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Norm approximation property

Anatolij Plichko

Abstract. We introduce and study a general approximation property
which takes origin in Numerical Analysis.

Let F(X) be the set of all finite rank bounded linear operators in a Banach
space X. A Banach space X has the approximation property (AP) if for
every ε > 0 and every compact subset K ⊂ X there is T ∈ F(X) such that
for all x ∈ K,

‖Tx− x‖ ≤ ε.
We say that a Banach space X has the norm approximation property

(norm AP) if there is λ ≥ 1 such that for every ε > 0 and every finite-
dimensional subspace E ⊂ X there is T ∈ F(X) with ‖T‖ ≤ λ and such
that for all x ∈ E,

(1− ε)‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖. (1)

Of course, one may consider the norm approximation property for different
Banach spaces X and Y . This property is a kind of “finite representability”
of X in Y . The norm approximation property takes origin in Numerical
Analysis, see, e.g., Vainikko [6], Heinrich [1], Plichko [5].

Proposition 1. A Banach space X has the norm AP provided there is a
sequence Tn ∈ F(X) such that for all x ∈ X,

‖Tnx‖ → ‖x‖ as n→∞. (2)

Proof. Indeed, by the Uniform Boundedness Principle, in this Proposition
the operators (Tn) are automatically uniformly bounded. Moreover, (2)
implies that this convergence is uniform on the unit ball of every finite-
dimensional subspace E ⊂ X. �
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For separable Banach spaces the converse statement is also valid. If X
has the norm AP, then there exists a sequence Tn ∈ F(X) with the property
(2).

Now we present an example of a Banach space without the norm AP.

Denote by L(X,Y ) the space of all bounded linear operators from a
Banach space X to a Banach space Y . Let us recall that an operator
T ∈ L(X,Y ) is 2-absolutely summing if there is a constant C such that,
for all finite subsets (xi) in X, we have(∑

‖Txi‖2
)1/2

≤ C sup
f∈BX∗

(∑
|f(xi)|2

)1/2
,

where BX∗ is the dual unit ball. We denote by π2(T ) the smallest constant C
satisfying the previous inequality. This π2(T ) is a norm on the space of all 2-
absolutely summing operators and π2(T ) ≥ ‖T‖. Moreover, if T ∈ L(X,Y )
is 2-absolutely summing, and for subspaces X ′ ⊂ X and Y ′ ⊂ Y we have
T (X ′) ⊂ Y ′, then the restriction T ′ = T |X′ ∈ L(X ′, Y ′) is again 2-absolutely
summing and π2(T

′) ≤ π2(T ), see, e.g., Pisier [4, p. 9].

Lemma 2. Let T ∈ L(X,Y ) and E be a subspace of X, dimE = n, for
which (1) is satisfied. Then there exists a constant a > 0, depending on ε
only, such that

π2(T |E) ≥ a
√
n.

Proof. Let Id be the identity operator on X. As is well known, there
exists an absolute constant b > 0 such that π2(Id|E) ≥ b

√
n (see, e.g.,

Pisier [3, p. 201] or [4, p. 145]). Since Id|E = (T |E)(T |E)−1 and π2(Id|E) ≤
π2(T |E)‖(T |E)−1‖ (see, e.g., Pisier [4, p. 9]), the Lemma is proved. �

Pisier [3, p. 201], [4, p. 145] constructed a Banach space X for which there
is a constant c > 0 such that for every T ∈ F(X) we have

‖T‖ ≥ cπ2(T ). (3)

Proposition 3. Every Banach space X for which (3) is satisfied fails the
norm AP.

Proof. Indeed, let E ⊂ X, dimE = n, and let an operator T ∈ F(X)
satisfy condition (1). Then, by (3) and Lemma 2,

‖T‖ ≥ cπ2(T ) ≥ cπ2(T |E) ≥ ca
√
n.

Therefore, there exists no λ with ‖T‖ ≤ λ for the operators T ∈ F(X)
satisfying (1). �
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Proposition 4. Let X be a subspace of a Banach space Y which has the
norm AP and is finitely representable in X. Then X has the norm AP.

Proof. Take a finite-dimensional subspace E ⊂ X, ε > 0, and let I : X →
Y be the identity embedding. Since Y has the norm AP (with a constant
λ), there is T ∈ F(Y ) with ‖T‖ ≤ λ such that

(1− ε)‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖
for every x ∈ I(E). Since Y is finitely representable in X, there exists an
operator S : T (Y )→ X with ‖S‖ < 1+ε and ‖S−1‖ < 1+ε. Put U = STI.
Then U ∈ F(X), ‖U‖ < λ(1 + ε), ‖Ux‖ < (1 + ε)2‖x‖ and ‖Ux‖ > 1−ε

1+ε‖x‖
for every x ∈ E. Hence, X has the norm AP. �

Corollary 5. Every Banach space X, which contains `n∞ uniformly, has
the norm AP.

Proof. Indeed, each Banach space X is a subspace of Y = `∞(Γ), for
a suitable set Γ, which of course has the norm AP. By the assumption of
Corollary, Y is finitely representable in X and one can apply the previous
Proposition. �

Corollary 6. Let Y = (
∑

n `
n
∞)2 and X be an arbitrary Banach space.

Then the space Z = (X ⊕ Y )`2 has the norm AP. So, each Banach space
is isometric to a 1-complemented subspace of a Banach space with the norm
AP. Each reflexive Banach space is isometric to a 1-complemented subspace
of a reflexive Banach space with the norm AP.

Corollary 7. Every subspace X of the space `p, 1 ≤ p < ∞, or c0 has
the norm AP . So, there exists a superreflexive separable Banach space with
the norm AP but without the AP.

Proof. Indeed, each (infinite-dimensional) subspace X of `p or c0 contains
a subspace, (1 + ε)-isometric to `p or c0 [2, Proposition 2.a.2], and one can
apply the previous Proposition. It is well known that there exists a subspace
X of `p, p 6= 2, (or c0) without the AP [2, p. 90]. �
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