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Traces of operators and their history

Albrecht Pietsch

Abstract. As well known, the trace of an n×n-matrix is defined to be
the sum of all entries of the main diagonal. Extending this concept to the
infinite-dimensional setting does not always work, since non-converging
infinite series may occur. So one had to identify those operators that
possess something like a trace. In a first step, integral operators gener-
ated from continuous kernels were treated. Then the case of operators on
the infinite-dimensional separable Hilbert space followed. The situation
in Banach spaces turned out to be more complicated, since the missing
approximation property causes a lot of trouble. To overcome those diffi-
culties, we present an axiomatic approach in which operator ideals play
a dominant rule. The considerations include also singular traces that,
by definition, vanish on all finite rank operators.

1. Chronology

The following diagram illustrates the history of trace theory:
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Note that the theory of singular traces begins at a singular point.
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2. Preliminaries

The symbol K stands for the real field R as well as for the complex field C.
If not otherwise specified, we consider both cases simultaneously. Whenever
eigenvalues occur, the complex setting is absolutely necessary.

Throughout, L(X,Y ) denotes the Banach space of all (bounded linear)
operators from the Banach space X into the Banach space Y . If A(X,Y ) is
any subset of L(X,Y ), then we write A(X) instead of A(X,X). In particular,
L(X) is the ring of all operators on X.

3. The trace of matrices

In 1829, Cauchy [4] introduced the characteristic polynomial

Pn(λ) := det(λIn − Sn) = λn + d1λ
n−1 + · · ·+ dn−1λ+ dn

of an n×n-matrix Sn = (σhk), where In = (δhk) stands for the unit matrix
and λ is any complex number. The explicit form of the coefficients was
determined by Jacobi [17, p. 15]. In particular, it turned out that

−d1 = trace(Sn) :=

n∑
k=1

σkk.

Finally, Borchardt [1] obtained the trace formula

trace(Sn) =

n∑
k=1

λk,

in which λ1, . . . , λn denote the roots of Pn(λ), eigenvalues of Sn, counted
according to their multiplicities.

4. The origin of the name “trace”

In 1882, Dedekind [8] invented the name trace, when he studied number
fields of degree n. Such a field Ω is viewed as an n-dimensional linear space
over Q, the field of rational numbers. Let ω1, ω2 . . . , ωn be any basis. Then,
for every element θ ∈ Ω, there exist coefficients eh,k ∈ Q such that

θω1 = e1,1ω1 + e2,1ω2 + · · ·+ en,1ωn

θω2 = e1,2ω1 + e2,2ω2 + · · ·+ en,2ωn

.......................................................
θωn = e1,nω1+ e2,nω2 + · · ·+ en,nωn.

Besides θ(1) = θ, the characteristic polynomial Pn(λ) :=det
(
λδh,k−eh,k

)
has

n−1 further zeros θ(2), . . . , θ(n), the so-called conjugates (conjugirte Zahlen).
Dedekind wrote: Unter der Spur der Zahl θ verstehen wir die Summe aller

mit ihr conjugirten Zahlen; wir bezeichnen diese offenbar rationale Zahl mit
S(θ); dann ist S(θ) = θ(1) + θ(2) + · · ·+ θ(n) = e1,1 + e2,2 + · · ·+ en,n.

This means that every θ ∈ Ω leaves a trace S(θ) in the rational field Q.
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5. The trace of kernels

In 1912, the Romanian mathematician Lalesco published one of the first
books about integral equations, in which he referred to

trace(K) :=

∫ 1

0
K(z, z) dz

as the “trace du noyau”; see [22, p. 30, footnote (1)].
To simplify the presentation, we consider only continuous kernels K

defined on the unit square [0, 1]×[0, 1]. Working with bounded measurable
kernels would yield complications, since we integrate over diagonals, which
are null sets.

From the modern point of view, every continuous kernel generates a com-
pact operator

Kop : f(t) 7→ g(s) =

∫ 1

0
K(s, t)f(t) dt

on Lp[0, 1] with 1≤p≤∞ and C[0, 1], whose eigenvalues do not depend on
the underlying classical Banach space.

The famous Mercer theorem [26, p. 446] says that, for positive definite
symmetric real kernels, we have∫ 1

0
K(z, z) dz =

∞∑
n=1

λn(K),

where
(
λn(K)

)
is the sequence of eigenvalues, counted according to their

multiplicities.
Unfortunately, such a trace formula does not hold for arbitrary continuous

kernels. This is mainly due to the fact that the eigenvalue sequence need
not be absolutely summable. We know from Schur’s inequality [42, p. 506]
that

∞∑
n=1

|λn(K)|2 ≤
∫ 1

0

∫ 1

0
|K(s, t)|2 dsdt.

However, trigonometric series constructed by Carleman [3] show that the
convergence of the left-hand side with exponent 2 is the best possible result.

One may look at those kernels that have no eigenvalue λ 6= 0. According
to Lalesco [22, p. 32], this happens if and only if the traces of the iterated
kernels Kn,

Kn+1(s, t) :=

∫ 1

0
Kn(s, z)K(z, t) dz and K1(s, t) := K(s, t),

vanish for n ≥ 3; see also [43, p. 312]. Kaucký [19] added trace(K2) = 0.
Finally, Fenyö [11] “proved” even trace(K) = 0. This result was included
also in [12, p. 105]:
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Ein stetiger Kern besitzt genau dann keine von Null verschiedenen Eigen-
werte, falls alle seine Spuren verschwinden.

If this result were true, it would yield an affirmative answer to the ap-
proximation problem in Banach spaces; see Sections 8 and 15.

6. The trace of operators on the Hilbert space

Throughout, H denotes the infinite-dimensional separable Hilbert space,
which can be identified with `2.

In his famous book “Mathematische Grundlagen der Quantenmechanik”
[27] von Neumann defined the trace of a positive operator A : H → H by

trace(A) :=

∞∑
n=1

(Aen|en).

This quantity does not depend on the special choice of the orthonormal basis
(en). In view of the assumption, (Ax|x) ≥ 0 for all x ∈H, the right-hand
infinite series converges to a non-negative real number or∞. In what follows,
we consider only operators with a finite trace.

In a next step, Schatten and von Neumann [39, Definitions 2.1 and 2.3]
introduced the trace class operators, which form an ideal in the ring L(H).

We refer to S∈L(H) as a Hilbert–Schmidt operator if
∞∑
n=1

‖Sen‖2 =
∞∑
n=1

∞∑
m=1

|(Sen|em)|2

is finite for some/every orthonormal basis (en).
The trace class consists of all products ST of Hilbert–Schmidt operators.

Then

trace(ST ) :=
∞∑
n=1

(STen|en)

is well-defined, since the right-hand series converges absolutely, and its value
does not depend on the special choice of the orthonormal basis (en).

Finally, using von Neumann’s work about finite matrices [28], Schatten
and von Neumann [40, Theorem 3.2, Lemma 4.3, and Remark 4.1] presented
the most natural definition of trace class operators, which is based on the
Schmidt representation:

Every compact operator S : H → H can be written in the form

S =

∞∑
n=1

σnun ⊗ vn, un ⊗ vn : x 7→ (x|un)vn, (S)

where (un), (vn) are orthonormal sequences in H, and (σn) is a non-negative
zero sequence; see [41, p. 465].
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By easy manipulations, we may arrange that σ1 ≥ σ2 ≥ · · · ≥ 0. Then
these coefficients are uniquely determined, and one refers to sn(S) :=σn as
the n-th singular number, in short, s-number, of S; see [41, pp. 461–462].

Let 0<p<∞. The main observation says that

Sp(H) :=
{
S ∈ L(H) :

∞∑
n=1

sn(S)p <∞
}

is an ideal in the ring L(H). In particular,

S2(H)={Hilbert–Schmidt operators} and S1(H)={trace class operators}.
For every S∈S1(H), the expression

trace(S) :=
∞∑
n=1

σn(vn|un)

does not depend on the special choice of the Schmidt representation (S).
As remarked in [40, p. 575, Added in proof], Schatten and von Neumann

proved their results without knowing Calkin’s paper [2], which is the starting
point of the theory of operator ideals on the Hilbert space. On the other
hand, Calkin wrote in [2, Introduction and p. 842] that “the author is in-
debted to J. v. Neumann”. Unfortunately, e-mail was not available at the
mid-1940s.

7. The trace of finite rank operators on Banach spaces

Let X and Y be Banach spaces. Denote their dual spaces by X∗ and Y ∗,
respectively.

An operator F : X → Y is said to have finite rank if the range

M(F ) :={Fx : x ∈ X}
is finite-dimensional. We denote the set of these operators by F(X,Y ).

An operator has finite rank if and only if there exists a finite representation

F =

n∑
k=1

u∗k ⊗ vk, u∗k ⊗ vk : x 7→ 〈x, u∗k〉vk, (F)

where u∗1, . . . , u
∗
n∈X∗ and v1, . . . , vn∈Y . Note that the smallest number of

summands that can be achieved is equal to rank(F ) :=dim
[
M(F )

]
.

The concept of a trace makes sense only for square matrices. Similarly, in
the setting of operators, we must assume that the operators act on one and
the same Banach space.

For every finite rank operator F : X → X, we let

trace(F ) :=
n∑

k=1

〈vk, u∗k〉.

Algebraic manipulations show that the right-hand expression does not de-
pend on the special choice of the finite representation (F).
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8. The trace of nuclear operators on Banach spaces

Following Grothendieck [15, Chapter I, p. 80], an operator S : X → Y is
said to be nuclear if there exists a representation

S =

∞∑
k=1

u∗k ⊗ vk, u∗k ⊗ vk : x 7→ 〈x, u∗k〉vk, (N)

where u∗1, u
∗
2, . . .∈X∗ and v1, v2, . . .∈Y such that

∞∑
k=1

‖u∗k‖‖vk‖ <∞.

The set of these operators is denoted by N(X,Y ).
Since S : H → H is nuclear if and only if S ∈ S1(H), nuclear operators

on Banach spaces were, for a while, referred to as trace class operators [38]
or opérateurs à trace [14]. Ironically, there are trace class operators without
a trace.

Now we state the Basic Problem:
Do there exist nuclear operators S : X → X for which the expression

trace(S) :=
∞∑
k=1

〈vk, u∗k〉

depends on the special choice of the nuclear representation (N)?
According to [15, Chapter I, p. 165], the trace of all nuclear operators on a

fixed Banach space X is well-defined if and only if X has the approximation
property :

For every compact subset K of X and every ε>0 there exists a finite rank
operator F on X such that

‖x− Fx‖ ≤ ε whenever x ∈ K.
In 1972, Enflo [10] discovered a counterexample, which became a turning

point in the history of Banach space theory.
An operator theoretical approach to Enflo’s construction is based on

Grothendieck’s observation that the following statements, which turned out
to be false, are equivalent; see [15, Chapter I, pp. 170–171]:

(1) Every Banach space has the approximation property.

(2) If A=(αhk) is any infinite matrix such that
∞∑
h=1

sup
1≤k<∞

|αhk| <∞ and
∞∑
i=1

αhiαik = 0 for h, k=1, 2, . . . ,

then
∞∑
i=1

αii = 0.
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(3) If K is any continuous kernel on [0, 1]×[0, 1] such that∫ 1

0
K(s, z)K(z, t) dz = 0 for s, t∈ [0, 1],

then ∫ 1

0
K(z, z) dz = 0.

This means that the approximation problem has been reduced to problems
of classical analysis.

We stress that (3) is equivalent to Problem 153 posed by Mazur (prize: a
live goose, November 6, 1936) in The Scottish Book ; see also [15, Chapter I,
p. 171, (f) and (g)], [24, p. 36], and [34, p. 285]:

Is the following true?

(4) For every continuous kernel K on [0, 1] × [0, 1] and ε > 0, there exist
points s1, . . . , sn and t1, . . . , tn in [0, 1] as well as constants c1, . . . , cn
such that∣∣∣K(s, t)−

n∑
i=1

ciK(s, ti)K(si, t)
∣∣∣ ≤ ε if 0 ≤ s, t ≤ 1.

This estimate says that K can be approximated by a very special kind of
degenerated kernels.

9. p-Nuclear operators

Let 0<p≤1. Following Grothendieck [15, Chapter II, p. 3], an operator
S : X → Y is said to be de puissance p.ème sommable, now p-nuclear, if
there exists a representation

S =

∞∑
k=1

u∗k ⊗ vk, u∗k ⊗ vk : x 7→ 〈x, u∗k〉vk, (Np)

where u∗1, u
∗
2, . . .∈X∗ and v1, v2, . . .∈Y such that

∞∑
k=1

‖u∗k‖p‖vk‖p <∞.

The set of these operators is denoted by Np(X,Y ). We have Np(H)=Sp(H).
In the case when 0<p≤ 2/3, every p-nuclear operator S : X → X has a

well-defined trace; see [15, Chapter II, pp. 18–19]. Davie [7, p. 265] showed
that p=2/3 is indeed the point at which the behavior of Np turns from the
good to the bad.

15
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10. Operators with p-summable approximation numbers

The n-th approximation number of an operator S : X → Y is defined by

an(S) := inf
{
‖S − F‖ : rank(F ) < n

}
.

For 0<p<∞, we let

Capp
p (X,Y ) :=

{
S ∈ L(X,Y ) :

∞∑
n=1

an(S)p <∞
}
.

In the case of compact operators on the Hilbert space, the approximation
numbers coincide with Schmidt’s s-numbers; see [13, pp. 28–29] and [41,
pp. 461–462]. Therefore Capp

p (H)=Sp(H).
As shown in [29, p. 437], a trace can be assigned to every operator

S∈Capp
1 (X). Its construction will be described in Section 15.

11. Products of 2-summing operators

An operator S : X → Y is called 2-summing if there exists a constant
c≥0 such that( n∑

k=1

‖Sxk‖2
)1/2

≤ c sup
‖x∗‖≤1

( n∑
k=1

|〈xk, x∗〉|2
)1/2

for all finite families of elements x1, . . . , xn∈X. We denote the set of these
operators by P2(X,Y ).

Recall that, according to Schatten and von Neumann, the trace class on
H consists of all products ST of Hilbert–Schmidt operators. Therefore, in
view of P2(H)=S2(H), it seems reasonable to study the set

P2 ◦P2(X,Y ) :=
{
ST : T ∈P2(X,M), S∈P2(M,Y ), M a Banach space

}
.

Since

P2 ◦P2(X,Y ) :=
{
ST : T ∈N(X,H), S∈L(H,Y )

}
,

we know from [16] that P2 ◦P2(X) supports a trace.

12. Axiomatic theory of traces

So far, we described several classes of operators on Banach spaces for
which there exists a trace. Thus the question arises “What are the character-
istic properties of a trace and what is its appropriate domain of definition?”
In contrast to the Hilbert space setting, it makes less sense to fix a
specific Banach space. Hence we should adopt the position of the theory
of categories.
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Recall that L(X,Y ) denotes the collection of all (bounded linear) opera-
tors from the Banach space X into the Banach space Y . Write

L :=
⋃
X,Y

L(X,Y ).

Suppose that, for every couple (X,Y ), we have selected a subset A(X,Y ) of
L(X,Y ). According to [30, 1.1.1],

A :=
⋃
X,Y

A(X,Y )

is called an operator ideal if S, T ∈ A(X,Y ), A ∈ L(X0, X), B ∈ A(Y, Y0),
u∗∈X∗, and v∈Y imply

(O1) S + T ∈ A(X,Y ),

(O2) BSA ∈ A(X0, Y0),

(O3) u∗⊗v ∈ A(X,Y ).

Obviously, A(X) :=A(X,X) is an ideal in the ring L(X) :=L(X,X).

A trace on an operator ideal A is a scalar-valued function τ defined on all
components A(X) for which the following holds:

(T1) τ(αS + βT ) = ατ(S) + βτ(T ) for S, T ∈ A(X) and α, β ∈ K,

(T2) τ(AS) = τ(SA) whenever

X - X
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In the case when τ is defined only on a specific component A(X), condition
(T2) means some kind of commutativity.

To reduce the huge amount of traces that may exist on some operator
ideals it is natural to require continuity with respect to a suitable topology.
The best way to obtain such topologies is via quasi-norms ‖·|A‖. We assume
that the following holds for S, T ∈ A(X,Y ), A ∈ L(X0, X), B ∈ A(Y, Y0),
u∗∈X∗, v∈Y , and some constant c≥1:

(Q1) ‖S + T |A‖≤c
[
‖S|A‖+ ‖T |A‖

]
,

(Q2) ‖BSA|A‖≤‖B‖‖S|A‖‖A‖,
(Q3) ‖u∗⊗v|A‖ = ‖u∗‖‖v‖.
This leads to the concept of a quasi-Banach operator ideal. More information
about continuous traces can be found in [32, Chapter 4] and [34, Section 6.5].
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13. The spectral trace

A trace τ on an operator ideal A is called spectral if

τ(S) =
∞∑
n=1

λn(S) for all S ∈ A(X). (trace formula)

This includes the assumption that, from the spectral point of view, all
operators S ∈ A(X) behave like compact operators; see [30, 26.5.1], [31,
3.2.12], and [34, 5.2.3.2]. Then we can define the eigenvalue sequence

(
λn(S)

)
in which every eigenvalue λ 6=0 is counted according to its finite multiplicity.
We further assume that ∞∑

n=1

|λn(S)| <∞.

For trace class operators on the Hilbert space the latter property was shown
by Weyl [44], and Lidskĭı [23] proved the trace formula by using methods
from the theory of entire functions. This result was certainly known to
Grothendieck [15, Chapter II, pp. 18–19] when he discovered that the oper-
ator ideal N2/3 supports the spectral trace. Further examples, namely Capp

1

and P2◦P2, were exhibited by König [20, p. 164], [21, p. 259].

According to Enflo’s counterexample, we find a continuous kernel K on
[0, 1]×[0, 1] such that∫ 1

0
K(s, z)K(z, t) dz = 0 for s, t∈ [0, 1] and

∫ 1

0
K(z, z) dz = 1.

The associated operator Kop turns out to be nuclear on C[0, 1], which has
the approximation property. Hence

trace(Kop) =

∫ 1

0
K(z, z) dz = 1

is well-defined. On the other hand, it follows from K2
op=O that there exists

no eigenvalue λ 6= 0. This shows that, even on nice Banach spaces, the
nuclear trace fails to be spectral.

14. Classical and singular traces

Until the late 1980s, only classical traces were viewed as useful; see [31],
[32, 4.2.1], and [34, 6.5.1]. Those traces are supposed to satisfy the additional
condition that τ(u∗ ⊗ v) = 〈v, u∗〉 for u∗ ∈ X∗ and v ∈ X or just τ(IK) = 1,
where IK is the identity map of the 1-dimensional Banach space K. In other
words, τ(F ) coincides with trace(F ) for all operators F ∈F(X).

The question “Whether a classical trace is uniquely determined by its
axiomatic properties” led to the concept of a singular trace: τ(u∗ ⊗ v) = 0
for u∗ ∈ X∗ and v ∈ Y . Already in 1966 and motivated by the theory of
C?-algebras, Dixmier [9] had constructed an example, in the Hilbert space
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setting. About 20 years later a miracle happened, when the teacher
explained this pathological monster to his best pupil. As soon as Connes
understood (after approximately thirty seconds), he said: “C’est ce qu’il me
faut – This is what I need”; see [25, pp. 217–218]. The outcome can be found
in [5, 6].

15. Construction of traces

A linear space z(N0) of bounded scalar sequences a = (αh) indexed by
N0 := {0, 1, 2, . . . } is called a shift-monotone sequence ideal if the following
conditions are satisfied:

(M1) z(N0) is invariant under the shift operators

S− : (α0, α1, α2, . . . ) 7→ (α1, α2, α3, . . . ),
and

S+ : (α0, α1, α2, . . . ) 7→ ( 0 , α0 , α1, . . . ).

(M2) If (βh)∈z(N0) and |αh|≤|βh|, then (αh)∈z(N0).

(M3) For every sequence (αh)∈ z(N0) there exists a sequence (βh)∈ z(N0)
such that |αh|≤βh and β0≥β1≥β2≥ . . .≥0.

We refer to z(N0) as strictly shift-monotone if (M3) is replaced by

(M4) (αh)∈z(N0) implies
(∑∞

h=k |αh|
)
∈z(N0).

With every shift-monotone sequence ideal z(N0) we associate the operator
ideal

Dapp
z :=

{
S ∈ L :

(
a2h(S)

)
∈ z(N0)

}
.

In the case when z(N0) is strictly shift-monotone, an operator S : X → Y
belongs to Dapp

z if and only if it admits a representation

S =

∞∑
h=1

Fh such that rank(Fh) ≤ 2h and
(
‖Fh‖

)
∈ z(N0). (z)

Suppose that λ is a 1
2S+-invariant linear form on z(N0),

λ(12S+a) = λ(a) for all a ∈ z(N0).

Then
τ(S) := λ

(
1
2h

trace(Fh)
)

defines a trace on Dapp
z ; see [33, p. 35]. Indeed, it follows from

| trace(F )| ≤ n‖F‖ whenever rank(F ) ≤ n
and

(
‖Fh‖

)
∈ z(N0) that

(
1
2h

trace(Fh)
)
∈ z(N0). So λ

(
1
2h

trace(Fh)
)

makes
sense, and we can show that this expression does not depend on the special
choice of the representation (z).

16
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The linear space of all 1
2S+-invariant linear forms on a shift-monotone

sequence ideal is studied in [37]. Its dimension can at most be 22
ℵ0. In all

known cases we have either 0 or 1 or 22
ℵ0.

An example of a strictly shift-monotone sequence ideal is given by

l1[2
−h](N0) :=

{
(αh) :

∞∑
h=0

2h|αh| <∞
}
.

The associated operator ideal Dapp
l1[2−h]

coincides with Capp
1 , and the canonical

1
2S+-invariant linear form

λ(a) :=
∞∑
h=0

2hαh for all a = (αh) ∈ l1[2
−h](N0)

generates the spectral trace.
The preceding construction, which works in the setting of Banach spaces,

yields traces only on specific operator ideals. So our knowledge is still
rudimentary. However, if the considerations are restricted to operators on
the infinite-dimensional separable Hilbert space, then the situation becomes
perfect. Based on previous work of Figiel (unpublished), Kalton [18], et al.,
it was shown in [36] that there exist one-to-one correspondences between all
operator ideals A(H) and all shift-monotone sequence ideals z(N0) as well
as between all traces on A(H) and all 1

2S+-invariant linear forms on the
associated z(N0).

A trace on A(H) can be characterized as a linear form that is invariant
under the non-commutative group of unitary operators, which looks like a
rather involved property. On the other hand, the corresponding linear form
on z(N0) needs to be invariant just under the single operator 1

2S+. In this
way, we have reached a drastic simplification of trace theory.

Dedication

This paper is dedicated to Erhard Schmidt, who was born on January 1,
1876 (Julian calendar), in Tartu (in those days named Dorpat); see [35].
From 1893 to 1899, he studied at the University of Tartu. After two years at
the University of Berlin, Schmidt went to Göttingen. Under the supervision
of Hilbert, he wrote his famous thesis [41]. The Ph.D. was awarded to him
on June 29, 1905. Schmidt spent the main part of his life in Berlin.

Being a fresh mathematician, I was appointed from 1958 to 1965 at the
Forschungsinstitut für Mathematik der Deutschen Akademie der Wissen-
schaften, founded in 1946 on the initiative of Schmidt. Unfortunately,
I did not have the privilege to meet him personally, since he passed away
on December 6, 1959. Nevertheless, reading Schmidt’s papers influenced my
mathematical work and style considerably; I was able to extend some of his
results about operators on the Hilbert space to the setting of Banach spaces.
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Mat. Kutat Int. Kzl. 1 (1956), 423–427; German summary: Über die Kerne linearer
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Acad. Sci. Paris 233 (1951), 1556–1558.

[15] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs
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