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A note on spark varieties

Marcin Skrzyński

Abstract. We study basic properties (e.g., algebraicity, reducibility,
and dimension) of certain sets of matrices defined by means of the spark.

0. Introduction and preliminaries

Throughout the text F stands for a field, and N for the set of positive
integers. The present paper is about certain algebraic subsets ofMm×n(F),
the vector space of all m × n matrices over F. We start by recalling a few
definitions and properties.

Consider a nonzero finite dimensional vector space V over F and a linear
isomorphism ϕ : V −→ Fd, where d = dimF V . A set E ⊆ V is said to be
algebraic, if

∃ s ∈ N ∃ f1, . . . , fs ∈ F[x1, . . . , xd] :

E = {v ∈ V : f1(ϕ(v)) = . . . = fs(ϕ(v)) = 0}.
A set Q ⊆ V is said to be quasi-algebraic, if Q = E1 \E2 for some algebraic
sets E1, E2 ⊆ V (i.e., if it is locally closed in the Zariski topology on V ).
The linear capacity of an algebraic set E ⊆ V is defined by

Λ(E) = sup{dimF L : L is a linear subspace of V , L ⊆ E}.
The linear capacity was introduced in [5]. The following properties are quite
obvious (cf. [5, Proposition 1.1]).

Proposition 0.1. Let V and W be nonzero finite dimensional vector
spaces over F, let E1 ⊆ V and E2, G ⊆ W be algebraic sets, and let
ψ : V −→W be a linear map such that ψ(E1) ⊆ G. Then

(i) Λ(E1) = −∞ if and only if the zero vector does not belong to E1,
(ii) Λ(E1 × E2) = Λ(E1) + Λ(E2),
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(iii) Λ(E1) ≤ Λ(G) whenever E1 6= ∅ and the restriction ψ|E1 is injective,
(iv) Λ(E1) = Λ(G) whenever E1 6= ∅, ψ|E1 : E1 −→ G is bijective, and

(ψ|E1)−1 is the restriction of a linear map ξ : W −→ V .

Finally, let us assume that the field F is algebraically closed. An algebraic
set E ⊆ V is said to be normal, if it is irreducible and the coordinate ring
F[E] is integrally closed in the function field F(E). We refer to [3] for more
information on algebraic geometry.

Let m,n ∈ N and r be a non-negative integer such that r ≤ min{m,n}.
The generic determinantal variety Hr

m×n defined by

Hr
m×n = {A ∈Mm×n(F) : rank(A) ≤ r}

is an important classical example of an algebraic subset of Mm×n(F). The
Flanders–Meshulam theorem [4] says that Λ(Hr

m×n) = rmax{m,n}. More-
over, it is well known [1] that if the field F is algebraically closed, then Hr

m×n
is normal and dimHr

m×n = r(m+ n− r).
In [2], Donoho and Elad introduced the notion of spark of a matrix.

Definition 0.2. Let C1, . . . , Cn ∈ Fm be the columns of a matrix A ∈
Mm×n(F). The spark of A is defined to be the infimum of the set of all
positive integers ` such that

∃ j1, . . . , j` ∈ {1, . . . , n} :

{
j1 < . . . < j`,

Cj1 , . . . , Cj` are linearly dependent.

The definition of the spark is similar to the definition of the rank of a ma-
trix. However, algebraic and computational properties of the spark are very
different from those of the rank.

In the present note we will look at the notion of spark of a matrix from a
geometric point of view. Namely, for a positive integer k we define the spark
variety Skm×n by

Skm×n = {A ∈Mm×n(F) : spark(A) ≤ k},

and our goal is to give a geometric characterization of the sets Skm×n (anal-
ogous to the characterization of the generic determinantal varieties).

1. Basic properties

First, let us collect some remarks about the family of all spark varieties
in Mm×n(F).

Proposition 1.1. (i) The zero matrix belongs to Skm×n and λSkm×n ⊆
Skm×n for all λ ∈ F.

(ii) Skm×n ⊆ Sk+1
m×n.

(iii) If m < n, then Sm+1
m×n =Mm×n(F).



A NOTE ON SPARK VARIETIES 121

(iv) If r ∈ N ∪ {0} is such that r ≤ m and r < n, then Hr
m×n ⊆ Sr+1

m×n.

(v) If min{k,m} ≥ n, then Skm×n = Hn−1
m×n.

Proof. Observe that the spark of the zero matrix is equal to 1. Moreover,

∀A ∈Mm×n(F)∀λ ∈ F \ {0} : spark(λA) = spark(A).

Property (i) follows. Inclusion (ii) is obvious.
It is easy to see that

∀A ∈Mm×n(F) :

{
spark(A) 6= +∞⇒ spark(A) ≤ rank(A) + 1,

spark(A) = +∞⇔ rank(A) = n.

Consequently, if m < n, then spark(A) ≤ m + 1 for all A ∈ Mm×n(F).
Property (iii) follows.

If r ∈ N∪{0}, r ≤ m, r < n, and A ∈ Hr
m×n, then spark(A) ≤ r+1. This

yields property (iv).
Suppose finally that min{k,m} ≥ n. Then, by (iv) and (ii), we have

Hn−1
m×n ⊆ Snm×n ⊆ Skm×n. On the other hand,

∀A ∈Mm×n(F) : spark(A) 6= +∞⇔ rank(A) ≤ n− 1,

and hence Skm×n ⊆ Hn−1
m×n. Property (v) follows. �

Let m,n, ` ∈ N be such that ` ≤ min{m,n}. For A = [aij ] ∈ Mm×n(F),
a strictly increasing sequence (i1, . . . , i`) of elements of {1, . . . ,m} and a
strictly increasing sequence (j1, . . . , j`) of elements of {1, . . . , n} we define

µi1,...,i`j1,...,j`
(A) to be the determinant of the matrix [aiujv ] ∈M`×`(F).

Theorem 1.2. Every spark variety Skm×n is an algebraic subset of the
space Mm×n(F).

Proof. If ` := min{k, n} > m, then by Proposition 1.1 we have Skm×n =
Mm×n(F). Suppose therefore that ` ≤ m. Let (j1, . . . , j`) be a strictly
increasing sequence of elements of {1, . . . , n}. We define

Dj1,...,j` =
{
A ∈Mm×n(F) : µi1,...,i`j1,...,j`

(A) = 0 for all

i1, . . . , i` ∈ {1, . . . ,m} such that i1 < . . . < i`

}
.

Notice that Dj1,...,j` is an algebraic subset of Mm×n(F). Moreover, Dj1,...,j`
is equal to the totality of matrices inMm×n(F) whose columns with indices
j1, . . . , j` are linearly dependent. If s ∈ {1, . . . , `}, then each s-element set
of linearly dependent columns of a matrix A ∈Mm×n(F) is contained in an
`-element set of linearly dependent columns of A. Thus,

Skm×n = S`m×n =
⋃{
Dj1,...,j` : j1, . . . , j` ∈ {1, . . . , n}, j1 < . . . < j`

}
.

The algebraicity follows. �

31



122 MARCIN SKRZYŃSKI

The sets Dj1,...,j` are examples of so-called linear determinantal varieties.

Corollary 1.3. (i) For any k ∈ N ∪ {+∞}, the set
{
A ∈ Mm×n(F) :

spark(A) = k
}

is quasi-algebraic.
(ii) If m < n, then {A ∈ Mm×n(F) : spark(A) = m + 1} is open in the

Zariski topology on Mm×n(F).

Recall that if m < n, then spark(A) ≤ m + 1 for all A ∈ Mm×n(F).
Moreover, if m ≥ n, then maxA∈Mm×n(F) spark(A) = +∞ and the set

{A ∈Mm×n(F) : spark(A) = +∞} =Mm×n(F) \ Hn−1
m×n

is open in the Zariski topology on Mm×n(F).

2. Main results

We are in a position to describe the geometric structure of a spark variety.

Theorem 2.1. Suppose that the field F is algebraically closed. Let m,n,
k ∈ N be such that k ≤ m and k < n. Then the family of all irreducible
components of Skm×n coincides with{

Dj1,...,jk : j1, . . . , jk ∈ {1, . . . , n}, j1 < . . . < jk
}
.

Moreover,

• the above sets Dj1,...,jk are normal and have dimension
m(n− 1) + k − 1,

•
⋂{
Dj1,...,jk : j1, . . . , jk ∈ {1, . . . , n}, j1 < . . . < jk

}
= Hk−1

m×n.

Proof. Recall from the proof of Theorem 1.2 that

Skm×n =
⋃{
Dj1,...,jk : j1, . . . , jk ∈ {1, . . . , n}, j1 < . . . < jk

}
and the sets Dj1,...,jk are algebraic.

Let (j′1, . . . , j
′
k) and (j′′1 , . . . , j

′′
k ) be two distinct strictly increasing se-

quences of elements of {1, . . . , n}. Since k ≤ m, there exists a matrix in
Mm×n(F) such that its columns with indices j′′1 , . . . , j

′′
k are linearly indepen-

dent while its columns with indices belonging to {j′1, . . . , j′k} \ {j′′1 , . . . , j′′k}
are not. Thus, Dj′1,...,j

′
k

is not contained in Dj′′1 ,...,j
′′
k
.

Pick a strictly increasing sequence (j1, . . . , jk) of elements of {1, . . . , n}.
Define A′ ∈ Mm×k(F) to be the matrix that consists of the columns of a
matrix A ∈Mm×n(F) with indices j1, . . . , jk, and A′′ ∈Mm×(n−k)(F) to be
the matrix that consists of all other columns of A. The map

Dj1,...,jk 3 A 7−→ (A′, A′′) ∈ Hk−1
m×k ×Mm×(n−k)(F)

is an isomorphism of algebraic sets. Therefore, since Hk−1
m×k is normal, so is

Dj1,...,jk . (In particular, Dj1,...,jk is irreducible.) Moreover, since dimHk−1
m×k =
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(k − 1)(m+ k − k + 1), we have

dimDj1,...,jk = dimHk−1
m×k + dimMm×(n−k)(F)

= (k − 1)(m+ 1) +m(n− k)

= m(n− 1) + k − 1.

Finally, a matrix A belongs to all components Dj1,...,jk if and only if every
k-element set of its columns is linearly dependent, which means exactly that
rank(A) ≤ k − 1. �

Corollary 2.2. Let F be algebraically closed. Then every spark variety
Skm×n is pure dimensional and all its irreducible components are normal.

Moreover, Skm×n is irreducible if and only if k > m or k ≥ n.

Proof. If min{k, n} > m, then by Proposition 1.1 we have that Skm×n =

Mm×n(F). Similarly, if min{k,m} ≥ n, then Skm×n = Hn−1
m×n. Thus, Skm×n

is normal whenever k > m or k ≥ n. On the other hand, by Theorem 2.1, if
k ≤ m and k < n, then Skm×n is reducible and pure dimensional, and all its
components are normal. �

We will conclude the note by the formula for the linear capacity of spark
varieties.

Lemma 2.3. Suppose that the field F is infinite. Let V be a nonzero
finite dimensional vector space over F, let s ∈ N, and let E1, . . . , Es ⊆ V be
algebraic sets. Then Λ(E1 ∪ . . . ∪ Es) = max{Λ(E1), . . . ,Λ(Es)}.

Proof. We define λ = Λ(E1 ∪ . . .∪Es). Then, obviously, max{Λ(E1), . . . ,
Λ(Es)} ≤ λ. Since F is infinite, every linear subspace of V is irreducible.
Therefore, if L is a linear subspace of V such that L ⊆ E1 ∪ . . . ∪ Es and
dimF L = λ, then L ⊆ Ei0 for some i0 ∈ {1, . . . , s}, and hence λ ≤ Λ(Ei0) ≤
max{Λ(E1), . . . ,Λ(Es)}. �

Theorem 2.4. Suppose that F is infinite. Let m,n, k ∈ N be such that
min{k, n} ≤ m. Then

Λ(Skm×n) = m(n− 1).

(Recall that Skm×n =Mm×n(F) whenever min{k, n} > m.)

Proof. If min{k,m} ≥ n, then Skm×n = Hn−1
m×n, and hence the assertion

follows from the Flanders–Meshulam theorem. Let us therefore assume that
k ≤ m and k < n. The isomorphism considered in the proof of Theorem 2.1
satisfies the assumptions of Proposition 0.1, (iv). Thus, for an arbitrary
strictly increasing sequence (j1, . . . , jk) of elements of {1, . . . , n}, we have

Λ(Dj1,...,jk) = Λ
(
Hk−1

m×k ×Mm×(n−k)(F)
)
. By Proposition 0.1, (ii), and the
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Flanders–Meshulam theorem,

Λ
(
Hk−1

m×k ×Mm×(n−k)(F)
)

= Λ(Hk−1
m×k) + Λ

(
Mm×(n−k)(F)

)
= (k − 1) max{k,m}+m(n− k)

= m(n− 1).

Since Skm×n coincides with the union of all sets Dj1,...,jk , the assertion follows
now from Lemma 2.3. �
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