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Dominions, zigzags and epimorphisms
for partially ordered semigroups

Nasir Sohail and Lauri Tart

Abstract. We prove an analogue of Isbell’s celebrated zigzag theo-
rem for partially ordered semigroups. This theorem provides a useful
description of dominions which we employ to describe absolute closed-
ness of posemigroups and epimorphisms in varieties of absolutely closed
posemigroups.

1. Preliminaries

A partially ordered semigroup, briefly posemigroup, is a pair (S,≤) com-
prising a semigroup S and a partial order ≤ (on S) that is compatible with
the binary operation, i.e. for all s1, s2, t1, t2 ∈ S, s1 ≤ t1, s2 ≤ t2 implies
s1s2 ≤ t1t2. If S is a monoid we call (S,≤) a partially ordered monoid,
shortly pomonoid. A posemigroup homomorphism f : (S,≤S) −→ (T,≤T )
is a monotone semigroup homomorphism. We call f an order-embedding
if one has f(s1) ≤T f(s2) if and only if s1 ≤S s2, s1, s2 ∈ S. A sur-
jective order-embedding is called an order-isomorphism. Epimorphisms of
posemigroups are defined in the usual sense of category theory, that is a
posemigroup homomorphism f : (S,≤S) −→ (T,≤T ) is called an epimor-
phism if g ◦ f = h ◦ f implies g = h for all posemigroup homomorphisms
g, h : (T,≤T ) −→ (U,≤U ). We call (U,≤U ) a subposemigroup of a posemi-
group (S,≤S) if U is a subsemigroup of S and ≤U = ≤S ∩ U × U . The
corresponding notions for pomonoids are defined analogously.

In the sequel we shall also treat a posemigroup (respectively, pomonoid)
(S,≤) as a semigroup (monoid) by simply disregarding the order. We shall
then merely denote it by S. Let A be a class of posemigroups (pomonoids).
Then by A′ we shall denote the class of semigroups (monoids) obtained by
disregarding the orders in A (that is A′ = {S : (S,≤) ∈ A}).

Received December 28, 2013.
2010 Mathematics Subject Classification. Primary 06F05, 18A20; Secondary 20M07.
Key words and phrases. Posemigroup, pomonoid, dominion, zigzag, absolutely closed,

epimorphism.
http://dx.doi.org/10.12097/ACUTM.2014.18.09

81

21



82 NASIR SOHAIL AND LAURI TART

A class of posemigroups is called a variety of posemigroups, for instance
cf. [7], if it is closed under taking products (endowed with componentwise
order), homomorphic images and subposemigroups. Varieties of pomonoids
may be defined similarly. It is also possible to describe posemigroup (pomo-
noid) varieties alternatively with the help of inequalities using a Birkhoff type
characterization; we refer to [1] for details. Because every term equality in
an algebraic variety can be replaced by two (term) inequalities, see [7], in a
usual way, a class A of posemigroups (pomonoids) is a variety if the class A′
is a variety of semigroups (monoids). Also, every variety (whether algebraic
or order theoretic) naturally gives rise to a category.

We observe that f : (S,≤S) −→ (T,≤T ) is necessarily a posemigroup
(pomonoid) epimorphism if f : S −→ T is an epimorphism of semigroups
(monoids). One of our aims is to show that the converse of this statement
holds in varieties of absolutely closed semigroups. We shall, however, first
present two versions of Isbell’s zigzag theorem for posemigroups and record
some of their consequences.

Before moving to next section, let us recall (for instance from [9]) S-posets
and their tensor products. Let (S,≤S) be a pomonoid and (X,≤X) a poset.
Then X is called a left S-poset, we shall denote it by (S,≤S)(X,≤X), if X
is a left S-act, see [6], such that the left action S × X −→ X of S, given
by (s, x) 7−→ sx, is monotone, i.e. (s1, x1) 4 (s2, x2) implies s1x1 ≤X s2x2,
where 4 is defined componentwise. Right S-posets are defined in a dual
manner. A homomorphism of right (left) S-posets is a monotone right (left)
S-act homomorphism.

A poset (A⊗̂SB,≤) is called the tensor product (over (S,≤S)) of a right
S-poset (A,≤A)(S,≤S) and a left S-poset (S,≤S)(B,≤B) if it satisfies the fol-
lowing conditions:

(i) there exists a balanced (i.e. α(as, b) = α(a, sb), a ∈ A, b ∈ B, s ∈ S)
monotone map

α : (A×B,�) −→ (A⊗̂SB,≤)

(where � denotes the componentwise order onA×B) such that
(ii) for any poset (X,≤X) admitting a balanced monotone map

β : (A×B,�) −→ (X,≤X)

there is a unique monotone map ϕ : (A⊗̂SB,≤) −→ (X,≤X) with
β = ϕ ◦ α.

An explicit method of constructing (A⊗̂SB,≤) may be found, for example,
in [9]. We shall henceforth simply write A⊗̂SB instead of (A⊗̂SB,≤). The
image of (a, b) under α will be denoted by a⊗̂b. On the other hand, given
two S-posets (A,≤A)(S,≤S) and (S,≤S)(B,≤B), we shall denote by A ⊗S B
the (algebraic) tensor product of the S-acts AS and SB (for details see [6]).
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A typical element of A⊗SB is denoted by a⊗b. Clearly (S,≤)
(S,≤)

,
(S,≤)

(S,≤),
SS and SS are special S-posets and S-acts, respectively.

2. Pomonoids

In this section we put together some recent results concerning closure of
pomonoids. We begin by recalling dominions.

Definition 1 ([12], Definition 1). Let (U,≤U ) be a subpomonoid of a
pomonoid (S,≤S). Then the subpomonoid (of (S,≤S))

(d̂omS(U),≤) = {x ∈ S : α, β : (S,≤S)→ (T,≤T )

with α |U = β |U =⇒ α(x) = β(x)}
is called the dominion of (U,≤U ) (in (S,≤S)), where α and β are pomonoid
homomorphisms.

Henceforth, we shall simply write d̂omS(U) to denote (d̂omS(U),≤). The
following zigzag theorem for pomonoids provides a criterion to check if an

element d ∈ (S,≤S) lies in d̂omS(U).

Theorem 1 ([11], Theorem 3). Take a subpomonoid (U,≤U ) of a pomo-

noid (S,≤S). Then d ∈ d̂omS(U) if and only if d⊗̂1 = 1⊗̂d in S⊗̂US.

Given a subpomonoid (U,≤U ) of a pomonoid (S,≤S), one may also con-
sider, while ignoring the orders, the (algebraic) dominion domS(U) of U
in S; for instance, see [8]. In the unordered scenario we have the follow-
ing celebrated zigzag theorem, the original formulation of which is due to
J. R. Isbell [5].

Theorem 2 ([8], Theorem 2.1). Let U be a submonoid of a monoid S.
Then d ∈ domS(U) if and only if d⊗ 1 = 1⊗ d in S ⊗U S.

Recall, for example from [11], that d ⊗ 1 = 1 ⊗ d in S ⊗U S implies
d⊗̂1 = 1⊗̂d in S⊗̂US. We therefore have:

U ⊆ domS(U) ⊆ d̂omS(U) ⊆ S. (1)

By analogy with [4], a subpomonoid (U,≤U ) of (S,≤S) will be termed closed

(in (S,≤S)) if d̂omS(U) ⊆ U (whence indeed d̂omS(U) = U). We shall call
(U,≤U ) absolutely closed if it is closed in all of its pomonoid extensions. One
can easily observe that a pomonoid homomorphism f : (S,≤S) −→ (T,≤T )

is an epimorphism if and only if d̂omT (Im f) = (T,≤T ).

Theorem 3 (see [12]). Take a subpomonoid (U,≤U ) of a pomonoid (S,≤S

). Then (U,≤U ) is closed in (S,≤S) if and only if U is such in S as a monoid.
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3. Posemigroups

In this section we adapt the notions of previous section together with some
others to the setting of posemigroups. We define dominions for posemigroups
by just replacing pomonoids with posemigroups in Definition 1. We shall use

the same notation D̂omS(U) to denote posemigroup dominions.
By a posemigroup amalgam [(U,≤U ); (S1,≤S1), (S2,≤S2);ψ1, ψ2], cf. [12],

we mean a “span”

ψi : (U,≤U ) −→ (Si,≤i), i ∈ {1, 2}, (2)

in the category of posemigroups, with ψi being order-embeddings. We term
(2) a special posemigroup amalgam if (S1,≤1) is order-isomorphic to (S2,≤2)
via an order-isomorphism ν with ν ◦ ψ1 = ψ2. An amalgam is said to be
embeddable (po-embeddable in the sense of [12]) if there exists a posemigroup
(W,4) admitting order-embeddings φi : (Si,≤i) −→ (W,4), i ∈ {1, 2}, such
that

i. φ1 ◦ ψ1 = φ2 ◦ ψ2 and
ii. φ1(s1) = φ2(s2), si ∈ Si, implies that si = ψi(u) for some u ∈ U .

By relaxing condition (ii) we say that (2) is weakly embeddable. In the
sequel we shall not make explicit reference to ψ1 and ψ2 and shall rather use a
shorter list [(U,≤U ); (S1,≤S1), (S2,≤S2)] to denote posemigroup (pomonoid)
amalgams.

We first give a zigzag theorem (cf. [8], Theorem 2.1) for posemigroups.

Theorem 4. Take a subposemigroup (U,≤U ) of a posemigroup (S,≤S).

Then an element d of (S,≤S) is in D̂omS(U) if and only if

d⊗̂1 = 1⊗̂d in S1⊗̂U1S1,

where (U1,≤U1) and (S1,≤S1) are the pomonoids obtained from (U,≤U ) and
(S,≤S), respectively, by adjoining an incomparable external identity whether
or not they already have one.

Proof. (=⇒) Let PSgr denote the category of all posemigroups. Denote
by PSgr1 the category of pomonoids obtained by adjoining an incomparable
external identity to every object of PSgr, whether or not it has got one
(certainly the morphisms in PSgr1 are required to preserve this identity).

Let 1 6= d ∈ D̂omS(U). Let f1, g1 : (S1,≤S1) −→ (T 1,≤T 1) agree on
(U1,≤U1) in PSgr1. Take f = f1

∣∣
(S,≤S) , g = g1

∣∣
(S,≤S) . Then clearly, in

PSgr, f, g : (S,≤S) −→ (T 1,≤T 1) are equal on (U,≤U ). And hence, by

assumption, f(d) = g(d). But then f1(d) = g1(d). So d ∈ D̂omS1(U1)
whence d⊗̂1 = 1⊗̂d in S1⊗̂U1S1 by Theorem 1.

(⇐=) Let d⊗̂1 = 1⊗̂d in S1⊗̂U1S1, with d 6= 1. Then d ∈ D̂omS1(U1).
Suppose that f, g : (S,≤S) −→ (T,≤T ) agree on (U,≤U ) in PSgr. Let
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f
′
, g
′

: (S1,≤S1) −→ (T 1,≤T 1) be defined by

(x ∈ S =⇒ f ′(x) = f(x), g′(x) = g(x)), f(1) = g(1) = 1.

Now clearly f
′
∣∣∣(U1,≤U1 ) = g

′
∣∣∣(U1,≤U1 ) whence by assumption f ′(d) = g′(d).

But then f(d) = g(d) and so d ∈ D̂omS(U) as required. �

One can now reformulate the above theorem in a way that resembles
Isbell’s original formulation [5].

Theorem 5. Let U be a subposemigroup of a posemigroup S. Then we

have d ∈ d̂omS(U) if and only if d ∈ U or there exists a system of inequalities

d ≤ s1u1 u1 ≤ v1t1
s1v1 ≤ s2u2 u2t1 ≤ v2t2
...

...
sn−1vn−1 ≤ un untn−1 ≤ d
vn ≤ sn+1un+1 d ≤ vntn
sn+1vn+1 ≤ sn+2un+2 un+1tn ≤ vn+1tn+1
...

...
sn+mvn+m ≤ d un+mtn+m−1 ≤ vn+m

(3)

with elements u1, . . . , un+m, v1, . . . , vn+m ∈ U , s1, . . . , sn−1, sn+1, . . . , sn+m,
t1, . . . , tn+m−1 ∈ S.

Proof. (=⇒) Let d ∈ d̂omS(U). Then by the above theorem d⊗̂1 = 1⊗̂d
in S1⊗̂U1S1. Referring to [9], there exists a system of inequalities,

d ≤ s1u1
s1v1 ≤ s2u2 u1 ≤ v1t1
... u2t1 ≤ v2t2
sn−1vn−1 ≤ s′nun

...
s′nv
′
n ≤ 1 untn−1 ≤ v′nd

1 ≤ s′n+1u
′
n+1

s′n+1vn ≤ sn+1un+1 u′n+1d ≤ vntn
... un+1tn ≤ vn+1tn+1

sn+m−1vn+m−1 ≤ sn+mun+m
...

sn+mvn+m ≤ d un+mtn+m−1 ≤ vn+m,

where u1, . . . un+m, v1, . . . vn+m, v
′
n, u
′
n+1 ∈ U1; s1, . . . , sn−1, sn+1, . . . , sn+m,

t1, . . . , tn+m−1, s
′
n, s
′
n+1 ∈ S1.

Now, because 1 is incomparable, s′nv
′
n ≤ 1 implies s′nv

′
n = 1. But then

we have s′n = v′n = 1, since 1 was adjoined externally. By a similar token

32
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we also have s′n+1 = u′n+1 = 1. One can therefore rewrite the above set of
inequalities as follows:

d ≤ s1u1 u1 ≤ v1t1
s1v1 ≤ s2u2 u2t1 ≤ v2t2
...

...
sn−1vn−1 ≤ un untn−1 ≤ d
vn ≤ sn+1un+1 d ≤ vntn
sn+1vn+1 ≤ sn+2un+2 un+1tn ≤ vn+1tn+1
...

...
sn+mvn+m ≤ d un+mtn+m−1 ≤ vn+m.

Employing the argument used by Howie in the unordered context (see [3],
p. 272), we next show that all the elements in the above set of inequalities
may be assumed to lie in S. We do this by assuming that ui, vi, si or ti
is not in S for some i and demonstrate that in this case the corresponding
inequality can be omitted. It suffices to consider the upper half portion

d ≤ s1u1 u1 ≤ v1t1
s1v1 ≤ s2u2 u2t1 ≤ v2t2
...

...
sn−1vn−1 ≤ un untn−1 ≤ d.

(4)

The proof will be accomplished by exhausting all possibilities.
If u1 = 1 then (from u1 ≤ v1t1) v1 = t1 = 1, and we may write

d ≤ s2u2 u2 ≤ v2t2
s2v2 ≤ s3u3 u3t2 ≤ v3t3
...

...
sn−1vn−1 ≤ un untn−1 ≤ d.

If v1 = 1 then s1 ≤ s2u2, and one can calculate

d ≤ s2(u2u1) u2u1 ≤ v2t2
s2v2 ≤ s3u3 u3t2 ≤ v3t3
...

...
sn−1vn−1 ≤ un untn−1 ≤ d.

If ui = 1, 2 ≤ i ≤ n− 1, then the set of inequalities

si−2vi−2 ≤ si−1ui−1 ui−1ti−2 ≤ vi−1ti−1
si−1vi−1 ≤ siui uiti−1 ≤ viti
sivi ≤ si+1ui+1 ui+1ti ≤ vi+1ti+1

collapses to

si−2vi−2 ≤ si−1ui−1 ui−1ti−2 ≤ vi−1viti
si−1vi−1vi ≤ si+1ui+1 ui+1ti ≤ vi+1ti+1.
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If vi = 1, 2 ≤ i ≤ n− 2, then the set of inequalities

si−1vi−1 ≤ siui uiti−1 ≤ viti
sivi ≤ si+1ui+1 ui+1ti ≤ vi+1ti+1

reduces to

si−1vi−1 ≤ si+1ui+1ui ui+1uiti−1 ≤ vi+1ti+1.

If un = 1 then (as noted above) sn−1 = vn−1 = 1, and the set of inequalities

sn−2vn−2 ≤ sn−1un−1 un−1tn−2 ≤ vn−1tn−1
sn−1vn−1 ≤ un untn−1 ≤ d,

may be replaced by

sn−2vn−2 ≤ un−1 un−1tn−2 ≤ d.

If vn−1 = 1 then we have sn−1 ≤ un and the set of inequalities

sn−2vn−2 ≤ sn−1un−1 un−1tn−2 ≤ vn−1tn−1
sn−1vn−1 ≤ un untn−1 ≤ d

can be replaced with

sn−2vn−2 ≤ unun−1 unun−1tn−2 ≤ d.

If s1 = 1 then d = u1 ∈ U and there is nothing to prove.
If si = 1, 2 ≤ i ≤ n − 1 , such that sj ∈ S for all j ≤ i − 1, then (starting
from the top of (4)) one may write

d ≤ s1u1 ≤ s1v1t1 ≤ s2u2t1 ≤ · · · ≤ uiti−1.

On the other hand, (starting from the bottom of (4)) we also have

d ≥ untn−1 ≥ sn−1vn−1tn−1 ≥ sn−1un−1tn−2 ≥ · · · ≥ uiti−1.

Thus d = uiti−1, and we may shorten the inequalities (4) to

d ≤ s1u1 u1 ≤ v1t1
s1v1 ≤ s2u2 u2t1 ≤ v2t2
...

...
si−1vi−1 ≤ ui uiti−1 = d.

Similarly, if ti = 1, 1 ≤ i ≤ n− 1, with tj ∈ S for all j ≤ i− 1, then we have

d ≤ s1u1 ≤ s1v1t1 ≤ s2u2t1 ≤ · · · ≤ siuiti−1 ≤ sivi

on one hand, and

d ≥ untn−1 ≥ sn−1vn−1tn−1 ≥ sn−1un−1tn−2 ≥ · · · ≥ si+1ui+1 ≥ sivi
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on the other hand. This gives d = sivi = si+1ui+1 and one can shorten (4)
to

d ≤ si+1ui+1 ui+1 ≤ vi+1ti+1

si+1vi+1 ≤ si+2ui+2 ui+2ti+1 ≤ vi+2ti+2
...

...
sn−1vn−1 ≤ un untn−1 ≤ d.

This completes the proof of the direct part.
(⇐=) To prove the converse part, let there exist a set of inequalities (3).

Then, by [9], d⊗̂1 = 1⊗̂d in S1⊗̂U1S1. So d ∈ d̂omS1(U1) by Theorem 1.
Now, d ∈ domS(U) by the above theorem. �

Proposition 1. A posemigroup amalgam [(U,≤U ); (S,≤S), (T,≤T )] is
embeddable (weakly embeddable) if and only if the corresponding pomonoid
amalgam [(U1,≤U1); (S1,≤S1), (T 1,≤T 1)] is embeddable (weakly embeddable)
in some pomonoid, where (U1,≤U1), (S1,≤S1) and (T 1,≤T 1) are the po-
monoids obtained from (U,≤U ), (S,≤S) and (T,≤T ) by adjoining an in-
comparable external identity, whether or not they already have one.

Proof. Let the posemigroup amalgam [(U,≤U ); (S,≤S), (T,≤T )] be em-
beddable in a posemigroup (W,≤W ). Let (W 1,≤W 1) be the pomonoid ob-
tained by externally adjoining an incomparable identity to (W,≤W ). Extend,
in a natural way, the order-embeddings

α : (S,≤S) −→ (W,≤W ),

β : (T,≤T ) −→ (W,≤W )

to

α1 : (S1,≤S1) −→ (W 1,≤W 1),

β1 : (T 1,≤T 1) −→ (W 1,≤W 1).

It is now straightforward to see that the pomonoid amalgam [(U1,≤U1);
(S1,≤S1), (T 1,≤T 1)] is embeddable in (W 1,≤W 1).

To prove the converse, we may assume without loss of generality that
[(U1,≤U1); (S1,≤S1), (T 1,≤T 1)] is embeddable in the pushout (S1~U1T 1,4),
see [10]. Because 1 was adjoined externally to (U,≤U ), (S,≤S) and (T,≤T ),
the pair ((S1~U1T 1)\{1} ,4) is a posemigroup; let us reserve for it the nota-
tion (S~U T,4). Again, since 1 was adjoined externally to (U,≤U ), (S,≤S)
and (T,≤T ), the posemigroup amalgam [(U,≤U ); (S,≤S), (T,≤T )] embeds
in (S ~U T,4) if the order-embeddings from (S1,≤S1) and (T 1,≤T 1) to
(S1 ~U1 T 1,4) are restricted to (S,≤S) and (T,≤T ). �

We shall henceforth denote (S ~U T,4) (respectively, (S1 ~U1 T 1,4)) by
simply S ~U T (S1 ~U1 T 1).



DOMINIONS, ZIGZAGS AND EPIS FOR POSEMIGROUPS 89

Corollary 1. Every special amalgam [(U,≤U ); (S1,≤S1), (S2,≤S2)] of po-
semigroups is weakly embeddable in S1 ~U S2.

Proof. Because [(U1,≤U1); (S1
1 ,≤S1

1
), (S1

2 ,≤S1
2
)] is weakly embeddable by

Remark 1 of [12], it is weakly embeddable in S1 ~U1 T 1, see [10]. Thus
[(U,≤U ); (S1,≤S1

), (S2,≤S2
)] is weakly embeddable in S1 ~U S2. �

Consequently, we also have the following result (its proof, being similar to
that of the corresponding result in the unordered context, see for instance
[8], is omitted).

Corollary 2. Let (U,≤U ) be a subposemigroup (subpomonoid) of a posemi-
group (monoid) (S,≤S). Also, let (S1,≤1) and (S2,≤2) be two disjoint order-
isomorphic copies of (S,≤S). Then

d̂omS(U) ∼= d̂omSi(U) = π−1i (π1(S1,≤1) ∩ π2(S2,≤2)), i ∈ {1, 2} ,

where πi : (Si,≤i) −→ S1~U S2 are the order-embeddings and where (U,≤U )
is identified with its order isomorphic copies in (S1,≤1) and (S2,≤2).

Now observe that a special posemigroup (respectively, pomonoid) amal-
gam [(U,≤U ); (S1,≤S1

), (S2,≤S2
)] is embeddable if and only if

π−1i (π1(S1,≤1) ∩ π2(S2,≤2)) = U (i ∈ {1, 2} ).

Therefore we have the following corollary.

Corollary 3. A subposemigroup (subpomonoid) (U,≤U ) of a posemigroup
(pomonoid) (S,≤S) is closed in (S,≤S) if and only if the special posemigroup
(pomonoid) amalgam [(U,≤U ); (S1,≤S1

), (S2,≤S2
)] is embeddable; (S1,≤S1

)
and (S2,≤S2

) are order isomorphic copies of (S,≤S).

Theorem 6. A subposemigroup (U,≤U ) of a posemigroup (S,≤S) is closed
in (S,≤S) if and only if U is such in S as a semigroup.

Proof. (=⇒) This follows from inclusions (1), which also hold for posemi-
groups.

(⇐=) Suppose U is closed in S as a semigroup. Consider the special
posemigroup amalgam [(U,≤U ); (S1,≤S1

), (S2,≤S2
)], where (S1,≤S1

) and
(S2,≤S2

) are order-isomorphic copies of (S,≤S). Ignoring the orders, note
first that [U ;S1, S2] is embeddable (particularly in S1 ∗U S2, see [3] Theorem
8.2.4) because U is closed in S (cf. [8]). But then [U1;S1

1 , S
1
2 ] is embeddable

(particularly in S1
1 ∗U1S1

2). So U1 is closed in S1
1 , by (unordered analogue, see

[8], of) the above corollary. Now, (U1,≤U1) is closed in (S1
1 ,≤S1

1
) by Theorem

3. This means, by the above corollary, that [(U1,≤U1); (S1
1 ,≤S1

1
), (S1

2 ,≤S1
2
)]

is embeddable (particularly in S1
1 ~U1 S1

2). Finally, repeating the argument
used in Proposition 1, [(U,≤U ); (S1,≤S1

), (S2,≤S2
)] is embeddable in S1~U

S2. The proof now follows from the above corollary. �

23
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Corollary 4. A posemigroup (U,≤) is absolutely closed if and only if it
is such as a semigroup within the class of semigroups underlying the posemi-
group extensions of (U,≤).

In the unordered scenario Higgins has determined all varieties of absolutely
closed semigroups.

Theorem 7 ([2], Theorem 2). The absolutely closed (algebraic) varieties
of semigroups are exactly the varieties consisting entirely of semilattices of
groups, or entirely of right groups or entirely of left groups.

Corollary 5. The varieties of posemigroups obtained by endowing with
compatible orders (the members of) the varieties of above theorem are all
absolutely closed.

Problem 1. Do there exist absolutely closed (order theoretic) varieties
of posemigroups other than those of the above corollary?

Proposition 2. Let V ′ be a variety of absolutely closed semigroups. Let
V be the variety of posemigroups obtained by equipping members of V ′ with
compatible orders. Then a posemigroup homomorphism f is epi in V if and
only if it is such in V ′.

Proof. (⇐=) This part is straightforward.
(=⇒) Let f : U −→ T be non-epi in V ′. Then Im f is absolutely closed

in V ′ and domT (Im f) ( T . But then by Corollary 4, Im f is also abso-

lutely closed in V and thus Im f = domT (Im f) = d̂omT (Im f). Therefore

d̂omT (Im f) ( T . So f is non-epi in V. �
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