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Algebraic trigonometric values at rational
multipliers of 7

PINTHIRA TANGSUPPHATHAWAT

ABSTRACT. The problem of finding all algebraic values of a € [—1,1]
when arccos o, arcsin « and arctan « are rational multiples of 7 is solved.
The values of such « of degree less than five are explicitly determined.

1. Introduction

Rational and higher degree algebraic values of the cosine function have
been of much interest for quite some time, cf. [4, 3, 8, 10]. As early as
1933, Lehmer [4] proved that if k/n, n > 2, is an irreducible fraction, then
2 cos(2mk/n) and 2sin(27k/n) are algebraic integers of degree ¢(n)/2, where
©(n) is the Euler’s totient function. Lehmer’s proof makes use of cyclotomic
polynomials. As a consequence, we have [7, Theorem 6.16, pp. 308-309]: let
0 = rm be a rational multiple of . Then cos 6, sinf and tané are irrational
numbers apart from the cases where tan 6 is undefined, and the exceptions

cos® = 0,+1/2,+1; sinf = 0,£1/2, +1; tanf = 0, +1.

Recently, Varona [10] proved that if » € Q N [0,1] then arccos(y/r) is a
rational multiple of 7 if and only if » € {0,1/4,1/2,3/4,1}. His proof is
elementary and is similar to the proof of [1, Theorem 4, p. 32].

In Section 2, we push further the result of Varona, using elementary
trigonometric identities, to find all possible nonnegative rational and some
quadratic (i.e., algebraic of degree 2) values of the cosine function at rational
multiples of w. In Section 3, we adopt the approach of Lehmer in [4], i.e.,
using cyclotomic polynomials, to determine all other algebraic values. All
algebraic values of degree less than 5 are explicitly worked out. In the last
section, we consider the same problem for the sine and tangent functions.
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2. Nonnegative rational and some quadratic cosine values

From the well-known trigonometric identities 2 cos 26 = (2 cos §)? — 2 and
2cos(n + 1)8 = (2cosh)(2cosnb) — 2cos(n — 1)8 (n € N), using an idea
from [7, Theorem 6.16, pp. 308-309], it follows that there exists a monic
fn(z) € Z]z] of degree n such that

2cosnb = f(2cosb). (2.1)
Clearly,

filz) =z, fox) = 2" =2, for1(z) = 2fu(z) = far(z) (nEN). (22)
The polynomials f,(x) are closely related to the Chebyshev polynomials of
the first kind ([2, pp. 61-63]) defined by

To(z) =1, Ti(z)=z, Thpi1(z)=22T,(x)—Th-1(x) (n>1),

ie., fn(2x) =2T,(x).
Taking 6 = 2k7/n, k € N, in (2.1), we get

fn(2cos(2km/n)) —2 = 0. (2.3)
Since f,, € Z[x] is monic of degree n, we have thus proved

Theorem 2.1. If k,n € N, then 2cos(2kn/n) is an algebraic integer of
degree < n.

In [10], the author’s main idea is to take a “proof from THE BOOK” for
the case + arccos(1/y/n) (n € N, n odd, n > 3) and to do a simple variation
of the proof to analyze the case Larccos(y/7) (r € Q) that is much more
general. We now proceed analogously using Theorem 2.1 to give a simple
proof of the result in [10].

Corollary 2.2. Letr € Q with0 < r < 1. Then, the number L arccos(y/r)
is rational if and only if r € {0,1/4,1/2,3/4,1}.

Proof. Assume that < arccos(y/r) = 2k/n is a rational number. Theorem
2.1 shows then that 2,/r = 2cos(2km/n) is an algebraic integer. Thus,
4r is also an algebraic integer. Since r € Q N[0, 1], we deduce that 4r is a
rational integer in [0, 4], which implies r € {0,1/4,1/2,3/4,1}. The converse
is trivial. (]

An alternative simple derivation of Corollary 2.2 is to start from [7, The-
orem 6.16] which asserts that for » € Q, the values cos(rm) € Q only for
cos(rm) € {0,+1,£1/2}. By using cos?(z) = (1 + cos(27))/2, we get that
cos?(rr) € Q if and only if cos(2rm) € {0, 41, +1/2}. Consequently, cos?(rr)
can only take the rational values (1+0)/2, (1£1)/2 and (1£1/2)/2, so the
possible rational values for cos?(rm) correspond to the cases

cos(rm) € {0, +1, :l:l,:lzl,:lz\/g} .
2T /2 7 2
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Recall from [9, Theorem 6.6] that a quadratic integer in Q(v/d), where d
is a square-free rational integer, takes one of the following two forms:

1. all numbers of the form a4+ bv/d, where a and b are rational integers,
and

2. if d = 1(mod4), but not otherwise, all numbers of the form (a+bv/d)/2,
where a and b are odd.

This result is proved by analyzing solutions

a+bv/d
c
with a,d,c,d € NU {0}, ¢,d # 0, ged(a,b,c) = 1, of a quadratic equation
22+ s+t =0 with s,t € Z.
Extending the proof of Corollary 2.2, we obtain the following generaliza-
tion.

(2.4)

Theorem 2.3. Let
bvd
o = CH'C\f € [0,1]
with a,b,c,d € NU{0}, ¢,d # 0, ged(a,b,c) =1 and d square free. Then,
the number %arccos(a) s a rational number if and only if o takes one of
the following values

1

0=cos%, 5=cosZ, 1:(:OSO,§:(:OS7r V3 V541

T 5 =cosg, Yy =cost.
(2.5)

Proof. The sufficiency part is clear from (2.5). We proceed now to prove
the necessity part. If %arccos(a) = 2k/n is a rational number, then, by

Theorem 2.1,
2k bvd
2 cos < nﬁ> =20 =2 <a+0\[> € [0,2]

is an algebraic integer. From the shapes of quadratic integers, given in (2.4),
we must have ¢ = 2 or 4, the latter possibility occuring only when d = 1
mod 4 and a, b odd.

If ¢ = 2, then 20 = a + bV/d € [0,2]. Since a,b are nonnegative, the only
possible values of 2« are 0,1,2,v/2, /3.

If c = 4,d = 1mod4, a and b odd, then 2o = (a + bv/d)/2 € [0,2]
implying that the only possible value of 2a is (1 + v/5)/2. O

To deal with the case where a,b are integers, we need more information
about cos(2km/n). We carry this out in the next section using Lehmer’s
results in [4].



12 PINTHIRA TANGSUPPHATHAWAT

3. General algebraic cosine values

Let n € N,n > 2 and ¢, = €2™/™. The nth cyclotomic polynomial (see,
e.g., [6, pp. 33-36]) is defined by

oo(x)= [[ @=-¢h). (3.1)
gcé(gkkﬁslzl

Clearly, deg ®,,(z) = ¢(n), where ¢ is the Euler totient function. It is well
known that ®,,(x) € Z[x]. Since the roots of ®,(z) occur in reciprocal pairs,
there is a monic polynomial 1, (x) € Z[z] of degree ¢(n)/2 such that

Un (2 + x_l) = z¢M/2 P ().
From [4, Theorem 1] and its proof, we have

Proposition 3.1. Let a € [-1,1]. If % arccos o = 2k/n € Q with k,n €
Z, n > 2 and ged(k,n) = 1, then 2o = 2cos(2km/n) is an algebraic integer
of degree p(n)/2 whose minimal polynomial is 1, (x).

Note in addition that the cases where n = 1 and 2 are trivial for cos(2km) =
1, cos(km) = (£1)*. A special case of Theorem 3.1 is the following result,
which is a slight extension of the main result in [3].

Corollary 3.2. The value of 2cos(a® b’ ), where a,b and ¢ are nonneg-
ative integers, is an algebraic integer of degree < 283352,

Moreover, 2cos(a® b’ ¢) is an algebraic integer of exact degree 283352 if
and only if ged(c, 30) = 1.

Proof. The result follows at once from Proposition 3.1 by noting that

(60%a + 60b + c)
263453 '

aoblcl/ —
(]

Proposition 3.1 also enables us to answer the problem posed at the end

wx0)

of the last section, namely, to determine when %arccos ( is rational

for a, b being any integers, and much more.
Theorem 3.3. Let a € [—1,1] Assume that %arccosa =2k/n, k € Z,
n €N, ged(k,n) = 1. Then

(i) the number 2ac = 2cos(2mk/n) is an algebraic integer of degree 1 if
and only if n = 1,2,3,4,6; in such cases, all the values taken by «

are
2
1 =cos0 = —cosm, Ozcos%zcos%r,
l—cosl—coslo—ﬂ—fcosz—w—fcosﬂr'
2 6 6 3 3’
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(ii) the number 2a = 2cos(2mk/n) is an algebraic integer of degree 2 if
and only if n = 5,8,10,12; in such cases, all values of a are

V-1 —cos2—7r—cosg—7r——cos67T ——cosM—W
4 5 5 10 10’
Vil ——cos4—7r——cos6—7r—cos2—7r—coslg—7T
4 5 5 10 10’
Q:cos—ﬁzcoslﬂr:—cos67r :—cosl(lr
2 8 8 8 8’
ﬁ—cos—ﬂ-—cosm—ﬂ——coslo—ﬂ—— 0514—#'
2 12 12 12 127

(iii) the number 2a = 2cos(2mk/n) is an algebraic integer of degree 3 if
and only if n = 7,9,14,18; in such cases all values of a are

COSE_COSHJ_—COSH)J_— 081877r
7T 7T 14 14
™ 227 47 or

COSﬁ:COSﬁ:_COS7:_COS7,

COSQJ*COS%J*—COSGI*—COSSI
14~ 14 7T 7’

COS — cos£ — 1477[- — 2277‘-
9 9 18 18’

COSf—COSi — 1077( — 267”
9 9 18 18’

COSZI_COSMJ_—COS&_—COSH]J'
18 18 9 9’

(iv) the number 2ac = 2 cos(2wk/n) is an algebraic integer of degree 4 if
and only if n = 15,16, 20,24, 30; in such cases all values of o are

1 [T =N .2 287 2%m 34«
7(1+\/5+ 6(57\/5))—cosl—5—cos 5 = TCos 55 = —cos o,

8
é(lf\/g+\/6(5+\/5)):cos%:cos%:fcos%:fcos%,
é(l—l—\/g— 6(5—\/5)):COS%ZCOS%:—COS%:—COS%,
é(l—\/g— 6(5—1—\/5)):cos?—;:cos%:—cos%:—cos?—g,
72+\/§:cos%:cos%—ﬁz—coslﬂr:—coslg—ﬁ

2 16 16 16 16’
72_\/§:<3056—7r:COS%—W:—COSIO—W:—cos22—7r

2 16 16 16 16’
710+2\/5:cos2—7r:(:0538—7T:7(4*()318—”:7(:0522—7r

4 20 20 20 20’
710_2\/5:COS@:COSMJZ—COSMJZ—COS%J

4 20 20 20 20’

V3+1 2m 467 227 267

W = COS o7 = €08 7 = — €08 - = — 08

V3-1 38m 147 34w
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Proof. The following table gives the values of n for the first four values
of ¢(n)/2. The determination of these values can be found in the paper [5]
which gives an elementary approach to solve the equation ¢(x) = k.

p(n)/2 | n
113,46
2| 5,38, 10, 12
317,09, 14, 18
4| 15, 16, 20, 24, 30

Using the values of n in the preceding table, the corresponding minimal
polynomials are shown in the next table.

n | ®,(x) Pa(t) =z +27")
32 +x+1 t+1

4| 22+1 t
5lat4+ad+22+x+1 t?+t—1
6|z2—z+1 t—1

Tlab+ad 4+t +a3+ 22 +o+1 |3 +12—-2t—1

8| zt+1 2 —2

9|8 +a3+1 3 —3t+1

10|zt —a?4+22—z+1 2 —t—1

12| 2t —22+1 t2—-3

4 |aS—2®+at—a3+22 -4+ 1 |3 -2 -2t +1
5| —a"+a -+ —a+1 |t -3 — 42 +4t+1

16 | 28 +1 th — 442 42
18| 20 — 23 +1 3 —3t—1
20 | 28 — a8+t —2?2 41 5247
24 | 28—t +1 - 42 +1

30|28 +a" —ab—at -4+l |t 43 —42 —4t+1

The stated values of o are computed by finding all the roots of () using
Mathematica. 0

Remark 3.4. The results in Proposition 3.1, Corollary 3.2, and Theo-
rem 3.3 can be transformed to those of hyperbolic cosine function by noting
that cosh(z) = cos(zi).

4. Algebraic sine and tangent values

The following results are taken from [6, Theorems 3.9 and 3.11]. They
were first considered by Lehmer [4]; however, the original Lehmer’s result
for the sine function was incomplete.

Proposition 4.1. Let a € [—1,1].
1. [f% arcsina = 2k/n € Q withk,n € Z, n > 2, n # 4 and ged(k,n) =
1, then 2a = 2sin(2kw/n) is an algebraic integer of degree p(n),
w(n)/4 or ¢(n)/2 according as ged(n,8) < 4, ged(n,8) = 4 or
ged(n, 8) > 4.
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II. If % arctana = 2k/n € Q with k € Z, n > 2, n # 4 and ged(k,n) =
1, then 2a = 2tan(2km/n) is an algebraic integer of degree ¢(n),
w(n)/2 or ¢(n)/4 according as ged(n,8) < 4, ged(n,8) = 4 or
ged(n, 8) > 4.

The cases when n = 1 and n = 2 are trivial for 0 = sin(2k7) = sin(kw) =
tan(2km) = tan(km), and the case when n = 4 is also trivial for sin(kn/2) €
{—1,1} and tan(k7/2) = 0 or undefined.

Using Proposition 4.1 and Theorem 3.3, all algebric values of degrees < 5
of the sine and tangent functions are given in the following theorem, whose
proof is omitted.

Theorem 4.2. Let a € [—1,1].

A. Assume that %arcsina =2k/n, k€ Z,neN, ged(k,n) =1. Then

(A1) the number 2ac = 2sin(27k/n) is an algebraic integer of degree 1 if
and only if n =1,2,4,6,12; in such cases, all the values taken by «

are
. . .2 . 6
0 =sin0 = sin, —1:smz7r :sm%,
. 14w . 221 1 . 10w . 26w
—— =s8in—— =sin——, = =sin — =sin —;
2 12 127 2 12 12

(A2) the number 2ac = 2sin(27k/n) is an algebraic integer of degree 2 if
and only if n = 3,6,8,20; in such cases, all the values taken by «

are
ﬁzsini:sinm—ﬂ:—sing:—sinm—ﬂ
2 3 6 3 6’
@*sin()’—ﬂfsinm—ﬂ-*—sinlo—ﬂ-*—sinlz’t—7T
2 8 8 8 8’
\/5_1—sm£ inﬁ—fsng—f &
4 20 20 20 20’
\/ngl—sinl—ﬁ—sin%—W—fsm&—f SM—W'
4 20 20 20 20’

(A3) the number 2ac = 2sin(27k/n) is an algebraic integer of degree 3 if
and only if n = 28,36; in such cases all the values taken by o are

cos.2—7r—sin22—7r—sin62—7r——51113()—7T——s.in54—7T
7 28 28 28 28’

00561—sinss—ﬂ’—sin%—ﬂ——sinlg—ﬂ'——sm%—ﬂ-
7T 28 28 28 28’

cos6—7r*sin—*sm%—ﬂ-*—sin%—ﬂ-*—sinm—w
14 28 28 28 28’

cos2—7r*sin%—ﬂfsin&—ﬂ*—sin&l—ﬂ*—sinm—ﬂ
9 36 36 36 36’

cos——sin——smf)g—ﬂ—fsinm—ﬁ—fsin%—w
9 36 36 36 36’

707 . 46w . 627

18 M3e T M3e T 36 36’
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(A4) the number 2ac = 2sin(2wk/n) is an algebraic integer of degree 4 if
and only if n = 5,10, 16,24, 60; in such cases all values of a are

1 1 /3 2 38T 1427
(1 5) 4+ =1/ 2(5 —v5) = cos == =sin = =
8(-1—\[)-1-4 2( \f) cos ¢ n e n =5
.82 98
= —8sln —— = —sIn ——,
60 60
1 1 /3 67 1347
Z(1=V5) 4+ =4/2(5 5) = cos — = sin — = sin ———
(1=VB) 4 74/5(5+V5) = cos 5 "M760 60
. TAw 106w
= —8sln —— = —sln ———,
60 60
1 1 /3 627 1187
(1 5)— =4/ 2(5 —5) = cos — = ==
5 +v5) = 74/ 5(6 — V) = cos 5 M0 60
. 58w 1227
=—8n—— = — —_,
60 60
1 /3 14 867 947
Z(1=vV5)==4/2(5 5) = cos —— = sin —— = sin ——
(1=5) = 74/5(5+V5) = cos 15 60 60
= —sing4—7T = —sin —1467T
60 60
72+ﬁ—cos——sin— 38—7[-—— &__ 26m
2 o 16 16 16 16 16’
27\/5—005——sm— 1’134771— — & — 307T
2 - 16 16 16 16 16’
§—l—£—c052—ﬂ-—51116—7T si 14—71-——51114—7T —51n87r
8 8 20 10 10 10 5’
§—§ COSGI*SIHZLI si 22—ﬂ-*—sn&r —sn187r
8 8 20 5 5 5 10’
\/§+1_COSf_SiHMJ_SIH%J_—Slng_—Sln387r
2v/2 24 24 24 24 24’
\/g_l—coslo—w—si1122—ﬂ-—sin50—ﬂ-——si]f126—7r——sin46—7T
2/2 24 24 24 24 24

B. Assume that %arctana =2k/n, k€ Z,neN, gcd(k,n) =1. Then

(B1) the number 2a = 2tan(2wk/n) is an algebraic integer of degree 1 if
and only if n = 1,2,8; in such cases, all the values taken by « are

0 =tan0 = tanm,

1t ’7Tit o ¢ 3r ¢ T
fan4fan4f an4f an4,
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(B2) the number 2a = 2tan(2wk/n) is an algebraic integer of degree 2 if
and only if n = 3,6,12,16,24; in such cases, all the values of o are

4 2 2 10
ﬁ:tan?ﬂ:tanl:ftanl :ftan—ﬂ-,

6 3 6

2 i Can T _ian 07 22T
V3 a 12 12 12 12
147 307 2w 187
17\/5—13311176—tanﬁ—ftanﬁ—ftanﬁ,
61 227 107 267
1+\/§7tan1—67tan17677tanﬁ77tanﬁ,
2 267 227 467

2_3= ndL 28 tan 22 — _tan =5
V3 tan24 tan 2 tan 2 tan TR
107 34w 147 387
2 = — = = - _ — _ .
+ /3 =tan or = tan 5 tan tan =~

(B3) the number 2ac = 2tan(2wk/n) is an algebraic integer of degree 4 if
and only if n = 5,10, 20, 32,40,48; in such cases all the values taken
by a are

/ 27 14w 67 8
5+2\/5—tan? —tanw = ftanl— —ftang,
/ 67 27 4 187
572\/3—tan€ —tanl—o —ftan? —ftanﬁ,

75_2\/5—tanﬁ—tanm—ﬂ——tanls—ﬂ——tan%—ﬂ

5 20 20 20 20’
75—’_2\/5*tan@*tan%—ﬂ-*—tanlll—ﬂ-*—tan%—ﬂ-

5 20 20 20 20’

2w 34m 307 621
4+2\[—\/§—17tan§7tan§7—tan§7—tan§,
61 381 267 58
4—2\f—\/§+1ftan§ftang—Qf—tang—Qf—tang—Q,
/ 107 427 221 547
472\/54’\/77171]&1’157tan37277tan37277tan372,
147 467 187 507
4“1’2\/54’\/5“”1—1}&1’15—tangT—ftaHST—ftaHST.

5. Final remarks

1. As is easily checked from Proposition 4.1, II, there are no third degree
algebraic values for the tangent function.

2. The result about all possible rational values of the sine, cosine and
tangent functions derived in [8] is properly contained in Theorem 3.3, (i),
and Theorem 4.2, (A1), (B1).
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