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Interaction between the Fourier transform
and the Hilbert transform

Elijah Liflyand

Dedicated to the memory of my friend and colleague S. Baron

Abstract. Well-known and recently observed situations where the two
main transforms in harmonic analysis, the Fourier transform and the
Hilbert transform, show their adjacency and interplay in a specific in-
teresting manner are overviewed. Some relations of that kind are new,
while in other cases well-known formulas are considered in a different
setting.

1. Introduction

In this expository paper we overview well-known and recently observed
situations where the two main transforms in harmonic analysis, the Fourier
transform and the Hilbert transform, show their adjacency and interplay in
a specific interesting manner. Some relations of that kind are new, while in
other cases well-known formulas being considered in a different setting turn
out to show up hidden sides of their nature.

We have chosen the following topics and/or problems for comparative
study and discussion: the problem of re-expanding a function with the inte-
grable cosine (sine) Fourier transform into the integrable sine (cosine) Fourier
transform; the Paley–Wiener theorem on the integrability of the Hilbert
transform of an odd integrable monotone function; the Hardy–Littlewood
theorem on the absolute convergence of the Fourier series of a function which
is of bounded variation along with its conjugate, and its generalizations; and
the problem of the integrability of the Fourier transform of a function of
bounded variation.
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20 ELIJAH LIFLYAND

In this order we organize the sections which follow the one, in which certain
preliminaries are given, that goes immediately after the introduction. The
paper is completed with some concluding remarks.

2. Preliminaries

In this section we introduce certain well-known facts and notions for both
transforms, which we shall systematically use in the sequel. In what follows
a � b means that a ≤ Cb for some absolute constant C but we are not
interested in explicit indication of this constant.

2.1. Fourier transform weakly generates Hilbert transform. Let us
begin with presenting a natural formal way how the Hilbert transform ap-
pears in close connection with the Fourier transform, following Chapter V
of Titchmarsh’s celebrated book [23].

Let

ĝ(x) =

∫ ∞
−∞

g(t)e−ixtdt (1)

be the Fourier transform of g; let it exist in that or another sense, no need
in greater accuracy so far.

The Fourier integral formula can be written as an analog of the Fourier
series in the following manner:

g(t) =

∫ ∞
0

[a(x) cos tx+ b(x) sin tx] dx, (2)

where

a(x) =
1

π

∫ ∞
−∞

g(t) cosxt dt, b(x) =
1

π

∫ ∞
−∞

g(t) sinxt dt.

Formally, the integral in (2) is the limit, as u→ 0, of the integral∫ ∞
0

[a(x) cos tx+ b(x) sin tx]e−ux dx = U(t, u),

while the latter is the real part of the function∫ ∞
0

[a(x)− ib(x)]eizx dx = Φ(z),

with z = t+ iu. The imaginary part of the function Φ(z) is

−
∫ ∞
0

[b(x) cos tx− a(x) sin tx]e−ux dx = V (t, u).
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Denoting V (t, 0) = Hg(t), we obtain

Hg(t) = −
∫ ∞
0

[b(x) cos tx− a(x) sin tx] dx

=
1

π

∫ ∞
0

∫ ∞
−∞

sin(t− v)x g(v) dv dx. (3)

The integral on the right-hand side of (3) is called the conjugate integral of
the Fourier integral. It can formally be derived from (2) by replacing a and
b with −b and a, respectively.

It can be formally established that

Ĥg(−x) = i signx ĝ(x). (4)

Further, and once more formally,

Hg(t) =
1

π

∫ ∞
0

g(t− v)− g(t+ v)

v
dv =

1

π

∫ ∞
−∞

g(v)

v − t
dv. (5)

In parallel,

g(t) = − 1

π

∫ ∞
0

Hg(t− v)−Hg(t+ v)

v
dv = − 1

π

∫ ∞
−∞

Hg(v)

v − t
dv. (6)

This duality was first noticed by Hilbert, hence the pair of these transforms
are called the Hilbert transforms. What is given above is, in general, much
of the formal theory, at least initial, of the Hilbert transform. However, the
change of the order of such operations as limit or integration has never been
justified during that presentation. Of course, no universal way exists for
this, all depends upon the setting in which the game takes place. There are
several of them which proved to be useful. Justifying the above operations
in an appropriate setting is, in a sense, the corresponding “genuine” theory.

One more thing that may vary from setting to setting and is sometimes
a matter of taste is the sign before the integral and sometimes i or absence
of it before the integral. In the next subsection we will specify the above
consideration in the L1 setting.

2.2. Hilbert transform and Hardy space. Thus, the Hilbert transform
of an integrable function g is defined by

Hg(x) =
1

π

∫
R

g(t)

x− t
dt,

where the integral is understood in the improper (principal value) sense, as
lim
δ→0+

∫
|t−x|>δ . It is well known that this limit exists almost everywhere.
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22 ELIJAH LIFLYAND

It is not necessarily integrable, and when it is, we say that g is in the
(real) Hardy space H1(R). If g ∈ H1(R), then it satisfies the cancelation
property (has mean zero) ∫

R
g(t) dt = 0. (7)

It was apparently first mentioned by in [12].
An odd function always has mean zero. However, not every odd integrable

function belongs to H1(R): in [17] an example of an odd function with
non-integrable Hilbert transform is given. To this end, take g(t) = (t −
1)−1| ln−2(t − 1)| on (1, 32), g(t) = −g(−t) on (−3

2 ,−1), and 0 otherwise.

Then for x ∈ (12 , 1)

|Hg(x)| ≥
∣∣∣∣∫ 1+(1−x)

1

1

(t− 1) ln2(t− 1)

dt

t− x

∣∣∣∣− 2

3 ln 2

≥ 1

2(1− x)| ln(1− x)|
− 2

3 ln 2
,

which is obviously non-integrable. Similarly, an example in the even case
is a modification of Pitt’s example given in [12, Theorem 1 (b)]: taking
g1(t) = t−1 ln−2 t and g2(t) = 2(ln 2)−1 in (0, 1/2), g1(t) = g2(t) = 0 other-
wise, g(t) = g1(t)− g2(t). This function satisfies (7), is integrable on R and,
by routine calculations as above, its Hilbert transform does not belong to
L1(−1

2 , 0). It remains to extend it even and take into account that the even
extension possesses the same properties (see [4, Chapter III, Lemma 7.40, p.
354]).

When in the definition of the Hilbert transform the function g is odd, we
will denote this transform by Ho, and it is equal to

Hog(x) =
2

π

∫ ∞
0

tg(t)

x2 − t2
dt.

If this transform is integrable, we will denote the corresponding Hardy space
by H1

o (R).
Correspondingly, when in the definition of the Hilbert transform the func-

tion g is even, we will denote this transform by He, and it is equal to

Heg(x) =
2

π

∫ ∞
0

xg(t)

x2 − t2
dt.

The real Hardy space can be characterized in a different way, via the so-
called atomic decomposition. Let a(x) denote an atom (a (1,∞, 0)-atom), a
function that is of compact support:
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supp a ⊂ I = [x0 − r, x0 + r]; (8)

and satisfies the following size condition (L∞ normalization)

‖a‖∞ ≤
1

|I|
; (9)

and the cancelation condition∫
R
a(x) dx = 0. (10)

It is well known (see, e.g., [4] or [22]) that

‖f‖H1 ∼ inf{
∑
k

|ck| <∞ : f(x) =
∑
k

ckak(x)}, (11)

where ak are the above-described atoms and
∑
k

|ck| < ∞ ensures that the

sum
∑
k

ckak(x) converges in the L1 norm.

2.3. Functions of bounded variation. As for the definition of bounded
variation, we are not going to concentrate on various details. On the con-
trary, following Bochner [2, Chapter 1], where the Fourier transform of a
monotone function is studied, we will mainly restrict ourselves to func-
tions with Lebesgue integrable derivative. Indeed, every such function is
of bounded variation in the sense that it is representable as a linear com-
bination (generally, with complex coefficients) of monotone functions. Of
course, the usual definition that applies to the uniform boundedness of the
sums of oscillations of a function over all possible systems of non-overlapping
intervals might be helpful.

3. Re-expansion

It is not a novelty that relations between cosine and sine Fourier expan-
sions are similar to those between the function and its conjugate. In the
1950s (see, e.g., [8] or in more detail [10, Chapters II and VI]), the following
problem in Fourier Analysis attracted much attention.

Let {ak}∞k=0 be the sequence of the Fourier coefficients of the absolutely
convergent sine (cosine) Fourier series of a function f : T = [−π, π) → C,
that is

∑
|ak| < ∞. Under which conditions on {ak} the re-expansion of

f(t) (f(t) − f(0), respectively) in the cosine (sine) Fourier series will also
be absolutely convergent?

The obtained condition is quite simple and is the same in both cases:
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∞∑
k=1

|ak| ln(k + 1) <∞.

This condition is sufficient and sharp on the whole class.
We study (see [15]) a similar problem for Fourier transforms defined on

R+ = [0,∞). Let ∫ ∞
0
|Fc(x)| dx <∞,

correspondingly,

f(t) =
1

π

∫ ∞
0

Fc(x) cos tx dx;

or, alternatively, ∫ ∞
0
|Fs(x)| dx <∞

and hence

f(t) =
1

π

∫ ∞
0

Fs(x) sin tx dx.

Under which (additional) conditions on Fc we get the integrability of Fs,
or, in the alternative case,

under which (additional) conditions on Fs we get the integrability of Fc?

Theorem 1. In order that the re-expansion Fs of f with the integrable
cosine Fourier transform Fc be integrable, it is necessary and sufficient that
its Hilbert transform HFc(x) be integrable and

∫∞
0 Fc(t) dt = 0 hold.

Similarly, in order that the re-expansion Fc of f with the integrable sine
Fourier transform Fs be integrable, it is necessary and sufficient that its
Hilbert transform HFs(x) be integrable.

In fact, we prove that

Fs(x) = HFc(x) and Fc(x) = −HFs(x).

These formulas are known (see, e.g., the monograph [11]) for, say, square in-
tegrable functions. But that proof reduces to (Carleson’s solution of) Lusin’s
conjecture.

In our L1 setting this is by no means applicable. And, indeed, our proof
is different and rests on the less restrictive approach (see [25, Volume II,
Chapter XVI, Theorem 1.22]; even more general result can be found in [23,
Theorem 107]).
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Theorem A. If
|f(t)|
1 + |t|

is integrable on R, then the (C, 1) means

− 1

π

∫ ∞
−∞

f(x+ t)

[
1

t
− sinNt

Nt2

]
dt

converge to the Hilbert transform Hf(x) almost everywhere as N →∞.

The above results naturally give rise to the problem of conditions which
ensure the integrability of the Hilbert transform. Let us give a new condition
of that sort.

Theorem 2. Suppose g is a bounded function on R such that for some
non-negative function ϕ

|g(t)| ≤ ϕ(t)

1 + |t|
(12)

with

∞∑
k=0

kλk =

∞∑
k=0

k sup
2k−1<|t|≤2k

ϕ(t) <∞. (13)

If it has mean zero, then g ∈ H1(R).

Proof. The scheme of the proof is the same as in [22, Chapter 2, §7] for
the case where g(t) = O( 1

1+t2
). We denote g0(t) = g(t) when |t| ≤ 1 and

g0(t) = 0 otherwise. Further, for k = 1, 2, ... define

gk(t) =

{
g(t), 2k−1 < |t| ≤ 2k,

0, otherwise

and

ck =

∫
R
gk(t) dt =

∫
2k−1<|t|≤2k

g(t) dt.

Note that under the assumptions of the theorem g is an integrable function,
since

|ck| ≤
∫
2k−1<|t|≤2k

λk
t
dt. (14)

We have

g(t) =
∞∑
k=0

gk(t).

7
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Let us also denote

Sk =
∑
j≥k

cj ;

it follows from the assumption of the theorem that S0 = 0.
Let us now take a bounded function η supported in {|t| ≤ 1} and such

that
∫
R η(t) dt = 1. Denoting ηk(t) = 1

2k
η( t

2k
), we obtain∫

R
ηk(t) dt = 1

and

g(t) =
∞∑
k=0

[gk(t)− ckηk(t)] +
∞∑
k=0

ckηk(t). (15)

The first sum is

∞∑
k=0

[gk(t)− ckηk(t)] =

∞∑
k=0

1

2k

∫
2k−1<|x|≤2k

[gk(t)− g(x)η(
t

2k
)] dx =

∞∑
k=0

Bk(t).

We have ∫
R
Bk(t) dt =

∫
2k−1<|x|≤2k

g(x) dx

[
1−

∫
R
ηk(t) dt

]
= 0.

The function Bk(t) is supported in {|t| ≤ 2k}. Finally, for 2k−1 < |t| ≤ 2k,

there holds |gk(t)| ≤ C λk
2k

. Combining this with (14), we obtain

‖Bk(t)‖∞ ≤ C
λk
2k
.

By this, Bk(t) = CλkAk(t), where Ak(t) is an atom supported in {|t| ≤ 2k}.
Here, the numbers λk are the coefficients of an atomic decomposition of g.

Concerning the second sum in (15), it can be represented in an equivalent
form due to the mean zero property (S0 = 0):

∞∑
k=1

Sk(ηk − ηk−1).

Each value ηk(t)− ηk−1(t) is a multiple of an analogous atom. The numbers
Sk are appropriate for an atomic decomposition, since
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∞∑
j=0

|Sj | =
∞∑
j=0

∣∣∣∣∣∣
∞∑
k=j

ck

∣∣∣∣∣∣ ≤
∞∑
j=0

∞∑
k=j

∫
2k−1<|t|≤2k

|g(t)| dt

≤ C
∞∑
j=0

∞∑
k=j

λk = C
∞∑
k=1

kλk,

and (13) completes the proof. �

A representative example of a condition that satisfies Theorem 2 is a

function that behaves as |g(t)| = O(
1

|t| lnα |t|
) as |t| → ∞, with α > 2.

4. A Paley–Wiener theorem

Let us treat the problem of the integrability of the Hilbert transform in a
different way. It is well known that for the Hilbert transform Hg(x) and the
weight w(x) = |x|α with −1 < α < p−1, there holds ‖Hg‖Lp(w) � ‖g‖Lp(w),
1 < p <∞. In [7], Hardy and Littlewood showed that for even functions g,
this inequality also holds for −p− 1 < α < p− 1. Later, Flett [3] proved the
same results for odd functions provided −1 < α < 2p− 1.

For p = 1, it is known that only weak type inequalities for the Hilbert
transform hold. On the other hand, the Paley–Wiener theorem asserts that
for an odd and monotone decreasing on R+ function g ∈ L1 one hasHg ∈ L1.
This theorem was extended in [18] to general monotone functions. Further,
in [17] the weighted analogues of the Paley–Wiener theorem for odd and
even (general monotone) functions are proved. In other words, it was an
extension of Hardy–Littlewood’s [7], Flett’s [3] and Andersen’s [1] results
to the case p = 1 under the assumption of (general) monotonicity for an
even/odd function.

Besides the initial proof in [19] (for series) and additional study in [24],
a different proof of the initial Paley–Wiener theorem can be found in [21,
Chapter IV, 6.2]. It was A. Lerner who brought our attention to this fact.
Since much will be based on that proof, let us give more details. First of all,
the integrability of the Hilbert transform of an integrable function means
that the function belongs to the real Hardy space H1(R).

Let g0 be a non-negative monotone decreasing function on (0,∞) such
that ∫ ∞

0
g0(t) dt <∞,

and let f(t) = g0(t) on (0,∞), and f(−t) = −f(t). The Paley–Wiener
theorem then states that f ∈ H1(R). The proof in [21, Chapter IV, 6.2]
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goes along the following lines. For −∞ < k <∞, let

ak(t) =
1

2k+2g0(2k)
g0(|t|)sign t

when 2k ≤ |t| < 2k+1 and zero otherwise. Obviously, each ak is an atom. To
see that the absolute value of the function is less than the reciprocal of the
length of the support interval [−2k+1, 2k+1], just the monotonicity is used.

Taking λk = 2k+2g0(2
k) and observing that

∞∑
k=−∞

λk ≤ 8
∫∞
0 g0(t) dt, we see

that the series
∞∑

k=−∞
λkak(t) converges to f(t) except at the origin. Since

thus we have an atomic decomposition of f , it belongs to H1(R).
We can immediately extend the result by taking g to be weak monotone.

To define the latter notion, we will assume a function to be defined on (0,∞),
of locally of bounded variation, and vanishing at infinity.

Definition 3. We say that a non-negative function f defined on (0,∞),
is weak monotone, written WM , if

f(t) ≤ Cf(x) for any t ∈ [x, 2x]. (16)

Using in the above proof g0(t) ≤ Cg0(2
k) provided g0 ∈ WM instead of

g0(t) ≤ g0(2k) for monotone g0, we immediately arrive at the following result
more general than Theorem 6.1 in [18].

Theorem 4. Let g0 be integrable on (0,∞) and g0 ∈ WM . Then f ∈
H1(R).

This shows that for the integrability of the Hilbert transform smoothness
conditions are frequently not of crucial importance; certain regularity of the
functions rather works.

5. A Hardy–Littlewood theorem

The following result is due to Hardy and Littlewood (see [6] or, e.g., [25,
Volume I, Chapter VII, (8.6)]).

If a (periodic) function f and its conjugate f̃ are both of bounded variation,
their Fourier series converge absolutely.

In [16], we generalize the Hardy–Littlewood theorem to functions on the
real axis, hence the absolute convergence of the Fourier series should be
replaced by the integrability of the Fourier transform.

Since a function f of bounded variation may be not integrable, its Hilbert
transform, a usual substitute for the conjugate function, may not exist. One
has to use the modified Hilbert transform (see, e.g., [5])

f̃(x) = (P.V.)
1

π

∫
R
f(t)

{
1

x− t
+

t

1 + t2

}
dt
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well adjusted for bounded functions. As a singular integral, it behaves like
the usual Hilbert transform; the additional term in the integral makes it to
be well defined near infinity.

Theorem 5. Let f be a function of bounded variation which vanish at

infinity: lim
|t|→∞

f(t) = 0. If its conjugate f̃ is also of bounded variation, then

the Fourier transforms of the both functions are integrable on R.

It is interesting that the initial Hardy–Littlewood theorem is a partial case
of Theorem 5, where the function is taken to be with compact support.

The proof of Theorem 5 contains two main ingredients: one of them is

Lemma 1. Under the assumptions of the theorem, we have at almost
every x

d

dx
f̃(x) = Hf ′(x).

More precisely, “almost everywhere” is specified as at the Lebesgue points
of the integrable function f ′. This lemma is a direct analog of the various
known results for the Hilbert transform of a function from the spaces dif-
ferent from the space of functions of bounded variation; see, e.g., [20, 3.3.1,
Theorem 1] or [11, 4.8]. Since the assumptions are different, we use different
arguments while interchanging limits.

The second ingredient (and one of the main tools in other issues) is the
well-known extension of Hardy’s inequality:∫

R

|ĝ(x)|
|x|

dx� ‖g‖H1(R).

This inequality shows that for the Fourier transform of a function from the
Hardy space we have more than just the Riemann–Lebesgue lemma for an
integrable function and its Fourier transform. It also inspires the following
observation.

Proposition 1. Let
∫
R
|ĝ(x)|
|x| dx be finite. Then g is the derivative of

a function of bounded variation f which is locally absolutely continuous,
lim
|t|→∞

f(t) = 0, and its Fourier transform is integrable.

This motivates a special study of the Fourier transform of a function
of bounded variation, where obtained estimates lead, in particular, to a
refinement of Hardy’s inequality in certain cases.

6. The Fourier transform of a function of bounded variation

The study of the finiteness of the integral in Proposition 1 brings up a
question of existence (or non-existence) of the widest space for the integra-
bility of the Fourier transform of a function of bounded variation.

8
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In fact, such a space does exist (see [14]) and has in essence been intro-
duced (for different purposes) by Johnson and Warner in [9] as

Q = {g : g ∈ L1(R),

∫
R

|ĝ(x)|
|x|

dx <∞}.

With the obvious norm ‖g‖L1(R) +
∫
R
|ĝ(x)|
|x| dx it is a Banach space and ideal

in L1(R).
The space Qo of the odd functions from Q is of special importance:

Qo = {g : g ∈ L1(R), g(−t) = −g(t),

∫ ∞
0

|ĝs(x)|
x

dx <∞};

such functions naturally have mean zero.
An even counterpart of Qo is

Qe = {g : g ∈ L1(R), g(−t) = g(t),

∫ ∞
0

|ĝc(x)|
x

dx <∞}.

This makes sense only if
∫∞
0 g(t) dt = 0.

Theorem 6. Let f : R+ → C be locally absolutely continuous, of bounded
variation, and lim

t→∞
f(t) = 0.

a) Then the cosine Fourier transform of f is Lebesgue integrable on R+ if
and only if f ′ ∈ Q.

b) The sine Fourier transform of f is Lebesgue integrable on R+ if and
only if f ′ ∈ Q.

In fact, in a) and b) the conditions are given in terms of different subspaces
of Q, namely Qo and Qe, respectively.

Proof of Theorem 6. The assumptions of the theorem give a possibility to
integrate by parts. First,

f̂c(x) = −1

x

∫ ∞
0

f ′(t) sinxt dt = −1

x
f̂ ′s(x),

which immediately proves a).
Further,

f̂s(x) =
f(0)

x
+

1

x

∫ ∞
0

f ′(t) cosxt dt =
f(0)

x
+

1

x
f̂ ′c(x).

Integrating both sides over R+ would complete the proof if we show that

f(0) = 0. Indeed, if f̂s is integrable, then the function f extended from R+

to the whole R as an odd function, should be continuous. On the other hand,
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in this case f ′ ∈ Q implies
∫∞
0 f ′(t) dt = 0, since otherwise the integral in

the definition of Q diverges at 0. Therefore,

∫ ∞
0

f ′(t) dt = lim
δ→0+

lim
A→∞

∫ A

δ
f ′(t) dt

= lim
δ→0+

lim
A→∞

[f(A)− f(δ)] = −f(0).

This completes the proof. �

The fact that finding the widest space of integrability turned out to be
a rather simple task does not play down the importance of this result. But
what is more essential is that it gives rise to various interesting problems,
first of all to the one of establishing convenient intermediate spaces between
Q and the spaces known in this topic from previous work (see, e.g., [13]).

7. Concluding remarks

What knits the considered issues together? On the one hand, they are
somewhat unbalanced, one may get an impression that they are miscella-
neous. On the other hand, numerous connections in definitions, tools, etc.
prompt that there must be something in common, maybe beyond visual con-
siderations. As an attempt to formulate this, at least, in a heuristic way,
one may suppose that the real Hardy space (and possibly those close to it) is
a natural environment for many functions if the integrability of the Fourier
transform is desirable for them. First of all, the derivatives of functions of
bounded variation should belong to such spaces.

The above considerations are purely one-dimensional. However, multidi-
mensional versions are either in work or one may anticipate how they look
like. However, in any case the multidimensional picture will necessarily be
much more complicated. The presence of various types of variation in many
dimensions or/and of several types of Hardy spaces is already a serious ob-
stacle to getting the results similar to those in dimension one. And there are
even more obstacles. On the other hand, these open a wide field of action
and will hopefully lead to a variety of interesting approaches and results.
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