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A remark about the positivity problem of fourth
order linear recurrence sequences

Vichian Laohakosol and Pinthira Tangsupphathawat

Abstract. Consider a fourth order linear recurrence with integer co-
efficients whose characteristic polynomial has two distinct real and a
complex conjugate pair of roots. A new proof showing that its positivity
problem is decidable is given for the case where there is exactly one real
root having the same absolute value as the two complex conjugate roots.

1. Introduction

By a linear recurrence sequence (un)n≥0 of order h ∈ N, h ≥ 2, we mean
here a sequence satisfying

un = a1un−1 + a2un−2 + · · ·+ ahun−h (n ≥ h), (1.1)

where a1, a2, . . . , ah ( 6= 0) and the initial values u0, u1, . . . , uh−1 are given in-
tegers. An important decision problem related to linear recurrence sequences
is the Positivity Problem: are all the terms of such a linear recurrence se-
quence positive? At present, this problem remains open. However, certain
partial results have already appeared, viz., the Positivity Problem for se-
quences satisfying a second order linear recurrence relation was shown to be
decidable by Halava–Harju–Hirvensalo [5] in 2006. The Positivity Problem
for sequences satisfying third and fourth order linear recurrences was shown
to be decidable in [6], [11] and [12], respectively, see also [9, 10]. As pointed
out by Professor J. Ouaknine in a private communication, there is a gap in
the proof of Claim 2 on page 141 of [11]. Our objective here is to repair
this gap and a few loose arguments by giving a new proof, supplementing
the works in [11, 12], that the positivity problem for a fourth order linear
recurrence sequence is decidable for one of the hardest cases where its char-
acteristic polynomial has two distinct real and a complex conjugate pair of
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roots, and exactly one real root has the same absolute value as the two com-
plex conjugate roots. The proof, though different in some details, uses the
same approach as in [10], i.e., invoking upon a deep result about linear forms
in logarithms, and was suggested by Professor J. Ouaknine.

Let us recall some facts about recurrence sequences; for general references,
see [8] or [4]. The characteristic polynomial associated with the relation (1.1)
is

Char(z) := zh − a1zh−1 − · · · − ah−1z − ah.
Let λk ∈ C \ {0} (k = 1, . . . ,m) be all the distinct roots with multiplicities
`1, . . . , `m, respectively, of Char(z), so that `1 + · · ·+ `m = h. Each sequence
element satisfying (1.1) can be written as

un =
m∑
k=1

Pk(n)λnk (n ≥ 0)

with Pk(n) ∈ C[n] \ {0}, degPk = `k − 1 (k = 1, . . . ,m). The roots of
Char(z) having the largest absolute value are called dominating roots. Such
roots play a crucial role in the positivity of the sequence (un) as witnessed
in the following result of Bell–Gerhold, [2, Theorem 2], which helps reducing
considerably the number of cases to be considered.

Lemma 1.1. Let (un) be a nonzero recurrence sequence with no positive
dominating characteristic root. Then the sets {n ∈ N : un > 0} and {n ∈
N : un < 0} have positive density, and so both sets contain infinitely many
elements.

Some auxiliary results are also needed and we list them now.

Lemma 1.2 (see [11], Lemma 2.2). Let ϕ, θ ∈ [−π, π) with θ /∈ {−π, 0}.
I. If θ = sπ/t is a rational multiple of π where s, t (> 0) ∈ Z \ {0},

gcd(s, t) = 1, then, as n varies over N∪{0}, the function cos(ϕ+nθ)
is periodic and takes at most 2t explicitly computable distinct values
corresponding to n = 0, 1, . . . , 2t− 1.

II. If θ is not a rational multiple of π, then, as n varies over N ∪ {0},
the range of values of cos(ϕ+ nθ) is dense in [−1, 1].

III. The function cos(ϕ+ nθ) takes both positive and negative values for
infinitely many n ∈ N ∪ {0}.

Lemma 1.3 (see [11], Claim 1, p. 140). Let θ, ϕ ∈ [−π, π], θ /∈ {−π, 0}.
If θ is not a rational multiple of π, then there is at most one integer N ∈
N0 := N ∪ {0} such that

1 + cos(ϕ+Nθ) = 0. (1.2)

Lemma 1.4 (see [1]). Let α1, . . . , αm ∈ C be algebraic numbers different
from 0 or 1, and let b1, . . . , bm ∈ Z. Write

Λ = b1 logα1 + · · ·+ bm logαm.
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Let A1, . . . , Am, B ≥ e be real numbers such that, for each j ∈ {1, . . . ,m},
Aj is an upper bound for the height of αj, and B := max{|br| ; r = 1, . . . ,m}.
Let d be the degree of the extension field Q(α1, . . . , αm) over Q. If Λ 6= 0,
then

log |Λ| > −(16md)2(m+2) logA1 · · · logAm logB.

2. The result

Our purpose is to prove the following theorem, which is the case C(r1r2zz̄)
in [11].

Theorem 2.1. Let A,B ∈ R \ {0}, let C ∈ C, let λ1, λ2 ∈ R \ {0}, let
λ3 ∈ C \ R, and assume that all these numbers are algebraic numbers. If

un = Aλn1 +Bλn2 + Cλn3 + C̄λ̄n3

and λ1 = |λ3| > |λ2|, then the Positivity Problem of the sequence (un) can
be effectively solved.

Proof. This is one of the hardest cases in our earlier work [11]. Let λ3 =
|λ3|eiθ, C = |C|eiϕ where θ, ϕ ∈ [−π, π), θ /∈ {−π, 0} so that

un = λn1 {A+ 2|C| cos(ϕ+ nθ) +B(λ2/λ1)
n} .

The sequence (un) is nonnegative if and only if

A ≥ −2|C| cos(ϕ+ nθ)−B(λ2/λ1)
n (n ≥ 0). (2.1)

We consider two possibilities depending on whether θ is a rational multiple
of π.

Possibility 1: θ is a rational multiple of π. The same arguments as in
the last paragraph of [11, page 139] show that this case is decidable.

Possibility 2: θ is not a rational multiple of π. Rewrite the terms of
the sequence as

un = |λ2|n {(A+ 2|C| cos(ϕ+ nθ)) (λ1/ |λ2|)n +B(λ2/ |λ2|)n} .
The sequence (un) is nonnegative if and only if

{A+ 2|C| cos(ϕ+ nθ)} (λ1/ |λ2|)n +B(λ2/ |λ2|)n ≥ 0 (n ≥ 0). (2.2)

If |C| = 0, then un = Aλn1 + Bλn2 , which is of the form (HHH1) in [11,
Lemma 2.3], and so is decidable.

Assume henceforth that |C| > 0.

(a) If A ≤ 0, then the same arguments as in [11, part (a), p. 140] show
that this case is decidable.

(b) If 0 < A < 2|C|, then the same arguments as in [11, part (b), p. 140]
show that this case is decidable.

(c) If A > 2|C| > 0, then the same arguments as in [11, part (c), p. 140]
show that this case is decidable.
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(d) If A = 2 |C|, then (2.2) becomes

2 |C| {1 + cos(ϕ+ nθ)} (λ1/ |λ2|)n +B(λ2/ |λ2|)n ≥ 0 (n ≥ 0).

If there is N0 ∈ N ∪ {0} such that 1 + cos(ϕ + N0θ) = 0 holds, then for
(2.2) to hold we must have B(λ2/ |λ2|)N0 ≥ 0. Note in addition that N0

is unique by Lemma 1.3. Since T1(n) := 2 |C| {1 + cos(ϕ+ nθ)} ≥ 0 and
T2(n) := (λ1/ |λ2|)n →∞ (n→∞), using Lemma 2.2 below, which assures
us that even in the worst situation where the terms T1(n) tend to zero, the
product T1(n)T2(n)→∞ (n→∞), we deduce that

2 |C| {1 + cos(ϕ+ nθ)} (λ1/ |λ2|)n +B(λ2/ |λ2|)n →∞ (n→∞).

Thus, there is an explicitly computable least integer N1 ∈ N∪{0}, depending
on B,C, ϕ, θ, λ1, λ2, such that

2 |C| {1 + cos(ϕ+ nθ)} (λ1/ |λ2|)n +B(λ2/ |λ2|)n ≥ 0 for all n ≥ N1.

Using all the obtained information, we conclude that (2.2) holds if and only
if N1 = 0. �

There remains to prove the following lemma, which is Claim 2 in [11].
The proof given here makes use of Lemma 1.4.

Lemma 2.2. Keeping the notation in the statement and in the proof of
Theorem 2.1, and in particular the condition of Case (d), if θ is not a rational
multiple of π and if (nk) ⊂ N∪{0} is an increasing sequence of integers such
that

1 + cos(ϕ+ nkθ)→ 0 (k →∞),

then

2|C| {1 + cos(ϕ+ nkθ)}
(
λ1
|λ2|

)nk

+B

(
λ2
|λ2|

)nk

→∞ (k →∞). (2.3)

Proof. For each nk ∈ N ∪ {0}, since

2`kπ < ϕ+ nkθ ≤ (2`k + 2)π for some suitable `k ∈ Z,

using θ, ϕ ∈ [−π, π), θ /∈ {−π, 0}, we have that there exists `k ∈ Z with

−nk + 1

2
− 1 ≤ `k <

nk + 1

2
(2.4)

such that ϕ+ nkθ − (2`k + 1)π ∈ (−π, π]. Since

1 + cos(x+ π) ≥ |x|
2

2!
− |x|

4

4!
≥ 1

20
|x|2 for all x ∈ (−π, π],
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we have, for k sufficiently large,

1 + cos(ϕ+ nkθ) = 1 + cos(ϕ+ nkθ − (2`k + 1)π + π)

≥ 1

20
|ϕ+ nkθ − (2`k + 1)π|2

=
1

20

∣∣∣∣log

(
C

|C|

)
+ nk log

(
λ3
|λ3|

)
−(2`k + 1) log(−1)|2 .

(2.5)

Since the coefficients A, B, C and the roots λ1, λ3 are nonzero algebraic
numbers with λ3/|λ3| = λ3/λ1 6= 1, by Lemma 1.4, we have∣∣∣∣log

(
C

|C|

)
+ nk log

(
λ3
|λ3|

)
− (2`k + 1) log(−1)

∣∣∣∣ > max (nk, 2`k + 1)−c

(2.6)

for some positive constant c independent of k. Since λ1/|λ2| > 1 and

B(λ2/ |λ2|)nk = ±B,

using (2.5), (2.6) and (2.4), the desired result (2.3) follows. �
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