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Algebraic trigonometric values at rational
multipliers of π

Pinthira Tangsupphathawat

Abstract. The problem of finding all algebraic values of α ∈ [−1, 1]
when arccosα, arcsinα and arctanα are rational multiples of π is solved.
The values of such α of degree less than five are explicitly determined.

1. Introduction

Rational and higher degree algebraic values of the cosine function have
been of much interest for quite some time, cf. [4, 3, 8, 10]. As early as
1933, Lehmer [4] proved that if k/n, n > 2, is an irreducible fraction, then
2 cos(2πk/n) and 2 sin(2πk/n) are algebraic integers of degree ϕ(n)/2, where
ϕ(n) is the Euler’s totient function. Lehmer’s proof makes use of cyclotomic
polynomials. As a consequence, we have [7, Theorem 6.16, pp. 308–309]: let
θ = rπ be a rational multiple of π. Then cos θ, sin θ and tan θ are irrational
numbers apart from the cases where tan θ is undefined, and the exceptions

cos θ = 0,±1/2,±1; sin θ = 0,±1/2,±1; tan θ = 0,±1.

Recently, Varona [10] proved that if r ∈ Q ∩ [0, 1] then arccos(
√
r) is a

rational multiple of π if and only if r ∈ {0, 1/4, 1/2, 3/4, 1}. His proof is
elementary and is similar to the proof of [1, Theorem 4, p. 32].

In Section 2, we push further the result of Varona, using elementary
trigonometric identities, to find all possible nonnegative rational and some
quadratic (i.e., algebraic of degree 2) values of the cosine function at rational
multiples of π. In Section 3, we adopt the approach of Lehmer in [4], i.e.,
using cyclotomic polynomials, to determine all other algebraic values. All
algebraic values of degree less than 5 are explicitly worked out. In the last
section, we consider the same problem for the sine and tangent functions.
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2. Nonnegative rational and some quadratic cosine values

From the well-known trigonometric identities 2 cos 2θ = (2 cos θ)2− 2 and
2 cos(n + 1)θ = (2 cos θ)(2 cosnθ) − 2 cos(n − 1)θ (n ∈ N), using an idea
from [7, Theorem 6.16, pp. 308–309], it follows that there exists a monic
fn(x) ∈ Z[x] of degree n such that

2 cosnθ = fn(2 cos θ). (2.1)

Clearly,

f1(x) = x, f2(x) = x2 − 2, fn+1(x) = xfn(x)− fn−1(x) (n ∈ N). (2.2)

The polynomials fn(x) are closely related to the Chebyshev polynomials of
the first kind ([2, pp. 61–63]) defined by

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1),

i.e., fn(2x) = 2Tn(x).
Taking θ = 2kπ/n, k ∈ N, in (2.1), we get

fn(2 cos(2kπ/n))− 2 = 0. (2.3)

Since fn ∈ Z[x] is monic of degree n, we have thus proved

Theorem 2.1. If k, n ∈ N, then 2 cos(2kπ/n) is an algebraic integer of
degree ≤ n.

In [10], the author’s main idea is to take a “proof from THE BOOK” for
the case 1

π arccos(1/
√
n) (n ∈ N, n odd, n ≥ 3) and to do a simple variation

of the proof to analyze the case 1
π arccos(

√
r) (r ∈ Q) that is much more

general. We now proceed analogously using Theorem 2.1 to give a simple
proof of the result in [10].

Corollary 2.2. Let r ∈ Q with 0 ≤ r ≤ 1. Then, the number 1
π arccos(

√
r)

is rational if and only if r ∈ {0, 1/4, 1/2, 3/4, 1}.
Proof. Assume that 1

π arccos(
√
r) = 2k/n is a rational number. Theorem

2.1 shows then that 2
√
r = 2 cos(2kπ/n) is an algebraic integer. Thus,

4r is also an algebraic integer. Since r ∈ Q ∩ [0, 1], we deduce that 4r is a
rational integer in [0, 4], which implies r ∈ {0, 1/4, 1/2, 3/4, 1}. The converse
is trivial. �

An alternative simple derivation of Corollary 2.2 is to start from [7, The-
orem 6.16] which asserts that for r ∈ Q, the values cos(rπ) ∈ Q only for
cos(rπ) ∈ {0,±1,±1/2}. By using cos2(x) = (1 + cos(2x))/2, we get that
cos2(rπ) ∈ Q if and only if cos(2rπ) ∈ {0,±1,±1/2}. Consequently, cos2(rπ)
can only take the rational values (1 + 0)/2, (1±1)/2 and (1±1/2)/2, so the
possible rational values for cos2(rπ) correspond to the cases

cos(rπ) ∈

{
0,±1,±1

2
,± 1√

2
,±
√

3

2

}
.
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Recall from [9, Theorem 6.6] that a quadratic integer in Q(
√
d), where d

is a square-free rational integer, takes one of the following two forms:

1. all numbers of the form a+ b
√
d, where a and b are rational integers,

and

2. if d ≡ 1(mod4), but not otherwise, all numbers of the form (a+b
√
d)/2,

where a and b are odd.

This result is proved by analyzing solutions

a+ b
√
d

c
(2.4)

with a, d, c, d ∈ N ∪ {0}, c, d 6= 0, gcd(a, b, c) = 1, of a quadratic equation
x2 + sx+ t = 0 with s, t ∈ Z.

Extending the proof of Corollary 2.2, we obtain the following generaliza-
tion.

Theorem 2.3. Let

α =
a+ b

√
d

c
∈ [0, 1]

with a, b, c, d ∈ N ∪ {0}, c, d 6= 0, gcd(a, b, c) = 1 and d square free. Then,
the number 1

π arccos(α) is a rational number if and only if α takes one of
the following values

0 = cos π2 ,
1
2 = cos π3 , 1 = cos 0,

√
2
2 = cos π4 ,

√
3
2 = cos π6 ,

√
5+1
4 = cos π5 .

(2.5)

Proof. The sufficiency part is clear from (2.5). We proceed now to prove
the necessity part. If 1

π arccos(α) = 2k/n is a rational number, then, by
Theorem 2.1,

2 cos

(
2kπ

n

)
= 2α = 2

(
a+ b

√
d

c

)
∈ [0, 2]

is an algebraic integer. From the shapes of quadratic integers, given in (2.4),
we must have c = 2 or 4, the latter possibility occuring only when d ≡ 1
mod 4 and a, b odd.

If c = 2, then 2α = a + b
√
d ∈ [0, 2]. Since a, b are nonnegative, the only

possible values of 2α are 0, 1, 2,
√

2,
√

3.
If c = 4, d ≡ 1 mod 4, a and b odd, then 2α = (a + b

√
d)/2 ∈ [0, 2]

implying that the only possible value of 2α is (1 +
√

5)/2. �

To deal with the case where a, b are integers, we need more information
about cos(2kπ/n). We carry this out in the next section using Lehmer’s
results in [4].
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3. General algebraic cosine values

Let n ∈ N, n > 2 and ζn = e2πi/n. The nth cyclotomic polynomial (see,
e.g., [6, pp. 33–36]) is defined by

Φn(x) =
∏

1≤k≤n

gcd(k,n)=1

(x− ζkn). (3.1)

Clearly, deg Φn(x) = ϕ(n), where ϕ is the Euler totient function. It is well
known that Φn(x) ∈ Z[x]. Since the roots of Φn(x) occur in reciprocal pairs,
there is a monic polynomial ψn(x) ∈ Z[x] of degree ϕ(n)/2 such that

ψn(x+ x−1) = x−ϕ(n)/2 Φn(x).

From [4, Theorem 1] and its proof, we have

Proposition 3.1. Let α ∈ [−1, 1]. If 1
π arccosα = 2k/n ∈ Q with k, n ∈

Z, n > 2 and gcd(k, n) = 1, then 2α = 2 cos(2kπ/n) is an algebraic integer
of degree ϕ(n)/2 whose minimal polynomial is ψn(x).

Note in addition that the cases where n = 1 and 2 are trivial for cos(2kπ) =
1, cos(kπ) = (±1)k. A special case of Theorem 3.1 is the following result,
which is a slight extension of the main result in [3].

Corollary 3.2. The value of 2 cos(a◦ b′ c′′), where a, b and c are nonneg-
ative integers, is an algebraic integer of degree ≤ 283352.

Moreover, 2 cos(a◦ b′ c′′) is an algebraic integer of exact degree 283352 if
and only if gcd(c, 30) = 1.

Proof. The result follows at once from Proposition 3.1 by noting that

a◦b′c′′ =
(602a+ 60b+ c)π

263453
.

�

Proposition 3.1 also enables us to answer the problem posed at the end

of the last section, namely, to determine when 1
π arccos

(
a+b
√
d

c

)
is rational

for a, b being any integers, and much more.

Theorem 3.3. Let α ∈ [−1, 1] Assume that 1
π arccosα = 2k/n, k ∈ Z,

n ∈ N, gcd(k, n) = 1. Then

(i) the number 2α = 2 cos(2πk/n) is an algebraic integer of degree 1 if
and only if n = 1, 2, 3, 4, 6; in such cases, all the values taken by α
are

1 = cos 0 = − cosπ, 0 = cos
2π

4
= cos

6π

4
,

1

2
= cos

2π

6
= cos

10π

6
= − cos

2π

3
= − cos

4π

3
;
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(ii) the number 2α = 2 cos(2πk/n) is an algebraic integer of degree 2 if
and only if n = 5, 8, 10, 12; in such cases, all values of α are

√
5− 1

4
= cos

2π

5
= cos

8π

5
= − cos

6π

10
= − cos

14π

10
,

√
5 + 1

4
= − cos

4π

5
= − cos

6π

5
= cos

2π

10
= cos

18π

10
,

√
2

2
= cos

2π

8
= cos

14π

8
= − cos

6π

8
= − cos

10π

8
,

√
3

2
= cos

2π

12
= cos

22π

12
= − cos

10π

12
= − cos

14π

12
;

(iii) the number 2α = 2 cos(2πk/n) is an algebraic integer of degree 3 if
and only if n = 7, 9, 14, 18; in such cases all values of α are

cos
2π

7
= cos

12π

7
= − cos

10π

14
= − cos

18π

14
,

cos
6π

14
= cos

22π

14
= − cos

4π

7
= − cos

10π

7
,

cos
2π

14
= cos

26π

14
= − cos

6π

7
= − cos

8π

7
,

cos
2π

9
= cos

16π

9
= − cos

14π

18
= − cos

22π

18
,

cos
4π

9
= cos

14π

9
= − cos

10π

18
= − cos

26π

18
,

cos
2π

18
= cos

34π

18
= − cos

8π

9
= − cos

10π

9
;

(iv) the number 2α = 2 cos(2πk/n) is an algebraic integer of degree 4 if
and only if n = 15, 16, 20, 24, 30; in such cases all values of α are

1

8

(
1 +
√

5 +

√
6(5−

√
5)
)

= cos
2π

15
= cos

28π

15
= − cos

26π

30
= − cos

34π

30
,

1

8

(
1−
√

5 +

√
6(5 +

√
5)
)

= cos
4π

15
= cos

26π

15
= − cos

22π

30
= − cos

38π

30
,

1

8

(
1 +
√

5−
√

6(5−
√

5)
)

= cos
8π

15
= cos

22π

15
= − cos

14π

30
= − cos

46π

30
,

1

8

(
1−
√

5−
√

6(5 +
√

5)
)

= cos
14π

15
= cos

16π

15
= − cos

2π

30
= − cos

58π

30
,√

2 +
√

2

2
= cos

2π

16
= cos

30π

16
= − cos

14π

16
= − cos

18π

16
,√

2−
√

2

2
= cos

6π

16
= cos

26π

16
= − cos

10π

16
= − cos

22π

16
,√

10 + 2
√

5

4
= cos

2π

20
= cos

38π

20
= − cos

18π

20
= − cos

22π

20
,√

10− 2
√

5

4
= cos

6π

20
= cos

34π

20
= − cos

14π

20
= − cos

26π

20
,

√
3 + 1

2
√

2
= cos

2π

24
= cos

46π

24
= − cos

22π

24
= − cos

26π

24
,

√
3− 1

2
√

2
= cos

10π

24
= cos

38π

24
= − cos

14π

24
= − cos

34π

24
.

4
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Proof. The following table gives the values of n for the first four values
of ϕ(n)/2. The determination of these values can be found in the paper [5]
which gives an elementary approach to solve the equation ϕ(x) = k.

ϕ(n)/2 n

1 3, 4, 6
2 5, 8, 10, 12
3 7, 9, 14, 18
4 15, 16, 20, 24, 30

Using the values of n in the preceding table, the corresponding minimal
polynomials are shown in the next table.

n Φn(x) ψn(t) (t = x+ x−1)
3 x2 + x+ 1 t+ 1
4 x2 + 1 t
5 x4 + x3 + x2 + x+ 1 t2 + t− 1
6 x2 − x+ 1 t− 1
7 x6 + x5 + x4 + x3 + x2 + x+ 1 t3 + t2 − 2t− 1
8 x4 + 1 t2 − 2
9 x6 + x3 + 1 t3 − 3t+ 1

10 x4 − x3 + x2 − x+ 1 t2 − t− 1
12 x4 − x2 + 1 t2 − 3
14 x6 − x5 + x4 − x3 + x2 − x+ 1 t3 − t2 − 2t+ 1
15 x8 − x7 + x5 − x4 + x3 − x+ 1 t4 − t3 − 4t2 + 4t+ 1
16 x8 + 1 t4 − 4t2 + 2
18 x6 − x3 + 1 t3 − 3t− 1
20 x8 − x6 + x4 − x2 + 1 t4 − 5t2 + 7
24 x8 − x4 + 1 t4 − 4t2 + 1
30 x8 + x7 − x5 − x4 − x3 + x+ 1 t4 + t3 − 4t2 − 4t+ 1

The stated values of α are computed by finding all the roots of ψn(t) using
Mathematica. �

Remark 3.4. The results in Proposition 3.1, Corollary 3.2, and Theo-
rem 3.3 can be transformed to those of hyperbolic cosine function by noting
that cosh(z) = cos(zi).

4. Algebraic sine and tangent values

The following results are taken from [6, Theorems 3.9 and 3.11]. They
were first considered by Lehmer [4]; however, the original Lehmer’s result
for the sine function was incomplete.

Proposition 4.1. Let α ∈ [−1, 1].

I. If 1
π arcsinα = 2k/n ∈ Q with k, n ∈ Z, n > 2, n 6= 4 and gcd(k, n) =

1, then 2α = 2 sin(2kπ/n) is an algebraic integer of degree ϕ(n),
ϕ(n)/4 or ϕ(n)/2 according as gcd(n, 8) < 4, gcd(n, 8) = 4 or
gcd(n, 8) > 4.
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II. If 1
π arctanα = 2k/n ∈ Q with k ∈ Z, n > 2, n 6= 4 and gcd(k, n) =

1, then 2α = 2 tan(2kπ/n) is an algebraic integer of degree ϕ(n),
ϕ(n)/2 or ϕ(n)/4 according as gcd(n, 8) < 4, gcd(n, 8) = 4 or
gcd(n, 8) > 4.

The cases when n = 1 and n = 2 are trivial for 0 = sin(2kπ) = sin(kπ) =
tan(2kπ) = tan(kπ), and the case when n = 4 is also trivial for sin(kπ/2) ∈
{−1, 1} and tan(kπ/2) = 0 or undefined.

Using Proposition 4.1 and Theorem 3.3, all algebric values of degrees < 5
of the sine and tangent functions are given in the following theorem, whose
proof is omitted.

Theorem 4.2. Let α ∈ [−1, 1].
A. Assume that 1

π arcsinα = 2k/n, k ∈ Z, n ∈ N, gcd(k, n) = 1. Then

(A1) the number 2α = 2 sin(2πk/n) is an algebraic integer of degree 1 if
and only if n = 1, 2, 4, 6, 12; in such cases, all the values taken by α
are

0 = sin 0 = sinπ, −1 = sin
2π

4
= sin

6π

4
,

−1

2
= sin

14π

12
= sin

22π

12
,

1

2
= sin

10π

12
= sin

26π

12
;

(A2) the number 2α = 2 sin(2πk/n) is an algebraic integer of degree 2 if
and only if n = 3, 6, 8, 20; in such cases, all the values taken by α
are

√
3

2
= sin

2π

3
= sin

14π

6
= − sin

4π

3
= − sin

10π

6
,

√
2

2
= sin

6π

8
= sin

18π

8
= − sin

10π

8
= − sin

14π

8
,

√
5− 1

4
= sin

18π

20
= sin

42π

20
= − sin

22π

20
= − sin

38π

20
,

√
5 + 1

4
= sin

14π

20
= sin

46π

20
= − sin

26π

20
= − cos

34π

20
;

(A3) the number 2α = 2 sin(2πk/n) is an algebraic integer of degree 3 if
and only if n = 28, 36; in such cases all the values taken by α are

cos
2π

7
= sin

22π

28
= sin

62π

28
= − sin

30π

28
= − sin

54π

28
,

cos
6π

7
= sin

38π

28
= sin

46π

28
= − sin

18π

28
= − sin

66π

28
,

cos
6π

14
= sin

26π

28
= sin

58π

28
= − sin

34π

28
= − sin

50π

28
,

cos
2π

9
= sin

26π

36
= sin

82π

36
= − sin

34π

36
= − sin

74π

36
,

cos
8π

9
= sin

50π

36
= sin

58π

36
= − sin

22π

36
= − sin

86π

36
,

cos
10π

18
= sin

38π

36
= sin

70π

36
= − sin

46π

36
= − sin

62π

36
;
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(A4) the number 2α = 2 sin(2πk/n) is an algebraic integer of degree 4 if
and only if n = 5, 10, 16, 24, 60; in such cases all values of α are

1

8
(1 +

√
5) +

1

4

√
3

2
(5−

√
5) = cos

2π

15
= sin

38π

60
= sin

142π

60

= − sin
82π

60
= − sin

98π

60
,

1

8
(1−

√
5) +

1

4

√
3

2
(5 +

√
5) = cos

4π

15
= sin

46π

60
= sin

134π

60

= − sin
74π

60
= − sin

106π

60
,

1

8
(1 +

√
5)− 1

4

√
3

2
(5−

√
5) = cos

8π

15
= sin

62π

60
= sin

118π

60

= − sin
58π

60
= − sin

122π

60
,

1

8
(1−

√
5)− 1

4

√
3

2
(5 +

√
5) = cos

14π

15
= sin

86π

60
= sin

94π

60

= − sin
34π

60
= − sin

146π

60
,√

2 +
√

2

2
= cos

2π

16
= sin

10π

16
= sin

38π

16
= − sin

22π

16
= − sin

26π

16
,√

2−
√

2

2
= cos

6π

16
= sin

14π

16
= sin

34π

16
= − sin

18π

16
= − sin

30π

16
,√

5

8
+

√
5

8
= cos

2π

20
= sin

6π

10
= sin

14π

10
= − sin

14π

10
= − sin

8π

5
,√

5

8
−
√

5

8
= cos

6π

20
= sin

4π

5
= sin

22π

5
= − sin

6π

5
= − sin

18π

10
,

√
3 + 1

2
√

2
= cos

2π

24
= sin

14π

24
= sin

58π

24
= − sin

34π

24
= − sin

38π

24
,

√
3− 1

2
√

2
= cos

10π

24
= sin

22π

24
= sin

50π

24
= − sin

26π

24
= − sin

46π

24
.

B. Assume that 1
π arctanα = 2k/n, k ∈ Z, n ∈ N, gcd(k, n) = 1. Then

(B1) the number 2α = 2 tan(2πk/n) is an algebraic integer of degree 1 if
and only if n = 1, 2, 8; in such cases, all the values taken by α are

0 = tan 0 = tanπ,

1 = tan
π

4
= tan

5π

4
= − tan

3π

4
= − tan

7π

4
;
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(B2) the number 2α = 2 tan(2πk/n) is an algebraic integer of degree 2 if
and only if n = 3, 6, 12, 16, 24; in such cases, all the values of α are

√
3 = tan

4π

3
= tan

2π

6
= − tan

2π

3
= − tan

10π

6
,

1√
3

= tan
2π

12
= tan

14π

12
= − tan

10π

12
= − tan

22π

12
,

1−
√

2 = tan
14π

16
= tan

30π

16
= − tan

2π

16
= − tan

18π

16
,

1 +
√

2 = tan
6π

16
= tan

22π

16
= − tan

10π

16
= − tan

26π

16
,

2−
√

3 = tan
2π

24
= tan

26π

24
= − tan

22π

24
= − tan

46π

24
,

2 +
√

3 = tan
10π

24
= tan

34π

24
= − tan

14π

24
= − tan

38π

24
;

(B3) the number 2α = 2 tan(2πk/n) is an algebraic integer of degree 4 if
and only if n = 5, 10, 20, 32, 40, 48; in such cases all the values taken
by α are √

5 + 2
√

5 = tan
2π

5
= tan

14π

10
= − tan

6π

10
= − tan

8π

5
,√

5− 2
√

5 = tan
6π

5
= tan

2π

10
= − tan

4π

5
= − tan

18π

10
,√

5− 2
√

5

5
= tan

2π

20
= tan

22π

20
= − tan

18π

20
= − tan

38π

20
,√

5 + 2
√

5

5
= tan

6π

20
= tan

26π

20
= − tan

14π

20
= − tan

34π

20
,√

4 + 2
√

2−
√

2− 1 = tan
2π

32
= tan

34π

32
= − tan

30π

32
= − tan

62π

32
,√

4− 2
√

2−
√

2 + 1 = tan
6π

32
= tan

38π

32
= − tan

26π

32
= − tan

58π

32
,√

4− 2
√

2 +
√

2− 1 = tan
10π

32
= tan

42π

32
= − tan

22π

32
= − tan

54π

32
,√

4 + 2
√

2 +
√

2 + 1 = tan
14π

32
= tan

46π

32
= − tan

18π

32
= − tan

50π

32
.

5. Final remarks

1. As is easily checked from Proposition 4.1, II, there are no third degree
algebraic values for the tangent function.

2. The result about all possible rational values of the sine, cosine and
tangent functions derived in [8] is properly contained in Theorem 3.3, (i),
and Theorem 4.2, (A1), (B1).
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