\mathcal{I}_{λ} -statistically convergent sequences in topological groups

EKREM SAVAŞ

ABSTRACT. Let $2^{\mathbb{N}}$ be the family of all subsets of \mathbb{N} . Using an ideal $\mathcal{I} \subset 2^{\mathbb{N}}$, Savaş and Das in 2011 defined \mathcal{I}_{λ} -statistical convergence of real sequences as a generalization of λ -statistical convergence introduced in 2000 by Mursaleen. In this paper we define \mathcal{I}_{λ} -statistical convergence for sequences in topological groups and present some inclusion theorems.

1. Introduction

The idea of convergence of a real sequence was extended to statistical convergence by Fast [6] (see also Schoenberg [19]) as follows.

A sequence (x_k) of real numbers is said to be statistically convergent to L if, for arbitrary $\epsilon > 0$, the set $K(\epsilon) = \{k \in \mathbb{N} : |x_k - L| \ge \epsilon\}$ has natural density zero, i.e.,

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_{K(\varepsilon)}(k) = 0,$$

where $\chi_{K(\varepsilon)}$ denotes the characteristic function of $K(\varepsilon)$.

Statistical convergence turned out to be one of the most active areas of research in summability theory after the works of Fridy [7] and Šalát [11]. Di Maio and Kočinac [5] introduced the concept of statistical convergence in topological spaces and statistical Cauchy condition in uniform spaces, and established the topological nature of this convergence. Albayrak and

Received December 9, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 40A35; Secondary 40C05.

Key words and phrases. Ideal convergence, ideal statistical convergence, statistical convergence, λ -statistical convergence, topological groups.

http://dx.doi.org/10.12097/ACUTM.2014.18.04

EKREM SAVAŞ

Pehlivan [1] studied this notion in locally solid Riesz spaces. Recently, Savaş [17] introduced the generalized double statistical convergence in locally solid Riesz spaces.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers such that

$$\lambda_1 = 1, \ \lambda_{n+1} \leq \lambda_n + 1 \text{ and } \lambda_n \to \infty \text{ as } n \to \infty.$$

The collection of all such sequences λ will be denoted by Δ .

In [10], a new type of convergence called λ -statistical convergence was introduced. A sequence (x_k) of real numbers is said to be λ -statistically convergent to L if for any $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \Big| \big\{ k \in I_n \colon |x_k - L| \ge \epsilon \big\} \Big| = 0$$

where $I_n = [n - \lambda_n + 1, n]$ and |A| denotes the cardinality of $A \subset \mathbb{N}$. In [10] the relation between λ -statistical convergence and statistical convergence was established among other things. Savaş [15] studied λ -statistical convergence in random 2-normed spaces.

Let $2^{\mathbb{N}}$ be the family of all subsets of \mathbb{N} . Recall that a family $I \subset 2^{\mathbb{N}}$ is said to be an ideal if the following conditions hold:

- (a) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$,
- (b) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$.

An ideal \mathcal{I} is called proper if $\mathbb{N} \notin \mathcal{I}$, and it is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$. For example, the family \mathcal{I}_{fin} of all finite subsets of \mathbb{N} is a proper admissible ideal.

Throughout, \mathcal{I} will stand for a proper admissible ideal.

In [8], Kostyrko et al. introduced the concept of \mathcal{I} -convergence of sequences in a metric space and studied some properties of such convergence. Note that \mathcal{I} -convergence is an interesting generalization of statistical convergence. A sequence (x_k) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for each $\epsilon > 0$,

$$\{k \in \mathbb{N} \colon |x_k - L| \ge \epsilon\} \in \mathcal{I}.$$

Furthermore, Savaş and Das [18] defined and studied \mathcal{I} -statistical convergence and \mathcal{I}_{λ} -statistical convergence. A real sequence (x_k) is said to be

 \mathcal{I}_{λ} -statistically convergent to L if for any $\epsilon > 0$ and $\delta > 0$,

$$\left\{ n \in \mathbb{N} \colon \frac{1}{\lambda_n} \Big| \left\{ k \in I_n \colon |x_k - L| \ge \epsilon \right\} \Big| \ge \delta \right\} \in \mathcal{I}.$$

More investigations in this direction and applications of ideals can be found in [3, 4, 9, 12, 13, 14, 16].

By X we will denote a Hausdorff topological abelian group, written additively, which satisfies the first axiom of countability. In [2], an X-valued sequence (x_k) is called statistically convergent to an element $L \in X$ if for each neighbourhood U of 0,

$$\lim_{n \to \infty} \frac{1}{n} \Big| \big\{ k \le n \colon x_k - L \notin U \big\} \Big| = 0.$$

The purpose of this paper is to define \mathcal{I}_{λ} -statistical convergence of sequences in topological groups and to give some important inclusion theorems.

2. Main results

We start with the definitions of \mathcal{I} -statistical convergence and \mathcal{I}_{λ} -statistical convergence in topological groups.

Definition 2.1. A sequence (x_k) in X is said to be \mathcal{I} -statistically convergent to L if for each neighbourhood U of 0 and each $\delta > 0$,

$$\left\{ n \in \mathbb{N} \colon \left. \frac{1}{n} \right| \left\{ k \le n \colon x_k - L \notin U \right\} \right| \ge \delta \right\} \in \mathcal{I}.$$

In this case we write $x_k \to L(S^{\mathcal{I}})$. The class of all \mathcal{I} -statistically convergent sequences will be denoted by $S^{\mathcal{I}}(X)$.

Definition 2.2. A sequence (x_k) in X is said to be \mathcal{I}_{λ} -statistically convergent to L if for any neighbourhood U of 0 and any $\delta > 0$,

$$\left\{ n \in \mathbb{N} \colon \frac{1}{\lambda_n} \Big| \left\{ k \in I_n \colon x_k - L \notin U \right\} \Big| \ge \delta \right\} \in \mathcal{I}.$$

In this case we write $x_k \to L(S^{\mathcal{I}}_{\lambda})$ and denote by $S^{\mathcal{I}}_{\lambda}(X)$ the set of all \mathcal{I}_{λ} -statistically convergent sequences in X.

It is obvious that every \mathcal{I}_{λ} - statistically convergent sequence has only one limit, that is, if a sequence is \mathcal{I}_{λ} -statistically convergent to L_1 and L_2 then $L_1 = L_2$.

EKREM SAVAŞ

Remark 2.3. For $\mathcal{I} = \mathcal{I}_{fin}$, \mathcal{I} -statistical convergence becomes statistical convergence in topological groups which is studied by Çakalli [2], and \mathcal{I}_{λ} statistical convergence defines the λ -statistical convergence in topological groups. If $\lambda_n = n$, then \mathcal{I}_{λ} -statistical convergence reduces to \mathcal{I} -statistical convergence.

We now prove our main theorems.

Theorem 2.4. If $\lambda \in \triangle$ with $\liminf_{n \to \infty} \frac{\lambda_n}{n} > 0$, then $S^{\mathcal{I}}(X) \subset S^{\mathcal{I}}_{\lambda}(X)$.

Proof. Let us take any neighbourhood U of 0. Then

$$\frac{1}{n} \Big| \Big\{ k \le n \colon x_k - L \notin U \Big\} \Big| \ge \frac{1}{n} \Big| \Big\{ k \in I_n \colon x_k - L \notin U \Big\} \Big|$$
$$= \frac{\lambda_n}{n} \frac{1}{\lambda_n} \Big| \Big\{ k \in I_n \colon x_k - L \notin U \Big\} \Big|.$$

If $\liminf_{n\to\infty} \frac{\lambda_n}{n} = a$, then the set $\{n \in N : \frac{\lambda_n}{n} < \frac{a}{2}\}$ is finite. Thus, for $\delta > 0$ and any neighbourhood U of 0,

$$\left\{ n \in N \colon \frac{1}{\lambda_n} \Big| \left\{ k \in I_n \colon x_k - L \notin U \right\} \Big| \ge \delta \right\}$$
$$\subset \left\{ n \in N \colon \frac{1}{n} \Big| \left\{ k \le n \colon x_k - L \notin U \right\} \Big| \ge \frac{a}{2} \delta \right\} \cup \left\{ n \in N \colon \frac{\lambda_n}{n} < \frac{a}{2} \right\}.$$

So, if $x_k \to L(S^{\mathcal{I}})$, then the set on the right hand side belongs to I. This completes the proof.

Theorem 2.5. Let $\lambda \in \triangle$ be such that $\lim_n \frac{\lambda_n}{n} = 1$. Then $S_{\lambda}^{\mathcal{I}}(X) \subset S^{\mathcal{I}}(X)$.

Proof. Let $\delta > 0$ be given. Since $\lim_n \frac{\lambda_n}{n} = 1$, we can choose $m \in N$ such that $\frac{n-\lambda_n+1}{n} < \frac{\delta}{2}$ for all $n \ge m$. Let us take any neighbourhood U of 0. Now observe that

$$\frac{1}{n} \Big| \{k \le n \colon x_k - L \notin U\} \Big| = \frac{1}{n} \Big| \{k < n - \lambda_n + 1 \colon x_k - L \notin U\} \Big|$$
$$+ \frac{1}{n} \Big| \{k \in I_n \colon x_k - L \notin U\} \Big|$$
$$< \frac{n - \lambda_n + 1}{n} + \frac{1}{n} \Big| \{k \in I_n \colon x_k - L \notin U\} \Big|$$
$$< \frac{\delta}{2} + \frac{1}{\lambda_n} \Big| \{k \in I_n \colon x_k - L \notin U\} \Big|,$$

for all $n \ge m$. Hence for $\delta > 0$ and any neighbourhood U of 0,

$$\left\{ n \in N \colon \frac{1}{n} \Big| \left\{ k \le n \colon x_k - L \notin U \right\} \Big| \ge \delta \right\}$$
$$\subset \left\{ n \in N \colon \frac{1}{n} \Big| \left\{ k \in I_n \colon x_k - L \notin U \right\} \Big| \ge \frac{\delta}{2} \right\} \cup \left\{ 1, \dots, m \right\}.$$

If $x_k \to L(S_{\lambda}^{\mathcal{I}})$, then the set on the right hand side belongs to \mathcal{I} and so the set on the left hand side also belongs to \mathcal{I} . This shows that (x_k) is \mathcal{I} -statistically convergent to L.

Remark 2.6. We do not know whether the condition in Theorem 2.5 is necessary and leave it as an open problem.

Acknowledgement

The author would like to thank the referee for his very helpful and detailed comments, which have significantly improved the presentation of this paper.

References

- H. Albayrak and S. Pehlivan, Statistical convergence and statistical continuity on locally solid Riesz spaces, Topology Appl. 159 (2012), 1887–1893.
- [2] H. Çakalli, On statistical convergence in topological groups, Pure Appl. Math. Sci. 43 (1996), 27–31.
- [3] P. Das and E. Savaş, On *I*-convergence of nets in locally solid Riesz spaces, Filomat 27 (2013), 89–94.
- [4] K. Dems, On *I*-Cauchy sequences, Real Anal. Exchance **30** (2004/05), 123–128.
- [5] G. Di Maio and L. D. R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008), 28–45.
- [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [7] J. A. Fridy, On ststistical convergence, Analysis 5 (1985), 301–313.
- [8] P. Kostyrko, T. Šalát, and W. Wilczyński, *I-convergence*, Real Anal. Exchange 26 (2000/01), 669–685.
- [9] B. K. Lahiri and P. Das, *I* and *I*^{*} convergence of nets, Real Anal. Exchange 33 (2008), 431–442.
- [10] Mursaleen, λ -statistical convergence, Math. Slovaca **50** (2000), 111–115.

10

- [11] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
- [12] E. Savaş, Δ^m-strongly summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Appl. Math. Comput. 217 (2010), 271–276.
- [13] E. Savaş, On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Inequal. Appl. 2010, Article ID 482392, 8 pp.

EKREM SAVAŞ

- [14] E. Savaş, A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function, Abstr. Appl. Anal. 2011, Article ID 741382, 9 pp.
- [15] E. Savaş, Generalized statistical convergence in random 2-normed space, Iran. J. Sci. Technol. Trans. A Sci. 36 (2012), 417–423.
- [16] E. Savaş, On generalized double statistical convergence via ideals, The Fifth Saudi Science Conference, 16–18 April, 2012.
- [17] E. Savaş, On generalized double statistical convergence in locally solid Riesz spaces, Miskolc Mathematical Notes, preprint.
- [18] E. Savaş and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett. 24 (2011), 826–830.
- [19] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.

İstanbul Commerce University, Department of Mathematics, Uskudar, İstanbul, Turkey

E-mail address: ekremsavas@yahoo.com