oo) is an AK-space, and for A € {{, co} we have

(lurl) € A <= (lw|) €A (¢ >0),
Proposition 1 immediately yields the following corollary.

Corollary 3. Let ®, p, A, X, X, and B be the same as in Proposition 1.
a) If the sequence of moduli ®P/" satisfies one of conditions (M5) and
(M6), then the GS space lx]|A, B, ®,p, X| may be topologized by the F-

seminorm

PR\ /7
goP L (x) = sup (A (P (Bx))) = sup > a6 [ 1D byl
k J
b) If the matriz A is such that
lima,, =0 (k€ N), (14)

then gi”g’B is an F-seminorm on co[A, B, ®,p, X| for an arbitrary sequence
of moduli ®.
If, in a) and b), the space X is normed, A is column-positive, and B
satisfies (9), then g<1>,1: 5 s an F-norm. Moreover, gq”: Dlen) is an absolutely
0,A, 0,A,D(cy,
monotone F-seminorm (F-norm) on co[A, D(ck), @, p, X].

We may consider the space ([A, B, ®, p, X| as the space £"[AY/" B, ®, p, X].
So, since ¢" is solid AK-space with respect to the norm |uf, = (3_, k)M
Proposition 1b) gives the following corollary.

Corollary 4. Let @, p, A, X, X, and B be the same as in Proposition 1.
If the matriz A is such that

> lank| <00 (kE€N),



196 ENNO KOLK

then

1/r
9rs = <Z AT (9P (Bx)) |T>

pe\ 1/

Z Zank o izbkjfvj\'
n k 7

is an F-seminorm on ([A, B, ®,p, X| for an arbitrary sequence of moduli ®.
If the space X is normed, A is column-positive, and (9) holds, then g?ApB

1s an F-norm. Moreover, g1 AD( ) is an absolutely monotone F-seminorm

(or F-norm) on ([A, D(cg), ® p,X]

The GS spaces from Corollaries 3 and 4 have been studied earlier in the
special cases when the role of matrix A was played not only by C; and
different diagonal matrices, but also by the matrix of de la Vallée-Poussin
and by the matrix of lacunary strong convergence. Recall that if d = (dy)
is a non-decreasing sequence of positive numbers tending to co with d; =1
and dp4+1 < dp, + 1, then the matriz of de la Vallée-Poussin Vg = (vng) is
defined by the equalities vy, = 1/d, if k € [n —d, + 1,n] and vy, = 0
otherwise. Further, a sequence of integers § = (k;) is called lacunary if
kg = 0,0 < kj < kjy1 and hj = kj —kj_1 — o0 as j — oo. A sequence
u = (uy) is said to be lacunary strongly convergent to a number [ if (see [26])

lijm 1h; > fui—1[=0.

i€ (kj—1,k;]

Thus, given the matrix Ny = (wj;) with wj; = 1/h; if i € (kj_1, k;] and by
wj; = 0 otherwise, the lacunary strong convergence is precisely the strong
Np-summability. It is clear that both matrices V; and Ny are regular and
column-positive. Moreover, Vy is normal and reduces to C7 for d,, = n.

Corollary 3 permits to define, for example, an F-seminorm on the sequence
spaces co[Vy, B, ¢, p] and ¢ [Vy, B, ¢, p] from [16], and an F-norm on the GS
space ¢o[Ng, I, ®, X| which is considered in [41] for a Banach space X. Corol-
lary 3 also contains, as special cases, the results about the topologization of
some sequence spaces of type ¢4, I, ¢, p| from [10], [14], and [39].

In Theorem 1 of [14] it was asserted that for any non-negative regular
matrix A the space ([A, I, ¢; p] may be topologized by the paranorm

1/r
9 (w) = sup (Zank (lur))? ) :

if infz pr > 0. But it is possible to prove, as in Remark 2, that this is
not true for a bounded modulus ¢ if A = I, and p, = 1 (k € N). By
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Corollary 3a) we can say that giﬂ is an F-seminorm (or a paranorm) on
lx|A, 1, ¢, p| for any non-negative matrix A whenever the sequence of moduli
¢PE/(t) = (p(t))P*/" (k € N) satisfies one of conditions (M5) and (M6). If
infp pr > 0, then it suffices to assume that the modulus ¢ satisfies one
of conditions (M5°) and (M6°). In the case pp = 1 (k € N) this result
completes Theorem 10 (ii) of [10]. We also remark that Corollary 3b) gives,
for pr =1 (k € N), an F-seminorm on the sequence space co[Ny, B, ®] from
[15].

Corollary 4 generalizes the results from [6], [12], and [13], where the para-
norm topologies are defined on ([A, B, ®,p, X] provided ¢, = ¢ (k € N)
and A= D(k™*), s > 0.

Many papers from the mathematical literature are devoted to the in-
vestigation of sequence spaces from Corollaries 3 and 4 in the case when
the matrix B is determined by various differences of sequences. For fixed
m,n € N the difference operator AT is defined by (see [49])

ATx = (AMzp), ATz, = A" gy — A gy, Alzp =2, (keN).

n

The difference operator A™ = A" was introduced already in [31] (m=1) and
[25]. If v = (vg) is a fixed sequence of nonzero numbers, then vA]" denotes
the difference operator defined by vA"x = (AMvpzy).

Since

m
m if ™M
VA T = lzg( 1) (z )vk_,_mxk+m (k e N),

vA7T" is the summability operator defined by the difference matriz vA]' =
(v0y;), where vog; = (—1)"("M)v; if j = k+ni, (0 < i < m, k € N) and
vdy; = 0 otherwise. It is not difficult to see that (9) fails if B is a difference
operator vAT". Therefore, by means of Corollaries 3 and 4 it is not possible
to determine F-norms in the case B = vA]'. To overcome this difficulty
we use a new class of summability matrices which contains all difference
matrices.

Let m > 0 be a fixed integer. Following [33], we say that an infinite scalar
matrix B = (by;) is m-normal if, for any k € N, by 1 # 0 and by; = 0 if
i > k + m. By this definition, 0-normal matrices are just normal matrices.
For example, the difference matrix vA" is nm-normal and vA™ is m-normal.
Now, if the matrix B is m-normal, then Bx = 0 and x € sg(X) imply x =0
whenever 1 = --- = x,,, = 0. This approach and the definitions of norms
from [31] and [25] lead us to the following proposition which complements
Proposition 1 and Corollaries 3 and 4.

Proposition 3. Let ®, p, A, and X be the same as in Proposition 1.
Assume that B is an m-normal infinite matriz with m > 1.
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a) If the solid sequence space X is topologized by an absolutely monotone
F-seminorm g, , then statements a) and b) of Proposition 1 hold with

m
GePL(0) =) Jzil + 9vP (%)
i=1

instead ofgf;{fB (x). Then QEZEB is an F-norm on A[A, B, ®,p, X| whenever
g, is F-norm, X 1is normed, and A is column-positive.
b) Statements of Corollaries 3 and 4 are true with

m

GPa () = luil + 970, (), v e oo 1}

i=1
instead ofgf’;\pB (x), v e {oo, 1}. If X is normed and A is column-positive,

then these functionals determine F-norms, respectively, on lo[A, B, ®, p, X],
co[A, B, ®,p, X]|, and ([A, B, ®,p, X].

In 1) and 2), the term > ", ]a:,\ may also be replaced with the expression

max;—1,__m |;| or, more generally, with the expressions » ;- @i (\xzo or
Max;—1,..m Pi (]aﬂ), where p; (i =1,...,m) are moduli.

For example, the authors of [1], [21], and [22] determine paranorms of type
ggfng on some GS spaces ¢4, B, ®, p, X| with B = vA™. At the same time
the various spaces of type co[A,vA™, @, p, X| and ([A,vA™, &, p, X]| from
2], [3], [4], [8], [20], [24], [43], and [48] are topologized, as in Corollaries 3

and 4, by the paranorms g:p’p (x) (v € {00, 1}). Proposition 3b) allows

LA pA™
us to define alternative paranorms (or F-seminorms) in the form QE”APU am
(v € {1, co}) on all these spaces. In addition, Corollary 3 and Proposition
3b) determine F-seminorm (or paranorm) topologies on the spaces of type
lo[A,vA™, @, p, X] from the papers [1], [2], [4], [8], [20], [21], [22], [24], and
[43].

Tripathy, Mahanta, and Et [50] consider the generalized sequence space
m(y, p)[I, A", ¢, X], where (m(¢,p), gmepp)) (1 < p < o0) is the solid
Banach space defined in [51] by means of a special non-decreasing sequence
Y = (¢r). Theorem 2 of [50] asserts that in’p),l’w is a paranorm on

m(, p)[I, A", ¢] for any modulus ¢. Besides this, Tripathy and Chandra
([48], Theorem 3.2) assert that the sequence space foo[I, D(ck)AL, ¢, p] may
be topologized by the paranorm ¢®P for every modulus ¢. But these

oo,I,D(ck)A,l.L
assertions are not true in general. Indeed, if p=n=1and ¢y =k (k €N),
then (see [51], Corollary 11) m(v,p) = loo With gpyp) = || - |lo- Hence
m(¢, p)[I, A", ¢, K] reduces to the space

loolI, A, 9] = {u=(u)es: Alue loo(9)}
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and
G0 yran (W) = ] + sup (| A i)
Analogously, for n = 1 and pp = ¢ = 1 (k € N), lo[l, D(ci)A}, ¢, P]
reduces also to foo[I, Al, ¢] with
900 ey, = SUPS(A k).
Therefore, if the modulus ¢ is bounded, then £, [I, A, ¢] = s and we can

prove, as in Remark 2, that giw oLAT and g‘“; L are not paranorms.
) LR} oo

Proposition 3a) and Corollary 3 a) show that Theorem 2 of [50], and Theo-
rem 3.2 (about £ [I, D(ck)AL, ¢, p]) from [48], are true whenever the mod-
ulus ¢ satisfies one of conditions (M5°) and (M6°).

Let us apply Proposition 2 and Corollary 2 to define F-seminorms and
F-norms on the GS spaces

Pk
Ul A, B, ®,p, X]= XES(X):SHpZCLnk Ok ]beﬂxﬂ < o0
n,t L j
and
Ucp[A, B, ®,p, X]={x € s(X) : A(PP(Bx)) € Ucy}
:MCO[A787¢7P7X] ﬂuco[A,B,CI),p,X],
where

Mcpl[A, B, ®,p, X|={x € s(X) : A(PP(Bx)) € M(X)},

Pk
uco[A, B, ®,p, X]=< x € s(X) :liﬁnZank Ok ]Zb}wx]] =0
k J
uniformly in i} .
Taking into account the inclusion
UcylA, B, ®,p, X] C Ul[A, B, ®,p, X], (15)

from Proposition 2 we get the following result.

Corollary 5. Let &, p, A, B, X, and X be the same as in Proposition 2.
a) If ®P/" satisfies one of conditions (M5) and (M6), then on the GS space
Ul[A, B, ®,p, X| we may define the F-seminorm

Pk

9250 =sp > am | b | 1Dy
) k .7
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b) If the moduli ¢, (k € N) are unbounded, and the row-finite and
column-positive matriz A satisfies (14), then giﬂﬁ is an F-seminorm on
the space UcylA, B, @, p, X].

If, in a) and b), X is normed and B satisfies (4), then giﬁﬁ is an
F-norm. Moreover, 92’33 is an absolutely monotone F-seminorm (or F-

norm) on Ucy[A, B, (I>,p; X] if B is a sequence of diagonal matrices.

Corollary 5 permits to determine F-seminorms (or paranorms), for exam-
ple, on the spaces Ul [Vi, Fey, @, X| and Ucy[Vy, Fey, @, X] from [28], and
also on similar spaces from [30].

For an infinite matrix B = (b,y) let B be the sequence of matrices Bi =
(bptik)nken (i € N). In this case we have Bx = (By4iX)n,ien, which, for

~

B =1, gives Ix = (Zp+i)n,icN. We can prove a stronger variant of Corollary
5b) under the assumption that pp = 1, ¢p = ¢ (k € N), A = (7 and
B = B. Then the GS space uco[A, B, ®, p, X]| reduces to (for the case B = I
and X = K see [40])

n
umwh3¢ﬂjz{xedxwhmn*§j¢ﬂmﬁqﬂ)=0
n
k=1
uniformly in i} .
Proposition 4. Let B = (b,) be an m-normal infinite matriz such that
K = inf,, |byy| > 0 and there exists an index jo > m with by, = 0 (k <
n+m — jo, n > jo —m). The functional

g® (x) = sup n1 zn: b (‘Bkﬂ,lx]) = sgp¢ (]kao

c0,C1,B n,i —1

defines an F-seminorm (F-norm if X is normed and m = 0) on the GS space
uco[Cy, B, ¢, X] if and only if the modulus ¢ is unbounded.

Proof. Since x € uco[Cl,é, ¢, X] means that the sequence ¢(Bypx) =
(gb (|ka|)) is almost convergent to zero, but every almost convergent se-
quence is bounded (see [17], Theorem 1.2.18), we clearly have

uco[Cy, B, ¢, X] = Ueo[Ch, B, ¢, X]. (16)
Moreover, by
n
6 (Bix]) < supnt 376 (1Briax) < swpo ([Bixl) (1€ W),
" k=1
we get

9, 50 =56 ([Bix]) (17)

00,C1,B
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Sufficiency. If the modulus ¢ is unbounded, then g¢ . is an F-seminorm
0,01,

on uco[C1, B, ¢, X] by Proposition 3b) because the matrix C) is normal
and regular. In particular, since 0-normal matrix is normal and every nor-
mal matrix B satisfies (9), the functional g¢ o, 5 defines an F-norm on
c0,C1q,
uco[Cy, B, ¢, X] if X is normed and m = 0.
Necessity. Assume that g o 5 18 an F-seminorm on ucy [Cy, B, ¢, X] and
c0,C1,
define (see [35])
n
g = {u=(u) €s:limn~"! Z |uk+i—1] = 0 uniformly in i}.
n
k=1

If v = (vg) is the sequence of numbers

1, f k=2 (jeN)
v =
F 0 otherwise,

then for 27 < n < 2911 we have

n n .
_ _ J+1 .
supn ! E |Ug+iz1] < n ! E lvg+1] < = — 0 as j — o0,
¢ k=1 k=1

and so, v € wg. By means of v, using a fixed element yy € X with iyoi =1,
we consider the X-valued sequence y = (yx), yx = kvgyo (k € N). Now,
assuming that the modulus ¢ is bounded and M = sup;.,¢(t), by the
inequalities

¢ (lnl) <o(k) < Mue (keN)

we get ¢(y) € wp because Wy is solid sequence space. Further, the equality
Bz = y clearly determines a new X-valued sequence z = (zi) with z; =
-++ =z, = 0. This sequence z is unbounded, since we can find an index ig
such that, for i > 7,

B2iz = b2i72i2’2i = Yoi = 213/0,

and so, izy-i = 2'|bgi gi| 7t > 2'/K if i > ig. Moreover, z € uco[Cl,§,¢,X]
by the representation

uco[Ch, B, ¢, X] = tig(B, ¢, X).

Thus, as in Remark 2, using equality (17) we can show, that g¢ 5 does

0,C1,
not satisfy axiom (N4), i.e., it is not an F-seminorm. (]

Assumptions of Proposition 4 are clearly satisfied for B = I and B = A™.
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Corollary 6. The functional

g¢ (x) = sup n ! zn: o (]g;kﬂ-,ﬂ) = s%p 10) <\$k\>
Tt k=1

oo,Cl,f

defines an F-seminorm (F-norm if X is normed) on the GS space

uco[C1, 1, ¢, X] = {x € s(X) : limn~" Z¢(|xk+z_1]) =0 uniformly in i}
k=1

if and only if the modulus ¢ is unbounded.

Et ([23], Theorem 2.3) asserts that the sequence space

[¢, o, p](A™) = {u €s: li}ln 1/nz (¢ (JA™up4]))P* = 0 uniformly in 2}
k=1

may be topologized by the paranorm

n 1/r
ga(u) = sup (Z (¢(Amuk+i|))p’“>

mi \ k=1
for any modulus ¢. Proposition 4 (with B = A™) shows that this is not true
if ¢ is bounded, since the space [¢, ¢, p](A™) reduces, for pp =1 (k € N),
to uco[Cr, A™, ¢, K] with ga = ¢® e Corollary 6 allows us to say that
c0,C1,A™

similar inaccuracies may be found in theorems about the topologization of
various spaces of type ucy[4, B, ®, p, X| from [7], [19], [36], [38], and [45],
because all these spaces contain ucy[C1, I, ¢, X] as a special case.

Remark 3. For the topologization of GS spaces ucy[A, B, ®,p, X| by
F-seminorms (or paranorms) gq”g 5 1t is necessary that

UCO[A,B,@,I),X] C UEOO[A787(I)7an] (18)
or, equivalently,
UC(_)[A,B, (I)vp’X] = UC()[A,B, (I)ap7X]

The following example shows that (18) is not true in general. Let A; = (ank)
be the Cesaro matrix C1 = (¢px) which is modified by setting c1p =0 (k >
2), and let ® = (¢1, ¢, ¢, ...) be the sequence of moduli, where ¢;(t) =

and ¢ is a bounded modulus. Then the unbounded sequence y, defined in
the proof of Proposition 4, belongs to ucg[A1, f, o, X| because, for n > 2, we

have .
> andr (iykﬂ'—ﬂ) =n"'Y ¢ (iyk+i—1i> :
k k=2
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But since (for n = 1)
SUp » _ a1xdr (|yk+z‘—1\) = sup |y;| = oo,
7 k 7

y is not in Ul [A1, f, ®, X|. This example allows us to state that the proofs
of inclusions (18) from [19], [38], and [45] are not convincing, and the cor-

rectness of the definition of functional gi’g 5 in [7] remains actually open.
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