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On the location of zeros of a polynomial with
restricted coefficients

N.A. RATHER AND MUSHTAQ A. SHAH

ABSTRACT. Let P(z) = 37, a;jz’, where ap > 0 and a; > aj_1,j =
1,2,--- ,n. Then, by a classical result of Enestrém—Kakeya, all the zeros
of P(z) lie in |z| < 1. In this paper, we prove some extensions and
generalizations of this result.

1. Introduction and statements of results

Let P(z) = Z?:o ajz’ be a polynomial of degree n. Then concerning
the distribution of zeros of P(z), Enestrom and Kakeya [10, 11] proved the
following interesting result.

Theorem A. Let P(z) = Z?:o a;jz) be a polynomial of degree n such that
ap > Ap_1 > -+ > a1 > ag > 0. (1)
Then P(z) has all its zeros in |z| < 1.

In the literature [1-11] there exist several extensions and generalizations
of this theorem. Joyal et al. [9] extended Theorem A to the polynomials
whose coefficients are monotonic but not necessarily non-negative. In fact
they proved the following result.

Theorem B. Let P(z) = Z?:o ajzj be a polynomial of degree n such that
ap 2 Ap—1 2 +++ 2 a1 2 Ag.
Then P(z) has all its zeros in the disk

1
21 < Jor (lanl = a0 + Jao]).
n
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Govil and Rahman [8] extended the result to the class of polynomials with
complex coefficients by proving the following result.

Theorem C. Let P(z) = 377 a;jz’ be a polynomial of degree n with
complex coefficients such that for some real 3,

jarga; — Bl <a< 7, 0<j<n,
and

lan| = |an—1] = -+ = |a1] = |aol-
Then P(z) has all its zeros in the disk

e
|z| < (sina+ cosa) + cand Z |ajl.

2sin
|an|

j=0
Aziz and Zargar [2] relaxed the hypothesis of Theorem A and proved the

following extension of Theorem A.

Theorem D. Let P(z) = 77 a;z’ be a polynomial of degree n such
that for some k > 1,

kap > apn_1 > --- > a1 > ap > 0. (2)
Then P(z) has all its zeros in |z + k — 1| < k.

In this paper we prove some generalizations and extensions of the above
theorems. In this direction we first present the following result which is a
generalization of Theorem B.

Theorem 1. Let P(z) = Z?:o a;z’ be a polynomial of degree m with
complex coefficients. For j = 0,1,--- ,n, let Rea; = o; and Ima; = B;. If
for some real t and for some X\ € {0,1,--- ,n— 1},

l+apSap1<--Sayz2axy-12--201 2Q
and
5n2ﬂn—12"’2/612/80>07
then all the zeros of P(z) lie in the union of disks |z] <1 and

<L{QOQ\*(Oén+t)*a0+|a0|+ﬁn}' (3)

+ t
z
|a71|

an

Taking t = —(1—k)ay,, 0 <k <1, in Theorem 1, we obtain the following
result.

Corollary 1. Let P(z) = Z?:o ajzj be a polynomial of degree n with
complex coefficients. For j = 0,1,--- ,n, let Rea; = a; and Ima; = 3;. If
for some 0 < k <1 and for some A\ € {0,1,--- ;n— 1},

kap <ap_1 < <ay>ay1 > 201 >
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and

5n2ﬁn—12"'2ﬁ12ﬂ0>07
then all the zeros of P(z) lie in the union of disks |z| <1 and

n 1
z—z(1—k)'§|a|{2a)\—kan—ao+]a0]+5n}. (4)

If ap > 0, then we get the following result.

Corollary 2. Let P(z) = Z?:o a;z’ be a polynomial of degree m with
complex coefficients. For j = 0,1,--- ,n, let Rea; = a; and Ima; = 3;. If
for some real t and for some X\ € {0,1,--- ,n — 1},

t+ap<op 1< --<ay>ay1=>-->ar =20 >0
and
5n2ﬁn712"‘2/812/80>07
then all the zeros of P(z) lie in the union of disks |z] <1 and

< i{mk— (0tn + 1) + B} - ()

|an

t
zZ4+ —
%9

Instead of proving Theorem 1, we prove the following more general result.
Theorem 2. Let P(z) = Z?:o a;z’ be a polynomial of degree m with
complex coefficients. For j = 0,1,--- ,n, let Rea; = o; and Ima; = B;. If
for some reals t, s, and for some A € {0,1,--- ,n—1},
l+ap<ap_1<--Sayz2ay12---2a>20)—S

and

ﬁnZﬁn—lZ"'251250>07
then all the zeros of P(z) lie in the union of disks |z| <1 and

<i{2aA—(an+t)—ao+2s)+|ao|+6n}- (6)

t
Z4+—| <
|an]

Gnp,

For s = 0, Theorem 2 reduces to Theorem 1. For ¢ = 0, Theorem 2
reduces to the following result.

Corollary 3. Let P(z) = Z?:o ajzj be a polynomial of degree n with
complex coefficients. For j = 0,1,--- ,n, let Rea; = a; and Ima; = 3;. If
for some real s and for some X\ € {0,1,--- ,n— 1},

ap Sap1 <<y 2y > 20 20— S
and
5n2ﬂn—12"’2/612/60>07
then all the zeros of P(z) lie in the union of disks |z| < 1 and

1
]z’§W{QQ)\—an—Oéo+2S+|a0‘+ﬁn}- (7)
n
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Finally we present the following result for the polynomials with real coef-
ficients.

Theorem 3. Let P(z) = Z?:o ajz) be a polynomial of degree n. If for
some positive numbers A and
)\+an2an71 > "'ZCLO_MZ(),
then all the zeros of P(z) lie in the closed disk

1
< —(an+ A+ 2p). (8)

A
24+ —
an

For A = (k—1)an, £k > 1, and pp = (1 — p)ag, 0 < p < 1, Theorem 2
gives a generalization of Theorem C. Also, for A = 0 = p, it reduces to the
Enestrom—Kakeya theorem.

2. Proofs of the theorems
Proof of Theorem 2. Consider the polynomial
F(z) = (1- 2)P(2)
=(1-2) (anz" + ap_12""'+ -+ a1z + ap)
= —a, 2" (4 — an_1)2" + (a1 — an_o)2" P 4
+ (a1 —ap)z + ap
=—2"(anz+t)+ {(an+t —ap_1)2" +---
+ (1 —ap+$8)z—sz+ ao}
+i{(Bn = Bn-1) 2" + -+ (B1 — Bo) 2+ Bo} -
This gives
|F(2)| > |2]" |anz +t| — {|an +t — an_1] |2]" + |an-1 — an_a| |z]" "+ +- -
laars = anl [M + faxn — anaf [+ + fan = (a0 — 5)| 2]
+slz] + laol + |Bn = Bl 2" + [Bn-1 — Bnaf [ + -+
+ 181 = Bol |2[ + [Bol}

Ap—1 — Op—

|2
laat1 —an] oy —an_q]
+ |z|nf/\71 |Z|n7)\ +
lar — (g — 5| S |ovol
+ o e + PR +1B8n — Bn-1]

E T e

+|/3n—1_ﬁn—2‘ 4. |51_50‘ |60|}:| .
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Now, let |z| > 1, so that —+— <1, 0 <j <n. Then we have

|Z‘n7j

[F(2)] = [2]" [lanz + t| = {lan + t — an—1] + |on—1 — an—o + -
+laxtr —an| + |ax —ax_q| + -+ |ag = (g — s)| + (s + |ao])
+1Bn = Ba—1l + |Ba—1 — B2l + -~ + 181 — Bol + |Bol}]
=|z["[lanz +t| —{—an —t+ap-1 —pn_1+an_2—---
—app1 oy +ay—ax_1+---+ar—(a—s)+ (s+ |aol)
+Bn — Bn-1+ Ba-1 — Pn2+ -+ B1 — Bo + Po}]
= |2|"[|lanz + t| — {—an — t + 2ax — (g — 5) + (s + |ao|) + Bn}]

>0
if
|anz + 1] > {—an —t + 20 — (a0 — 5) + (s + [@0]) + B},
ie., if
t 1
24+ —| > —{2a\—t —an —ap+ s+ s+ |ao| + Bn}-
an lan

Thus all the zeros of F(z) whose modulus is greater than or equal to 1 lie in

1
§—{2a>\—t—04n—040+23+|O‘O|+Bn}-

t
zZ+ —
|an|

an

But all the zeros of P(z) are also the zeros of F(z). Hence it follows that all
the zeros of F'(z) and hence of P(z) lie in the union of disks |z| < 1 and

t
Z+ —

n

1
§a—{ZOz)\—t—Oén—OKO“‘ZS‘i'|O‘O|+Bn}-

|an

This completes the proof of Theorem 2. O

Proof of Theorem 3. Consider the polynomial
F(z) = (1 -2)P(2)

= —a, 2" (ay — an_1)2" + (a1 — an_2)2" L4 -
+ (a1 — ap)z + ap

= —a, 2" = A2 (ap X — an_1)2" F (a1 — )2t
+ -+ (a1 —ap + p)z — pz + ag

=—2"(anz+ )+ (ap + X —ap—1)2" + (ap—1 — an,Q)z"_l
+ -+ (a1 —ap + p)z — pz + aop.
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This gives
|F(2)] = |2]" lanz + Al = {lan + A — an-1]|2|"
+lan—1 = apaof 2" + -+ a1 — ag + pllz] + plz] + a0}

‘an—l - an—Q’

2|

=|z|" {|anz+ Al — <|an +A—ap1|+
Jr|0L1—ao+u\ 1z a0|)}.

+7
F e T

Now, let |z| > 1, so that —+— <1, 0<j <n. Then we have

R
[F(2)] = [2]" {lanz + Al = (lan + A = an—a1| + |an—1 — an—2| +- -
tlax — ao + gl + g + ao])}
= |z["{lanz + A — (@n + A —ap-1+ apn-1— apn_o+---
+ar —ao+ p+ p+ao)}
= |2|"{lanz + A| = (an + A+ 2u)} >0
if
lanz + A > (an + A+ 2p),
ie., if
Z+a); >a1n(an+)\+2,u).

Thus all the zeros of F(z) whose modulus is greater than or equal to 1 lie in

A 1
24+ —| < —(an+A+2pu).

Qn Qn

But those zeros of F(z) whose modulus is less than 1 already satisfy the
above inequality. Indeed, for |z|] < 1, we have

A A Ao 1
|2 S e+ 2 <1 S T (e A+ 2p).
a ’an| Qp, [79) an,

n

Also all the zeros of P(z) are the zeros of F'(z). Hence it follows that all the
zeros of F(z) and hence of P(z) lie in

A
Z+ —

1
< — (an + X+ 2p)
Qn

Qn

This completes the proof of Theorem 3. U
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