A note on spark varieties

MARCIN SKRZYŃSKI

ABSTRACT. We study basic properties (e.g., algebraicity, reducibility, and dimension) of certain sets of matrices defined by means of the spark.

0. Introduction and preliminaries

Throughout the text \mathbb{F} stands for a field, and \mathbb{N} for the set of positive integers. The present paper is about certain algebraic subsets of $\mathcal{M}_{m \times n}(\mathbb{F})$, the vector space of all $m \times n$ matrices over \mathbb{F} . We start by recalling a few definitions and properties.

Consider a nonzero finite dimensional vector space V over \mathbb{F} and a linear isomorphism $\varphi: V \longrightarrow \mathbb{F}^d$, where $d = \dim_{\mathbb{F}} V$. A set $E \subseteq V$ is said to be algebraic, if

$$\exists s \in \mathbb{N} \exists f_1, \dots, f_s \in \mathbb{F}[x_1, \dots, x_d]:$$
$$E = \{ v \in V \colon f_1(\varphi(v)) = \dots = f_s(\varphi(v)) = 0 \}.$$

A set $Q \subseteq V$ is said to be quasi-algebraic, if $Q = E_1 \setminus E_2$ for some algebraic sets $E_1, E_2 \subseteq V$ (i.e., if it is locally closed in the Zariski topology on V). The linear capacity of an algebraic set $E \subseteq V$ is defined by

 $\Lambda(E) = \sup\{\dim_{\mathbb{F}} L \colon L \text{ is a linear subspace of } V, L \subseteq E\}.$

The linear capacity was introduced in [5]. The following properties are quite obvious (cf. [5, Proposition 1.1]).

Proposition 0.1. Let V and W be nonzero finite dimensional vector spaces over \mathbb{F} , let $E_1 \subseteq V$ and $E_2, G \subseteq W$ be algebraic sets, and let $\psi: V \longrightarrow W$ be a linear map such that $\psi(E_1) \subseteq G$. Then

(i) $\Lambda(E_1) = -\infty$ if and only if the zero vector does not belong to E_1 ,

(ii) $\Lambda(E_1 \times E_2) = \Lambda(E_1) + \Lambda(E_2),$

Received December 30, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 14A10; Secondary 15A03, 14M12.

Key words and phrases. Spark of a matrix, generic determinantal variety, affine algebraic set, irreducible component, dimension, linear capacity.

http://dx.doi.org/10.12097/ACUTM.2014.18.12

MARCIN SKRZYŃSKI

- (iii) $\Lambda(E_1) \leq \Lambda(G)$ whenever $E_1 \neq \emptyset$ and the restriction $\psi|_{E_1}$ is injective,
- (iv) $\Lambda(E_1) = \Lambda(G)$ whenever $E_1 \neq \emptyset$, $\psi|_{E_1} \colon E_1 \longrightarrow G$ is bijective, and $(\psi|_{E_1})^{-1}$ is the restriction of a linear map $\xi \colon W \longrightarrow V$.

Finally, let us assume that the field \mathbb{F} is algebraically closed. An algebraic set $E \subseteq V$ is said to be normal, if it is irreducible and the coordinate ring $\mathbb{F}[E]$ is integrally closed in the function field $\mathbb{F}(E)$. We refer to [3] for more information on algebraic geometry.

Let $m, n \in \mathbb{N}$ and r be a non-negative integer such that $r \leq \min\{m, n\}$. The generic determinantal variety $\mathcal{H}_{m \times n}^r$ defined by

$$\mathcal{H}^r_{m \times n} = \{ A \in \mathcal{M}_{m \times n}(\mathbb{F}) \colon \operatorname{rank}(A) \le r \}$$

is an important classical example of an algebraic subset of $\mathcal{M}_{m \times n}(\mathbb{F})$. The Flanders–Meshulam theorem [4] says that $\Lambda(\mathcal{H}^r_{m \times n}) = r \max\{m, n\}$. Moreover, it is well known [1] that if the field \mathbb{F} is algebraically closed, then $\mathcal{H}^r_{m \times n}$ is normal and dim $\mathcal{H}^r_{m \times n} = r(m + n - r)$.

In [2], Donoho and Elad introduced the notion of spark of a matrix.

Definition 0.2. Let $C_1, \ldots, C_n \in \mathbb{F}^m$ be the columns of a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$. The *spark* of A is defined to be the infimum of the set of all positive integers ℓ such that

$$\exists j_1, \dots, j_\ell \in \{1, \dots, n\}: \begin{cases} j_1 < \dots < j_\ell, \\ C_{j_1}, \dots, C_{j_\ell} \text{ are linearly dependent.} \end{cases}$$

The definition of the spark is similar to the definition of the rank of a matrix. However, algebraic and computational properties of the spark are very different from those of the rank.

In the present note we will look at the notion of spark of a matrix from a geometric point of view. Namely, for a positive integer k we define the spark variety $S_{m \times n}^k$ by

$$\mathcal{S}_{m \times n}^k = \{ A \in \mathcal{M}_{m \times n}(\mathbb{F}) \colon \operatorname{spark}(A) \le k \},\$$

and our goal is to give a geometric characterization of the sets $S_{m \times n}^k$ (analogous to the characterization of the generic determinantal varieties).

1. Basic properties

First, let us collect some remarks about the family of all spark varieties in $\mathcal{M}_{m \times n}(\mathbb{F})$.

Proposition 1.1. (i) The zero matrix belongs to $\mathcal{S}_{m \times n}^k$ and $\lambda \mathcal{S}_{m \times n}^k \subseteq \mathcal{S}_{m \times n}^k$ for all $\lambda \in \mathbb{F}$. (ii) $\mathcal{S}_{m \times n}^k \subseteq \mathcal{S}_{m \times n}^{k+1}$. (iii) If m < n, then $\mathcal{S}_{m \times n}^{m+1} = \mathcal{M}_{m \times n}(\mathbb{F})$.

(iv) If $r \in \mathbb{N} \cup \{0\}$ is such that $r \leq m$ and r < n, then $\mathcal{H}_{m \times n}^r \subseteq \mathcal{S}_{m \times n}^{r+1}$. (v) If $\min\{k, m\} \geq n$, then $\mathcal{S}_{m \times n}^k = \mathcal{H}_{m \times n}^{n-1}$.

Proof. Observe that the spark of the zero matrix is equal to 1. Moreover,

$$\forall A \in \mathcal{M}_{m \times n}(\mathbb{F}) \,\forall \lambda \in \mathbb{F} \setminus \{0\} \colon \operatorname{spark}(\lambda A) = \operatorname{spark}(A).$$

Property (i) follows. Inclusion (ii) is obvious.

It is easy to see that

$$\forall A \in \mathcal{M}_{m \times n}(\mathbb{F}) : \begin{cases} \operatorname{spark}(A) \neq +\infty \Rightarrow \operatorname{spark}(A) \leq \operatorname{rank}(A) + 1, \\ \operatorname{spark}(A) = +\infty \Leftrightarrow \operatorname{rank}(A) = n. \end{cases}$$

Consequently, if m < n, then $\operatorname{spark}(A) \leq m + 1$ for all $A \in \mathcal{M}_{m \times n}(\mathbb{F})$. Property (iii) follows.

If $r \in \mathbb{N} \cup \{0\}$, $r \leq m, r < n$, and $A \in \mathcal{H}^r_{m \times n}$, then spark $(A) \leq r+1$. This yields property (iv).

Suppose finally that $\min\{k, m\} \ge n$. Then, by (iv) and (ii), we have $\mathcal{H}_{m \times n}^{n-1} \subseteq \mathcal{S}_{m \times n}^n \subseteq \mathcal{S}_{m \times n}^k$. On the other hand,

$$\forall A \in \mathcal{M}_{m \times n}(\mathbb{F}) \colon \operatorname{spark}(A) \neq +\infty \Leftrightarrow \operatorname{rank}(A) \leq n - 1,$$

and hence $\mathcal{S}_{m \times n}^k \subseteq \mathcal{H}_{m \times n}^{n-1}$. Property (v) follows.

Let $m, n, \ell \in \mathbb{N}$ be such that $\ell \leq \min\{m, n\}$. For $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{F})$, a strictly increasing sequence (i_1, \ldots, i_ℓ) of elements of $\{1, \ldots, m\}$ and a strictly increasing sequence (j_1, \ldots, j_ℓ) of elements of $\{1, \ldots, n\}$ we define $\mu_{j_1, \ldots, j_\ell}^{i_1, \ldots, i_\ell}(A)$ to be the determinant of the matrix $[a_{i_u j_v}] \in \mathcal{M}_{\ell \times \ell}(\mathbb{F})$.

Theorem 1.2. Every spark variety $S_{m \times n}^k$ is an algebraic subset of the space $\mathcal{M}_{m \times n}(\mathbb{F})$.

Proof. If $\ell := \min\{k, n\} > m$, then by Proposition 1.1 we have $\mathcal{S}_{m \times n}^k = \mathcal{M}_{m \times n}(\mathbb{F})$. Suppose therefore that $\ell \leq m$. Let (j_1, \ldots, j_ℓ) be a strictly increasing sequence of elements of $\{1, \ldots, n\}$. We define

$$\mathcal{D}_{j_1,\dots,j_\ell} = \left\{ A \in \mathcal{M}_{m \times n}(\mathbb{F}) \colon \mu^{i_1,\dots,i_\ell}_{j_1,\dots,j_\ell}(A) = 0 \text{ for all} \\ i_1,\dots,i_\ell \in \{1,\dots,m\} \text{ such that } i_1 < \dots < i_\ell \right\}.$$

Notice that $\mathcal{D}_{j_1,\ldots,j_\ell}$ is an algebraic subset of $\mathcal{M}_{m\times n}(\mathbb{F})$. Moreover, $\mathcal{D}_{j_1,\ldots,j_\ell}$ is equal to the totality of matrices in $\mathcal{M}_{m\times n}(\mathbb{F})$ whose columns with indices j_1,\ldots,j_ℓ are linearly dependent. If $s \in \{1,\ldots,\ell\}$, then each s-element set of linearly dependent columns of a matrix $A \in \mathcal{M}_{m\times n}(\mathbb{F})$ is contained in an ℓ -element set of linearly dependent columns of A. Thus,

$$\mathcal{S}_{m \times n}^{k} = \mathcal{S}_{m \times n}^{\ell} = \bigcup \{ \mathcal{D}_{j_1, \dots, j_{\ell}} \colon j_1, \dots, j_{\ell} \in \{1, \dots, n\}, j_1 < \dots < j_{\ell} \}.$$

The algebraicity follows.

31

The sets $\mathcal{D}_{j_1,\ldots,j_\ell}$ are examples of so-called linear determinantal varieties.

Corollary 1.3. (i) For any $k \in \mathbb{N} \cup \{+\infty\}$, the set $\{A \in \mathcal{M}_{m \times n}(\mathbb{F}):$ spark $(A) = k\}$ is quasi-algebraic.

(ii) If m < n, then $\{A \in \mathcal{M}_{m \times n}(\mathbb{F}) \colon \operatorname{spark}(A) = m + 1\}$ is open in the Zariski topology on $\mathcal{M}_{m \times n}(\mathbb{F})$.

Recall that if m < n, then $\operatorname{spark}(A) \leq m+1$ for all $A \in \mathcal{M}_{m \times n}(\mathbb{F})$. Moreover, if $m \geq n$, then $\max_{A \in \mathcal{M}_{m \times n}(\mathbb{F})} \operatorname{spark}(A) = +\infty$ and the set

 $\{A \in \mathcal{M}_{m \times n}(\mathbb{F}): \operatorname{spark}(A) = +\infty\} = \mathcal{M}_{m \times n}(\mathbb{F}) \setminus \mathcal{H}_{m \times n}^{n-1}$

is open in the Zariski topology on $\mathcal{M}_{m \times n}(\mathbb{F})$.

2. Main results

We are in a position to describe the geometric structure of a spark variety.

Theorem 2.1. Suppose that the field \mathbb{F} is algebraically closed. Let $m, n, k \in \mathbb{N}$ be such that $k \leq m$ and k < n. Then the family of all irreducible components of $\mathcal{S}_{m \times n}^k$ coincides with

$$\{\mathcal{D}_{j_1,\ldots,j_k}: j_1,\ldots,j_k \in \{1,\ldots,n\}, j_1 < \ldots < j_k\}.$$

Moreover,

• the above sets $\mathcal{D}_{j_1,\ldots,j_k}$ are normal and have dimension m(n-1)+k-1,

•
$$\bigcap \{ \mathcal{D}_{j_1,\dots,j_k} : j_1,\dots,j_k \in \{1,\dots,n\}, j_1 < \dots < j_k \} = \mathcal{H}_{m \times n}^{k-1}.$$

Proof. Recall from the proof of Theorem 1.2 that

$$\mathcal{S}_{m \times n}^k = \bigcup \{ \mathcal{D}_{j_1, \dots, j_k} \colon j_1, \dots, j_k \in \{1, \dots, n\}, j_1 < \dots < j_k \}$$

and the sets $\mathcal{D}_{j_1,\ldots,j_k}$ are algebraic.

Let (j'_1, \ldots, j'_k) and (j''_1, \ldots, j''_k) be two distinct strictly increasing sequences of elements of $\{1, \ldots, n\}$. Since $k \leq m$, there exists a matrix in $\mathcal{M}_{m \times n}(\mathbb{F})$ such that its columns with indices j''_1, \ldots, j''_k are linearly independent while its columns with indices belonging to $\{j'_1, \ldots, j'_k\} \setminus \{j''_1, \ldots, j''_k\}$ are not. Thus, $\mathcal{D}_{j'_1, \ldots, j'_k}$ is not contained in $\mathcal{D}_{j''_1, \ldots, j''_k}$.

Pick a strictly increasing sequence (j_1, \ldots, j_k) of elements of $\{1, \ldots, n\}$. Define $A' \in \mathcal{M}_{m \times k}(\mathbb{F})$ to be the matrix that consists of the columns of a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ with indices j_1, \ldots, j_k , and $A'' \in \mathcal{M}_{m \times (n-k)}(\mathbb{F})$ to be the matrix that consists of all other columns of A. The map

$$\mathcal{D}_{j_1,\dots,j_k} \ni A \longmapsto (A',A'') \in \mathcal{H}^{k-1}_{m \times k} \times \mathcal{M}_{m \times (n-k)}(\mathbb{F})$$

is an isomorphism of algebraic sets. Therefore, since $\mathcal{H}_{m\times k}^{k-1}$ is normal, so is $\mathcal{D}_{j_1,\ldots,j_k}$. (In particular, $\mathcal{D}_{j_1,\ldots,j_k}$ is irreducible.) Moreover, since dim $\mathcal{H}_{m\times k}^{k-1} =$

(k-1)(m+k-k+1), we have

$$\dim \mathcal{D}_{j_1,\dots,j_k} = \dim \mathcal{H}_{m \times k}^{k-1} + \dim \mathcal{M}_{m \times (n-k)}(\mathbb{F})$$
$$= (k-1)(m+1) + m(n-k)$$
$$= m(n-1) + k - 1.$$

Finally, a matrix A belongs to all components $\mathcal{D}_{j_1,\ldots,j_k}$ if and only if every k-element set of its columns is linearly dependent, which means exactly that $\operatorname{rank}(A) \leq k - 1$.

Corollary 2.2. Let \mathbb{F} be algebraically closed. Then every spark variety $S_{m \times n}^k$ is pure dimensional and all its irreducible components are normal. Moreover, $S_{m \times n}^k$ is irreducible if and only if k > m or $k \ge n$.

Proof. If $\min\{k,n\} > m$, then by Proposition 1.1 we have that $\mathcal{S}_{m \times n}^k = \mathcal{M}_{m \times n}(\mathbb{F})$. Similarly, if $\min\{k,m\} \ge n$, then $\mathcal{S}_{m \times n}^k = \mathcal{H}_{m \times n}^{n-1}$. Thus, $\mathcal{S}_{m \times n}^k$ is normal whenever k > m or $k \ge n$. On the other hand, by Theorem 2.1, if $k \le m$ and k < n, then $\mathcal{S}_{m \times n}^k$ is reducible and pure dimensional, and all its components are normal.

We will conclude the note by the formula for the linear capacity of spark varieties.

Lemma 2.3. Suppose that the field \mathbb{F} is infinite. Let V be a nonzero finite dimensional vector space over \mathbb{F} , let $s \in \mathbb{N}$, and let $E_1, \ldots, E_s \subseteq V$ be algebraic sets. Then $\Lambda(E_1 \cup \ldots \cup E_s) = \max{\{\Lambda(E_1), \ldots, \Lambda(E_s)\}}$.

Proof. We define $\lambda = \Lambda(E_1 \cup \ldots \cup E_s)$. Then, obviously, $\max\{\Lambda(E_1), \ldots, \Lambda(E_s)\} \leq \lambda$. Since \mathbb{F} is infinite, every linear subspace of V is irreducible. Therefore, if L is a linear subspace of V such that $L \subseteq E_1 \cup \ldots \cup E_s$ and $\dim_{\mathbb{F}} L = \lambda$, then $L \subseteq E_{i_0}$ for some $i_0 \in \{1, \ldots, s\}$, and hence $\lambda \leq \Lambda(E_{i_0}) \leq \max\{\Lambda(E_1), \ldots, \Lambda(E_s)\}$.

Theorem 2.4. Suppose that \mathbb{F} is infinite. Let $m, n, k \in \mathbb{N}$ be such that $\min\{k, n\} \leq m$. Then

$$\Lambda(\mathcal{S}_{m \times n}^k) = m(n-1).$$

(Recall that $\mathcal{S}_{m \times n}^k = \mathcal{M}_{m \times n}(\mathbb{F})$ whenever $\min\{k, n\} > m$.)

Proof. If $\min\{k, m\} \geq n$, then $\mathcal{S}_{m \times n}^k = \mathcal{H}_{m \times n}^{n-1}$, and hence the assertion follows from the Flanders–Meshulam theorem. Let us therefore assume that $k \leq m$ and k < n. The isomorphism considered in the proof of Theorem 2.1 satisfies the assumptions of Proposition 0.1, (iv). Thus, for an arbitrary strictly increasing sequence (j_1, \ldots, j_k) of elements of $\{1, \ldots, n\}$, we have $\Lambda(\mathcal{D}_{j_1,\ldots,j_k}) = \Lambda(\mathcal{H}_{m \times k}^{k-1} \times \mathcal{M}_{m \times (n-k)}(\mathbb{F}))$. By Proposition 0.1, (ii), and the Flanders-Meshulam theorem,

$$\Lambda \left(\mathcal{H}_{m \times k}^{k-1} \times \mathcal{M}_{m \times (n-k)}(\mathbb{F}) \right) = \Lambda \left(\mathcal{H}_{m \times k}^{k-1} \right) + \Lambda \left(\mathcal{M}_{m \times (n-k)}(\mathbb{F}) \right)$$
$$= (k-1) \max\{k, m\} + m(n-k)$$
$$= m(n-1).$$

Since $\mathcal{S}_{m \times n}^k$ coincides with the union of all sets $\mathcal{D}_{j_1,\ldots,j_k}$, the assertion follows now from Lemma 2.3.

References

- W. Bruns and U. Vetter, *Determinantal Rings*, Lecture Notes in Mathematics 1327, Springer-Verlag, Berlin, 1988.
- [2] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via l¹ minimization, Proc. Natl. Acad. Sci. USA **100** (2003), 2197–2202 (electronic).
- [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977.
- [4] R. Meshulam, On the maximal rank in a subspace of matrices, Quart. J. Math. Oxford Ser. (2) 36 (1985), 225–229.
- [5] M. Skrzyński, On the linear capacity of algebraic cones, Math. Bohem. 127 (2002), 453–462.

INSTITUTE OF MATHEMATICS, CRACOW UNIVERSITY OF TECHNOLOGY, UL. WARSZAWSKA 24, 31-155 CRACOW, POLAND

E-mail address: pfskrzyn@cyf-kr.edu.pl