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On (a,B, c)-ideals in Banach spaces

Ksenia Niglas and Indrek Zolk

Abstract. In this paper we focus on subspaces of Banach spaces that are
(a,B, c)-ideals. We study (a,B, c)-ideals in `2∞ and present easily verifiable

conditions for a subspace of `2∞ to be an (a,B, c)-ideal. Our main results
concern the transitivity of (a,B, c)-ideals. We show that if X is an (a,B, c)-
ideal in Y and Y is a (d,E, f)-ideal in Z, then X is a certain type of ideal
in Z. Relying on this result, we show that if X is an (a,B, c)-ideal in its

bidual, then X is a certain type of ideal in X(2n) for every n ∈ N.

1. Introduction

Let K be R or C. Throughout this paper, B ⊂ K will be a compact set and
a, c > 0.

A closed subspace Y of a Banach space X is said to be an ideal in X if
there is a norm one projection P on X∗ such that kerP = Y ⊥, where Y ⊥

denotes the annihilator of Y . In this case the projection P is called an ideal
projection. If, in addition,

‖ax∗ + bPx∗‖+ c‖Px∗‖ 6 ‖x∗‖ ∀b ∈ B

holds for all x∗ in X∗, then Y is said to be an (a,B, c)-ideal in X.
This approach was first suggested by Eve Oja in [10] (see also [9]) and later

formalized in [11]. It is meant to encompass all previously studied special cases
of ideals: M -ideals (which are (1, {−1}, 1)-ideals; first introduced in [1]), u-
ideals ((1, {−2}, 0)-ideals; [2]), h-ideals ((1, {−(1 + λ) : λ ∈ SC}, 0)-ideals; [5],
see also [4]), M(r, s)-ideals ((s, {−s}, r)-ideals; [7], [12], introduced as ideals
satisfying the M(r, s)-inequality in [3]).

For every n ∈ N, we denote by X(n) =
(
X(n−1)

)∗
, where X(0) = X. We

denote the closed unit ball of a Banach space X by BX .
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2. (a,B, c)-structure of `2∞

In this section, we study the (a,B, c)-structure of `2∞. We present
necessary and sufficient conditions for a one-dimensional subspace of `2∞
to be an (a,B, c)-ideal in `2∞. Throughout this section, we shall denote
Yk = {(ξ, kξ) : ξ ∈ R)} and Y∞ = {(0, ξ) : ξ ∈ R)}.

In order to obtain these results we first focus on ideal projections in `2∞.

Proposition 2.1. Let k ∈ R. If Yk is an ideal in `2∞ with respect to some
ideal projection P , then P ∈ {Px,k, Py,k}∪{Pd+ : d > 0}∪{Pd− : d 6 0}, where

Px,k : `12 3 (α1, α2) 7→ (α1 + kα2, 0) ∈ `12,

Py,k : `12 3 (α1, α2) 7→
(

0,
α1 + kα2

k

)
∈ `12,

Pd+ : `12 3 (α1, α2) 7→
(
α1 + α2

d+ 1
,
d(α1 + α2)

d+ 1

)
∈ `12, d > 0,

Pd− : `12 3 (α1, α2) 7→
(
α1 − α2

1− d
,
d(α1 − α2)

1− d

)
∈ `12, d 6 0.

Proof. Let Yk be an ideal in `2∞ and let P be the corresponding ideal projection,

then kerP = Y ⊥k = {(−kα, α) : α ∈ R}. By the rank-nullity theorem, we can
choose (u, v) ∈ `12 such that ranP = {λ(u, v) : λ ∈ R}. For every (α1, α2) ∈ `21,
we can write

(α1, α2) =
α2u− α1v

u+ kv
(−k, 1) +

α1 + kα2

u+ kv
(u, v), (α1, α2) ∈ `12

and hence

P (α1, α2) =
α1 + kα2

u+ kv
(u, v), (α1, α2) ∈ `12.

1. In case v = 0, we have

P (α1, α2) = (α1 + kα2, 0), (α1, α2) ∈ `12.
Since an ideal projection has norm one, we demand that

sup
|α1|+|α2|61

|α1 + kα2| = 1.

It is easy to see that this is true if and only if |k| 6 1, which means that
P = Px,k is an ideal projection if and only if |k| 6 1.

2. Proceeding similarly in case u = 0, we obtain that Py,k is an ideal
projection if and only if |k| > 1.

3. Assume u 6= 0, v 6= 0 and denote d =
v

u
. We can write

P (α1, α2) =

(
α1 + kα2

1 + kd
,
d(α1 + kα2)

1 + kd

)
, (α1, α2) ∈ `12.
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It is easy to see that in case |k| > 1 (|k| 6 1) demanding ‖P‖ = 1 yields
|k|(1 + |d|) = |1 + kd| (1 + |d| = |1 + kd|), which, in turn, means that |k| = 1.

Now if k = 1 we have

1 = ‖P‖ = sup
|α1|+|α2|61

∥∥∥∥(d(α1 + α2)

d+ 1
,
α1 + α2

d+ 1

)∥∥∥∥ =
|d|+ 1

|d+ 1|
which holds only for d > 0. Hence if k = 1, P is an ideal projection if and
only if d > 0 and in this case P = Pd+ . The case k = −1 is analogous. �

Remark 2.2. As we saw in the proof of Proposition 2.1, the following
assertions hold.

(1) Px,k is an ideal projection if and only if |k| > 1,
(2) Py,k is an ideal projection if and only if |k| 61,
(3) Pd+ is an ideal projection for some d > 0 if and only if k = 1,
(4) Pd− is an ideal projection for some d 6 0 if and only if k = −1.

The following proposition can be proven in a manner similar to Proposition
2.1.

Proposition 2.3. If Y∞ is an ideal in `2∞ with respect to an ideal projection
P , then P = P∞, where

P∞ : `12 3 (α1, α2) 7→ (0, α2) ∈ `12.

Knowing the form of ideal projections in `2∞, we can now derive necessary
and sufficient conditions for a subspace of `2∞ to be an (a,B, c)-ideal. For the
sake of convenience, we shall handle each ideal projection separately.

Proposition 2.4. Yk is an (a,B, c)-ideal in `2∞ with respect to ideal pro-
jection Px,k if and only if |k| 6 1 and{

a+ |b||k|+ c|k| 6 1 ∀b ∈ B,
|a+ b|+ c 6 1 ∀b ∈ B.

(1)

Proof. By Remark 2.2, Px,k is an ideal projection if and only if |k| 6 1.

Let |k| 6 1. Note that for every (α1, α2) ∈ `21 and every b ∈ B we have

‖a(α1, α2) + bPx,k(α1, α2)‖+ c‖Px,k(α1, α2)‖
= ‖(aα1, aα2) + (bα1 + bkα2, 0)‖+ c ‖(α1 + kα2, 0)‖
= |aα1 + bα1 + bkα2|+ a|α2|+ c|α1 + kα2|.

Necessity. Let Yk be an (a,B, c)-ideal in `2∞ with respect to the ideal pro-
jection Px,k.

For every (α1, α2) ∈ `21 and every b ∈ B we have

|aα1 + bα1 + bkα2|+ a|α2|+ c|α1 + kα2| 6 |α1|+ |α2|.
Choosing (α1, α2) = (1, 0), and (α1, α2) = (0, 1), we obtain that condition

(1) holds.

28
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Sufficiency. Note that in case conditions (1) hold, we have

‖a(α1, α2) + bPx,k(α1, α2)‖+ c‖Px,k(α1, α2)‖
= |aα1 + bα1 + bkα2|+ a|α2|+ c|α1 + kα2|
6 (|a+ b|+ c)|α1|+ (a+ b|k|+ c|k|)|α2|
6 |α1|+ |α2|
= ‖(α1, α2)‖,

hence Yk is an (a,B, c)-ideal in `2∞. �

The following assertions can be proven similarly.

Proposition 2.5. Yk is an (a,B, c)-ideal in `2∞ with respect to an ideal
projection Py,k if and only if |k| > 1 and|a+ b|+ c 6 1 ∀b ∈ B,

a|k|+ |b|+ c

|k|
6 1 ∀b ∈ B.

Proposition 2.6. Yk is an (a,B, c)-ideal in `2∞ with respect to an ideal
projection Pd+ if and only if

k = 1,

d > 0,
|ad+ a+ bd|+ |b|+ cd+ c

d+ 1
6 1 ∀b ∈ B,

|ad+ a+ b|+ |b|d+ cd+ c

d+ 1
6 1 ∀b ∈ B.

Proposition 2.7. Yk is an (a,B, c)-ideal in `2∞ with respect to an ideal
projection Pd− if and only if

k = −1,

d 6 0,
|a− ad− bd|+ |b| − cd+ c

1− d
6 1 ∀b ∈ B,

|a− ad+ b| − |b|d− cd+ c

1− d
6 1 ∀b ∈ B.

Proposition 2.8. Y∞ is an (a,B, c)-ideal in `2∞ if and only if{
a 6 1,

|a+ b|+ c 6 1 ∀b ∈ B.

From Propositions 2.4–2.8, one obtains the following corollaries.

Corollary 2.9. Y∞ and Y0 are the only M -ideals in `2∞.

Corollary 2.10. Y0, Y∞, Y1, Y−1 are the only u-ideals in `2∞.
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3. Transitivity of (a,B, c)-ideals

In this section, we rely on [6] and extend its results to a more general
(a,B, c)-setting. We obtain the following results. If X is an (a,B, c)-ideal in
Y and Y is a (d,E, f)-ideal in Z, then X is a certain type of ideal in Z (see
Theorem 3.3). If X is an (a,B, c)-ideal in its bidual, then X is a certain type

of ideal in X(2n) for every n ∈ N (see Theorem 3.13).

If Y is a subspace of a Banach space Z, a linear operator ϕ : Y ∗ → Z∗ is
called a Hahn-Banach extension operator if ϕy∗ is a norm-preserving exten-
sion of y∗ for all y∗ in Y ∗. The following propositions are well known and
straightforward to prove.

Proposition 3.1. If ϕ : X∗ → Y ∗ and ψ : Y ∗ → Z∗ are Hahn-Banach
extension operators, then ψϕ : X∗ → Z∗ is also a Hahn-Banach extension
operator.

Proposition 3.2. Y is an ideal in X with respect to an ideal projection P
if and only if there is a Hahn-Banach extension operator ϕ : Y ∗ → X∗ such
that P = ϕi∗Y X .

Assume that X and Y are closed subspaces of a Banach space Z such that
X ⊂ Y ⊂ Z. The first of our two main results is the following theorem.

Theorem 3.3. Let X be an (a,B, c)-ideal in Y .

(1) If Y is an ideal in Z, then X is an

(
a

2a+ 1
,

B

2a+ 1
,

c

2a+ 1

)
-ideal in Z.

(2) Assume that d > 0, f > 0 and a|d + e| + d > af for all e ∈ E, where
E is a compact set of scalars. If Y is a (d,E, f)-ideal, then X is an(
ad

γ
,
dB

γ
,
cd

γ

)
-ideal in Z, where γ := a+ d− af + amin |d+ E|.

Proof. Let P and Q be corresponding ideal projections on X∗ and Y ∗ respec-
tively. By Propositions 3.1 and 3.2, we have that P = ϕi∗XY and Q = ψi∗Y Z
for some Hahn-Banach extension operators ϕ : X∗ → Y ∗ and ψ : Y ∗ → Z∗,
therefore R = ψϕi∗XZ is an ideal projection with kerR = X⊥. Note that one
can write R = ψPi∗Y Z .

(1) For every z∗ ∈ Z∗, we have

‖az∗ + bRz∗‖+ c‖Rz∗‖ = ‖az∗ + bψPi∗Y Zz
∗ + aψi∗Y Zz

∗ − aψi∗Y Zz∗‖
+ c‖ψPi∗Y Zz∗‖
6 ‖az∗ − aψi∗Y Zz∗‖+ ‖ψ(bP i∗Y Zz

∗ + ai∗Y Zz
∗)‖

+ c‖ψPi∗Y Zz∗‖
= ‖az∗ − aψi∗Y Zz∗‖+ ‖ai∗Y Zz∗ + bP i∗Y Zz

∗‖
+ c‖Pi∗Y Zz∗‖
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6 a‖z∗ −Qz∗‖+ ‖i∗Y Zz∗‖
6 (2a+ 1)‖z∗‖,

since X is an (a,B, c)-ideal in Y . This result yields that X is an(
a

2a+ 1
,

B

2a+ 1
,

c

2a+ 1

)
-ideal in Z.

(2) In case Y is a (d,E, f)-ideal in Z, we have

‖dz∗ + eQz∗‖+ f‖Qz∗‖ 6 ‖z∗‖ ∀e ∈ E,∀z∗ ∈ Z∗.

Since d > 0, we can write∥∥∥z∗ +
e

d
Qz∗

∥∥∥ 6 ‖z∗‖
d
− f

d
‖Qz∗‖ ∀e ∈ E,∀z∗ ∈ Z∗.

We proceed similarly to part (1). For every z∗ ∈ Z∗, we have

‖az∗ + bRz∗‖+ c‖Rz∗‖ 6 a‖z∗ −Qz∗‖+ ‖i∗Y Zz∗‖

= a
∥∥∥z∗ +

e

d
Qz∗ −

(
1 +

e

d

)
Qz∗

∥∥∥+ ‖i∗Y Zz∗‖

6 a
∥∥∥z∗ +

e

d
Qz∗

∥∥∥+ a
∥∥∥(1 +

e

d

)
Qz∗

∥∥∥+ ‖i∗Y Zz∗‖

6
a

d
‖z∗‖ − af

d
‖Qz∗‖+ a

∣∣∣1 +
e

d

∣∣∣ ‖Qz∗‖+ ‖i∗Y Zz∗‖

6

(
1 +

a

d
− af

d
+ a

∣∣∣1 +
e

d

∣∣∣) ‖z∗‖,
hence X is an

(
ad

γ
,
dB

γ
,
cd

γ

)
-ideal in Z. �

From Theorem 3.3, one immediately obtains the following results.

Corollary 3.4 (cf. [6, Theorem 1]). If X is an M(r, s)-ideal in Y , Y is an

M(u, v)-ideal in Z and v > su, then X is an M

(
rv

s(1− u) + v
,

sv

s(1− u) + v

)
-

ideal in Z.

Corollary 3.5. If X is an h-ideal in Y and Y is an h-ideal in Z, then X

is an

(
1

3
,

{
−1 + λ

3
: λ ∈ SC

}
, 0

)
-ideal in Z.

Corollary 3.6. If X is a u-ideal in Y and Y is u-ideal in Z, then X is an(
1

3
,

{
−2

3

}
, 0

)
-ideal in Z.

Corollary 3.7. If X is an M -ideal in Y and Y is a u-ideal in Z, then X

is an

(
1

3
,

{
−1

3

}
,
1

3

)
-ideal in Z.
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Corollary 3.8. If X is an (a,B, c)-ideal in Y , a 6 1, and Y is an M -ideal
in Z, then X is an (a,B, c)-ideal in Z.

Corollary 3.9 (cf., e.g., [8, Proposition 1.17]). If X is an M -ideal in Y
and Y is an M -ideal in Z, then X is an M -ideal in Z.

The following propositions are preliminary work for the proof of our second
main result, Theorem 3.13. We generalize analogous results from [6], which
concerned M(r, s)-ideals.

Proposition 3.10. Let Y be a closed subspace of a Banach space X. If
there is a norm one projection Q : X → X such that ranQ = Y and

‖ax+ bQx+ cQz‖ 6 max{‖x‖, ‖z‖} ∀b ∈ B, ∀x, z ∈ X,
then Y is an (a,B, c)-ideal in X.

Proof. Consider the ideal projection P := Q∗. Choose (xn), (zn) ⊂ BX so
that

Re((ax∗ + bPx∗)(xn))→ ‖ax∗ + bPx∗‖,
Re(cPx∗(zn))→ ‖cPx∗‖

then by assumption (axn + bQxn + cQzn) ⊂ BX . For every x∗ ∈ X∗, we have

‖x∗‖ > |x∗(axn + bQxn + cQzn)|
> Re((ax∗ + bPx∗)(xn)) + Re(cPx∗(zn))

→ ‖ax∗ + bPx∗‖+ c‖Px∗‖
and hence

‖ax∗ + bPx∗‖+ c‖Px∗‖ 6 ‖x∗‖ ∀b ∈ B, ∀x∗ ∈ X∗,
which means that Y is an (a,B, c)-ideal in X. �

Proposition 3.11. If Y is an (a,B, c)-ideal in X, then Y ⊥⊥ is an (a,B, c)-
ideal in X∗∗.

Proof. Let P be a corresponding ideal projection on X∗. Consider a norm one
projection P ∗ : X∗∗ → X∗∗. For every y∗∗, z∗∗ ∈ X∗∗, and x∗ ∈ X∗, we have

‖(ay∗∗ + bP ∗y∗∗ + cP ∗z∗∗)(x∗)‖ 6 ‖(ay∗∗ + bP ∗y∗∗)x∗‖+ ‖cP ∗z∗∗(x∗)‖
6 ‖y∗∗‖‖ax∗ + bPx∗‖+ ‖z∗∗‖‖cP (x∗)‖
6 max{‖y∗∗‖, ‖z∗∗‖} (‖ax∗ + bPx∗‖

+ c‖P (x∗)‖)
6 max{‖y∗∗‖, ‖z∗∗‖}‖x∗‖,

hence
‖ay∗∗ + bP ∗y∗∗ + cP ∗z∗∗‖ 6 max{‖y∗∗‖, ‖z∗∗‖}.

Note that ranP ∗ = (kerP )⊥ = (Y ⊥)⊥ = Y ⊥⊥. By Proposition 3.10, Y ⊥⊥

is an (a,B, c)-ideal in X∗∗. �

29
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Proposition 3.12. If a closed subspace Y of a Banach space X is an
(a,B, c)-ideal in X and T is a linear isometry from X onto a Banach space
W , then T (Y ) is an (a,B, c)-ideal in W .

Proof. Let P be a corresponding ideal projection on X∗, then P = ϕi∗Y X
for some Hahn-Banach extension operator ϕ : Y ∗ → X∗. Let R =
(T−1)∗ϕS∗i∗T (Y )W , where S : Y 3 y 7→ Ty ∈ T (Y ).

Note that (T−1)∗ϕS∗ : T (Y )∗ →W ∗ is a Hahn-Banach extension operator,
therefore R is an ideal projection on W ∗. Since i∗T (Y )W = (S−1)∗i∗Y XT

∗, we

can write R = (T−1)∗PT ∗.
For every w∗ ∈W ∗, we have

‖aw∗ + bRw∗‖+ c‖Rw∗‖ = ‖aw∗ + b(T−1)∗PT ∗w∗‖
+ c‖(T−1)∗PT ∗w∗‖
6 ‖(T−1)∗‖‖aT ∗w∗ + bPT ∗w∗‖

+ c‖(T−1)∗‖‖ϕPT ∗w∗‖
= ‖aT ∗w∗ + bPT ∗w∗‖+ c‖PT ∗w∗‖
6 ‖T ∗w∗‖ 6 ‖T ∗‖‖w∗‖ = ‖w∗‖,

hence, T (Y ) is an (a,B, c)-ideal in W . �

The following is our second main result.

Theorem 3.13. If X is an (a,B, c)-ideal in X∗∗, a > 0, and |a+ b|+1 > c

for all b ∈ B, then X is an

(
a

γn
,
B

γn
,
c

γn

)
-ideal is X(2n) for every n ∈ N, where

γn = n+ (n− 1) min |a+B| − (n− 1)c.

Proof. We prove the assertion by induction on n. Assume that X (that is,

(jX(2n−2) . . . jX)(X)) is an

(
a

γn
,
B

γn
,
c

γn

)
-ideal in X(2n). Note that this holds

for n = 1.
Let A = jX(2n−2) . . . jX : X → X(2n). Consider a linear onto isometry

T : X∗∗ → ranA∗∗ defined by Tx∗∗ = A∗∗x∗∗ for all x∗∗ ∈ X∗∗.
Also note that

ranA∗∗ = (kerA∗)⊥ = (ranA)⊥⊥ = ((jX(2n−2) . . . jX(X))⊥⊥

and

T (jX(X)) = (jX(2n−2) . . . jX)∗∗(jX(X))

= j∗∗
X(2n−2) . . . j

∗∗
X jX(X)

= jX(2n) . . . jX∗∗jX(X).
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Since jX(X) is an (a,B, c)-ideal in X∗∗ and T is a linear isometry from X∗∗

onto ((jX(2n−2) . . . jX(X))⊥⊥, we obtain by Proposition 3.12 that T (jX(X)) =

jX(2n) . . . jX∗∗jX(X) is an (a,B, c)-ideal in ((jX(2n−2) . . . jX(X))⊥⊥.

By the inductive assumption, (jX(2n−2) . . . jX)(X) is an

(
a

γn
,
B

γn
,
c

γn

)
-ideal

in X(2n) and by Proposition 3.11 we get that ((jX(2n−2) . . . jX)(X))⊥⊥ is an(
a

γn
,
B

γn
,
c

γn

)
-ideal in X(2n+2).

We can now apply Theorem 3.3, which yields that jX(2n) . . . jX∗∗jX(X) is

an

(
ad

γ
,
dB

γ
,
cd

γ

)
-ideal in X(2n+2), where

a = a, B = B, c = c,

d =
a

n+ (n− 1) min |a+B| − (n− 1)c
,

E =
B

n+ (n− 1) min |a+B| − (n− 1)c
,

f =
c

n− (n− 1)c+ (n− 1) min |a+B|
.

Hence

γ = a+ d− af + amin |d+ E|

= a+
a

n+ (n− 1) min |a+B| − (n− 1)c

− a · c

n+ (n− 1) min |a+B| − (n− 1)c

+ amin

∣∣∣∣ a

n+ (n− 1) min |a+B| − (n− 1)c

+
B

n+ (n− 1) min |a+B| − (n− 1)c

∣∣∣∣
= a · (n+ 1) + nmin |a+B| − nc

n+ (n− 1) min |a+B| − (n− 1)c

and

ad

γ
=

a

γn+1
,

dB

γ
=

B

γn+1
,

cd

γ
=

c

γn+1
,

which means that jX(2n) . . . jX∗∗jX(X) is an

(
a

γn+1
,
B

γn+1
,

c

γn+1

)
-ideal in

X(2n+2), as desired. �
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The following results are immediate from Theorem 3.13.

Corollary 3.14 (cf. [6, Theorem 6]). If X is an M(r, s)-ideal in X∗∗, then

X is an M

(
r

r + n(1− r)
,

s

r + n(1− r)

)
-ideal in X(2n).

Corollary 3.15. If X is an h-ideal in X∗∗, then X is an(
1

2n− 1
,

{
− 1 + λ

2n− 1
: λ ∈ SC

}
, 0

)
-ideal in X(2n).

Corollary 3.16. If X is a u-ideal in X∗∗, then X is an(
1

2n− 1
,

{
− 2

2n− 1

}
, 0

)
-ideal in X(2n).

Corollary 3.17 (cf. [13, Theorem 2]). If X is an M -ideal in X∗∗, then X

is an M -ideal in X(2n) for every n ∈ N.
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