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Iλ-statistically convergent sequences

in topological groups

Ekrem Savaş

Abstract. Let 2N be the family of all subsets of N. Using an ideal

I ⊂ 2N, Savaş and Das in 2011 defined Iλ-statistical convergence of real

sequences as a generalization of λ-statistical convergence introduced in

2000 by Mursaleen. In this paper we define Iλ-statistical convergence

for sequences in topological groups and present some inclusion theorems.

1. Introduction

The idea of convergence of a real sequence was extended to statistical

convergence by Fast [6] (see also Schoenberg [19]) as follows.

A sequence (xk) of real numbers is said to be statistically convergent to L

if, for arbitrary ε > 0, the set K(ε) =
{
k ∈ N : |xk − L| ≥ ε

}
has natural

density zero, i.e.,

lim
n

1

n

n∑
k=1

χ
K(ε)

(k) = 0,

where χ
K(ε)

denotes the characteristic function of K(ε).

Statistical convergence turned out to be one of the most active areas of

research in summability theory after the works of Fridy [7] and Šalát [11].

Di Maio and Kočinac [5] introduced the concept of statistical convergence

in topological spaces and statistical Cauchy condition in uniform spaces,

and established the topological nature of this convergence. Albayrak and
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Pehlivan [1] studied this notion in locally solid Riesz spaces. Recently,

Savaş [17] introduced the generalized double statistical convergence in lo-

cally solid Riesz spaces.

Let λ = (λn) be a non-decreasing sequence of positive numbers such that

λ1 = 1, λn+1 ≤ λn + 1 and λn →∞ as n→∞.

The collection of all such sequences λ will be denoted by ∆.

In [10], a new type of convergence called λ-statistical convergence was

introduced. A sequence (xk) of real numbers is said to be λ-statistically

convergent to L if for any ε > 0,

lim
n→∞

1

λn

∣∣∣{k ∈ In : |xk − L| ≥ ε
}∣∣∣ = 0,

where In = [n− λn + 1, n] and |A| denotes the cardinality of A ⊂ N. In

[10] the relation between λ-statistical convergence and statistical conver-

gence was established among other things. Savaş [15] studied λ-statistical

convergence in random 2-normed spaces.

Let 2N be the family of all subsets of N. Recall that a family I ⊂ 2N is

said to be an ideal if the following conditions hold:

(a) A,B ∈ I implies A ∪B ∈ I,

(b) A ∈ I, B ⊂ A implies B ∈ I.

An ideal I is called proper if N /∈ I, and it is called admissible if {n} ∈ I
for each n ∈ N. For example, the family Ifin of all finite subsets of N is a

proper admissible ideal.

Throughout, I will stand for a proper admissible ideal.

In [8], Kostyrko et al. introduced the concept of I-convergence of se-

quences in a metric space and studied some properties of such convergence.

Note that I-convergence is an interesting generalization of statistical con-

vergence. A sequence (xk) of elements of R is said to be I-convergent to

L ∈ R if for each ε > 0, {
k ∈ N : |xk − L| ≥ ε

}
∈ I.

Furthermore, Savaş and Das [18] defined and studied I-statistical con-

vergence and Iλ-statistical convergence. A real sequence (xk) is said to be
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Iλ-statistically convergent to L if for any ε > 0 and δ > 0,{
n ∈ N :

1

λn

∣∣∣{k ∈ In : |xk − L| ≥ ε
}∣∣∣≥ δ} ∈ I.

More investigations in this direction and applications of ideals can be

found in [3, 4, 9, 12, 13, 14, 16].

By X we will denote a Hausdorff topological abelian group, written ad-

ditively, which satisfies the first axiom of countability. In [2], an X-valued

sequence (xk) is called statistically convergent to an element L ∈ X if for

each neighbourhood U of 0,

lim
n→∞

1

n

∣∣∣{k ≤ n : xk − L /∈ U
}∣∣∣ = 0.

The purpose of this paper is to define Iλ-statistical convergence of se-

quences in topological groups and to give some important inclusion theo-

rems.

2. Main results

We start with the definitions of I-statistical convergence and Iλ-statistical

convergence in topological groups.

Definition 2.1. A sequence (xk) in X is said to be I-statistically con-

vergent to L if for each neighbourhood U of 0 and each δ > 0,{
n ∈ N :

1

n

∣∣∣{k ≤ n : xk − L /∈ U
}∣∣∣ ≥ δ} ∈ I.

In this case we write xk → L(SI). The class of all I-statistically convergent

sequences will be denoted by SI(X).

Definition 2.2. A sequence (xk) in X is said to be Iλ-statistically con-

vergent to L if for any neighbourhood U of 0 and any δ > 0,{
n ∈ N :

1

λn

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣ ≥ δ} ∈ I.

In this case we write xk → L(SIλ ) and denote by SIλ (X) the set of all

Iλ-statistically convergent sequences in X.

It is obvious that every Iλ- statistically convergent sequence has only one

limit, that is, if a sequence is Iλ-statistically convergent to L1 and L2 then

L1 = L2.
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Remark 2.3. For I = Ifin, I-statistical convergence becomes statistical

convergence in topological groups which is studied by Çakalli [2], and Iλ-

statistical convergence defines the λ-statistical convergence in topological

groups. If λn = n, then Iλ-statistical convergence reduces to I-statistical

convergence.

We now prove our main theorems.

Theorem 2.4. If λ ∈ 4 with lim inf
n→∞

λn
n > 0, then SI(X) ⊂ SIλ (X).

Proof. Let us take any neighbourhood U of 0. Then

1

n

∣∣∣{k ≤ n : xk − L /∈ U
}∣∣∣ ≥ 1

n

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣

=
λn
n

1

λn

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣.

If lim inf
n→∞

λn
n = a, then the set

{
n ∈ N : λn

n < a
2

}
is finite. Thus, for δ > 0

and any neighbourhood U of 0,{
n ∈ N :

1

λn

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣ ≥ δ}

⊂
{
n ∈ N :

1

n

∣∣∣{k ≤ n : xk − L /∈ U
}∣∣∣ ≥ a

2
δ

}
∪
{
n ∈ N :

λn
n
<
a

2

}
.

So, if xk → L(SI), then the set on the right hand side belongs to I. This

completes the proof. �

Theorem 2.5. Let λ ∈ 4 be such that limn
λn
n = 1. Then SIλ (X) ⊂

SI(X).

Proof. Let δ > 0 be given. Since limn
λn
n = 1, we can choose m ∈ N such

that n−λn+1
n < δ

2 for all n ≥ m. Let us take any neighbourhood U of 0. Now

observe that

1

n

∣∣∣{k ≤ n : xk − L /∈ U
}∣∣∣ =

1

n

∣∣∣{k < n− λn + 1: xk − L /∈ U
}∣∣∣

+
1

n

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣

<
n− λn + 1

n
+

1

n

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣

<
δ

2
+

1

λn

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣,
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for all n ≥ m. Hence for δ > 0 and any neighbourhood U of 0,{
n ∈ N :

1

n

∣∣∣{k ≤ n : xk − L /∈ U
}∣∣∣ ≥ δ}

⊂
{
n ∈ N :

1

n

∣∣∣{k ∈ In : xk − L /∈ U
}∣∣∣ ≥ δ

2

}
∪
{

1, . . . ,m
}
.

If xk → L(SIλ ), then the set on the right hand side belongs to I and so

the set on the left hand side also belongs to I. This shows that (xk) is

I-statistically convergent to L. �

Remark 2.6. We do not know whether the condition in Theorem 2.5 is

necessary and leave it as an open problem.
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[17] E. Savaş, On generalized double statistical convergence in locally solid Riesz spaces,

Miskolc Mathematical Notes, preprint.
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