Semi-symmetric metric connections on pseudosymmetric Lorentzian α-Sasakian manifolds

A. Bhattacharyya and C. Patra

Abstract

We consider semi-symmetric metric connections on pseudosymmetric Lorentzian α-Sasakian manifolds. We study some properties of Weyl pseudosymmetric and Ricci pseudosymmetric Lorentzian α-Sasakian manifolds. We also give an example of a pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection.

1. Introduction

The concept of a pseudosymmetric manifold was introduced by M.C. Chaki and B. Chaki (see [3]) and R. Deszcz (see [8]) in two different ways. Various properties of pseudosymmetric manifolds in various metric structures have been studied in both senses (see [3]-[7]). The two types of pseudosymmetric manifolds are different in their nature. We shall study properties of pseudosymmetric manifolds and Ricci pseudosymmetric manifolds with a semi-symmetric metric connection in the Deszcz sense.

A Riemannian manifold (M, g) of dimension n is called pseudosymmetric if the Riemannian curvature tensor R satisfies, for all vector fields X, Y, U, V, W on M, the conditions (see [1])

1. $(R(X, Y) \cdot R)(U, V, W)=L_{R}[((X \wedge Y) \cdot R)(U, V, W)]$,
2. $(R(X, Y) \cdot R)(U, V, W)=R(X, Y)(R(U, V) W)-R(R(X, Y) U, V) W-$ $R(U, R(X, Y) V) W-R(U, V)(R(X, Y) W)$,
3. $((X \wedge Y) \cdot R)(U, V, W)=(X \wedge Y)(R(U, V) W)-R((X \wedge Y) U, V) W-$ $R(U,(X \wedge Y) V) W-R(U, V)((X \wedge Y) W)$,

[^0]where $L_{R} \in C^{\infty}(M)$,
$$
R(X, Y) Z=\nabla_{[X, Y]} Z-\left[\nabla_{X}, \nabla_{Y}\right] Z
$$
and $X \wedge Y$ is an endomorphism which is defined by
\[

$$
\begin{equation*}
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y \tag{1}
\end{equation*}
$$

\]

The manifold M is said to be pseudosymmetric of constant type if L is constant. A Riemannian manifold (M, g) is called semi-symmetric if $R . R=$ 0 , where $R . R$ is the derivative of R by R.

Remark 1.1. From [2] and [8], we know that, for a $(0, k)$-tensor field T, the $(0, k+2)$ tensor fields R.T and $Q(g, T)$ are defined by

$$
\begin{aligned}
& (R . T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=(R(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=-T\left(R(X, Y) X_{1}, \ldots, X_{k}\right)-\cdots-T\left(X_{1}, \ldots, R(X, Y) X_{k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& Q(g, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=-((X \wedge Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right) \\
& \quad=T\left((X \wedge Y) X_{1}, \ldots, X_{k}\right)+\cdots+T\left(X_{1}, \ldots,(X \wedge Y) X_{k}\right)
\end{aligned}
$$

Let S and r denote the Ricci tensor and the scalar curvature tensor of M respectively. The operator Q and the (0,2)-tensor S^{2} are defined by

$$
S(X, Y)=g(Q X, Y)
$$

and

$$
\begin{equation*}
S^{2}(X, Y)=S(Q X, Y) \tag{2}
\end{equation*}
$$

The Weyl conformal curvature operator C is defined by

$$
C(X, Y)=R(X, Y)-\frac{1}{n-2}\left[X \wedge Q Y+Q X \wedge Y-\frac{r}{n-1} X \wedge Y\right]
$$

If $C=0, n \geq 3$, then M is called conformally flat. If the tensors R.C and $Q(g, C)$ are linearly dependent, then M is called Weyl pseudosymmetric. This is equivalent to the statement that

$$
(R . C)(U, V, W ; X, Y)=L_{C}[((X \wedge Y) . C)(U, V) W]
$$

holds on the set

$$
U_{C}=\{x \in M: C \neq 0 \text { at } x\},
$$

where L_{C} is defined on U_{C}. If $R . C=0$, then M is called Weyl semisymmetric. If $\nabla C=0$, then M is called conformally symmetric (see [10], [9]).

2. Preliminaries

A differentiable manifold M of dimension n is said to be a Lorentzian α-Sasakian manifold if it admits a (1,1)-tensor field ϕ, a vector field ξ, a one-form η, and Lorentzian metric g which satisfy the conditions

$$
\begin{align*}
\phi^{2} & =I+\eta \otimes \xi \\
\eta(\xi) & =-1, \phi \xi=0, \eta \circ \phi=0 \tag{3}\\
g(\phi X, \phi Y) & =g(X, Y)+\eta(X) \eta(Y) \\
g(X, \xi) & =\eta(X) \\
\left(\nabla_{X} \phi\right)(Y) & =\alpha\{g(X, Y) \xi+\eta(Y) X\}
\end{align*}
$$

for all $X, Y \in \chi(M)$, where $\chi(M)$ is the Lie algebra of smooth vector fields on M, α is smooth functions on M, and ∇ denotes the covariant differentiation operator of Lorentzian metric g (see [11], [10]).

On a Lorentzian α-Sasakian manifold, it can be shown that (see [11], [10])

$$
\begin{aligned}
\nabla_{X} \xi & =\alpha \phi X \\
\left(\nabla_{X} \eta\right) Y & =\alpha g(\phi X, Y)
\end{aligned}
$$

Moreover, on a Lorentzian α-Sasakian manifold the following relations hold (see [10]):

$$
\begin{align*}
\eta(R(X, Y) Z) & =\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{4}\\
R(\xi, X) Y & =\alpha^{2}[g(X, Y) \xi-\eta(Y) X] \tag{5}\\
R(X, Y) \xi & =\alpha^{2}[\eta(Y) X-\eta(X) Y] \tag{6}\\
S(\xi, X) & =S(X, \xi)=(n-1) \alpha^{2} \eta(X) \tag{7}\\
S(\xi, \xi) & =-(n-1) \alpha^{2} \tag{8}\\
Q \xi & =(n-1) \alpha^{2} \xi
\end{align*}
$$

The equalities $(4)-(8)$ will be required in the next section.

3. Semi-symmetric metric connection on a Lorentzian α-Sasakian manifold

Let M be a Lorentzian α-Sasakian manifold with Levi-Civita connection ∇ and let $X, Y, Z \in \chi(M)$. We define a linear connection D on M by

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y+\eta(Y) X-g(X, Y) \xi \tag{9}
\end{equation*}
$$

where η is 1 -form and ϕ is a tensor field of type $(1,1)$. The connection D is said to be semi-symmetric if \bar{T}, the torsion tensor of the connection D, satisfies

$$
\begin{equation*}
\bar{T}(X, Y)=\eta(Y) X-\eta(X) Y \tag{10}
\end{equation*}
$$

and metric if

$$
\begin{equation*}
\left(D_{X} g\right)(Y, Z)=0 \tag{11}
\end{equation*}
$$

The connection D is said to be semi-symmetric metric if it satisfies (9), (10) and (11).

We shall show the existence of a semi-symmetric metric connection D on a Lorentzian α-Sasakian manifold M.

Theorem 3.1. Let X, Y, Z be vector fields on a Lorentzian α-Sasakian manifold M. Define a connection D by

$$
\begin{align*}
2 g\left(D_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)+g([X, Y], Z) \\
& -g([Y, Z], X)+g([Z, X], Y)+g(\eta(Y) X-\eta(X) Y, Z) \tag{12}\\
& +g(\eta(X) Z-\eta(Z) X, Y)+g(\eta(Y) Z-\eta(Z) Y, X)
\end{align*}
$$

Then D is a semi-symmetric metric connection on M.
Proof. It can be verified that D is a linear connection on M. From (12), we have

$$
g\left(D_{X} Y, Z\right)-g\left(D_{Y} X, Z\right)=g([X, Y], Z)+\eta(Y) g(X, Z)-\eta(X) g(Y, Z)
$$

or

$$
D_{X} Y-D_{Y} X-[X, Y]=\eta(Y) X-\eta(X) Y
$$

or

$$
\bar{T}(X, Y)=\eta(Y) X-\eta(X) Y
$$

Again, from (12), we get

$$
2 g\left(D_{X} Y, Z\right)+2 g\left(D_{X} Z, Y\right)=2 X g(Y, Z)
$$

or

$$
\left(D_{X} g\right)(Y, Z)=0
$$

This shows that D is a semi-symmetric metric connection on M.

4. Curvature tensor and Ricci tensor of semi-symmetric metric connection D on a Lorentzian α-Sasakian manifold

Let $\bar{R}(X, Y) Z$ and $R(X, Y) Z$ be the curvature tensors on a Lorentzian α-Sasakian manifold M of a semi-symmetric metric connection D and of the Riemannian connection ∇, respectively. A relation between $\bar{R}(X, Y) Z$ and $R(X, Y) Z$ is given by

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+\alpha[g(\phi X, Z) Y-g(\phi Y, Z) X \\
& +g(X, Z) \phi Y-g(Y, Z) \phi X]+\eta(Z)[\eta(Y) X-\eta(X) Y] \tag{13}\\
& +g(Y, Z) \phi^{2} X-g(X, Z) \phi^{2} Y .
\end{align*}
$$

From (13) we obtain

$$
\begin{equation*}
\bar{S}(X, Y)=S(X, Y)+(n-2)[g(\phi X, \phi Y)-\alpha g(\phi X, Y)] \tag{14}
\end{equation*}
$$

where \bar{S} and S are the Ricci tensors of the connections D and ∇, respectively. Again

$$
\begin{align*}
\bar{S}^{2}(X, Y)= & S^{2}(X, Y)+(n-2)\left[\left\{S(\phi X, \phi Y)+S\left(\phi^{2} X, Y\right)\right\}\right. \\
& -2 \alpha S(\phi X, Y)]+(n-2)^{2}\left[\left(\alpha^{2}+1\right) g(\phi X, \phi Y)\right. \tag{15}\\
& -2 \alpha g(\phi X, Y)]
\end{align*}
$$

Contracting (15), we get

$$
\begin{equation*}
\bar{r}=r+(n-1)(n-2) \tag{16}
\end{equation*}
$$

where \bar{r} and r are the scalar curvatures of the connections D and ∇, respectively.

Let \bar{C} be the conformal curvature tensor of the connection D. Then

$$
\begin{align*}
\bar{C}(X, Y) Z= & \bar{R}(X, Y) Z-\frac{1}{n-2}[\bar{S}(Y, Z) X \\
& -g(X, Z) \bar{Q} Y+g(Y, Z) \bar{Q} X-\bar{S}(X, Z) Y] \tag{17}\\
& +\frac{\bar{r}}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where \bar{Q} is the Ricci operator of the connection D on M and

$$
\begin{align*}
\bar{S}(X, Y) & =g(\bar{Q} X, Y) \tag{18}\\
\bar{S}^{2}(X, Y) & =\bar{S}(\bar{Q} X, Y) \tag{19}
\end{align*}
$$

Now we shall prove the following theorem.
Theorem 4.1. Let M be a Lorentzian α-Sasakian manifold with a semisymmetric metric connection D. Then the following relations hold:

$$
\begin{align*}
\bar{R}(\xi, X) Y= & \alpha^{2}[g(X, Y) \xi-\eta(Y) X]+\alpha[\eta(Y) \phi X-g(\phi X, Y) \xi] \tag{20}\\
\eta(\bar{R}(X, Y) Z)= & \alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{21}\\
& +\alpha[g(\phi X, Z) \eta(Y)-g(\phi Y, Z) \eta(X)] \\
\bar{R}(X, Y) \xi= & \alpha^{2}[\eta(Y) X-\eta(X) Y]-\alpha[\eta(Y) \phi X-\eta(X) \phi Y] \tag{22}\\
\bar{S}(X, \xi)= & \bar{S}(\xi, X)=(n-1) \alpha^{2} \eta(X) \tag{23}\\
\bar{S}^{2}(X, \xi)= & \bar{S}^{2}(\xi, X)=\alpha^{4}(n-1)^{2} \eta(X) \tag{24}\\
\bar{S}(\xi, \xi)= & -(n-1) \alpha^{2} \tag{25}\\
\bar{Q} X= & Q X+(n-2)\left[\phi^{2} X-\alpha \phi X\right] \tag{26}\\
\bar{Q} \xi= & (n-1) \alpha^{2} \xi \tag{27}
\end{align*}
$$

Proof. Since M is a Lorentzian α-Sasakian manifold and D is a semisymmetric metric connection, replacing $X=\xi$ in (13) and using (3) and (5), we get (20). Using (3) and (4), from (13), we get (21). To prove (22), we put $Z=\xi$ in (13) and then we use (6). Replacing $Y=\xi$ in (14) and using
(7), we get (23). Putting $Y=\xi$ in (15) and using (2) and (7), we get (24). Again, putting $X=Y=\xi$ in (14) and using (8), we get (25). Using (18) and (23), we get (26). Now, putting $X=\xi$ in (26), we get (27).

5. Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$

In this section we shall find out characterization of Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$, where

$$
\begin{equation*}
(\bar{C}(X, Y) \cdot \bar{S})(Z, W)=-\bar{S}(\bar{C}(X, Y) Z, W)-\bar{S}(Z, \bar{C}(X, Y) W) \tag{28}
\end{equation*}
$$

with $X, Y, Z, W \in \chi(M)$.
Theorem 5.1. Let M be an n-dimensional Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D. If $\bar{C} \cdot \bar{S}=0$, then

$$
\begin{align*}
\frac{1}{n-2} \bar{S}^{2}(X, Y)= & {\left[\alpha^{2}+1+\frac{r}{(n-1)(n-2)}\right][\bar{S}(\phi X, Y)} \\
& \left.-\alpha^{2}(n-1) g(\phi X, Y)\right]-\alpha[\bar{S}(X, Y) \tag{29}\\
& \left.-\alpha^{2}(n-1) g(X, Y)\right]+\frac{\alpha^{4}(n-1)^{2}}{n-2} g(X, Y)
\end{align*}
$$

Proof. From (28), we get

$$
\begin{equation*}
\bar{S}(\bar{C}(X, Y) Z, W)+\bar{S}(Z, \bar{C}(X, Y) W)=0 \tag{30}
\end{equation*}
$$

where $X, Y, Z, W \in \chi(M)$. Now, putting $X=\xi$ in (29), we get

$$
\begin{equation*}
\bar{S}(\bar{C}(\xi, X) Y, Z)+\bar{S}(Y, \bar{C}(\xi, X) Z)=0 \tag{31}
\end{equation*}
$$

Using (17), (19), (20) and (23), we have that

$$
\begin{align*}
\bar{S}(\bar{C}(\xi, X) Y, Z)= & {\left[\alpha^{2}-\frac{(n-1) \alpha^{2}}{n-2}+\frac{\bar{r}}{(n-1)(n-2)}\right] } \\
& \times\left[(n-1) \alpha^{2} \eta(Z) g(X, Y)-\eta(Y) \bar{S}(X, Z)\right] \tag{32}\\
& -\alpha\left[(n-1) \alpha^{2} \eta(Z) g(\phi X, Y)-\eta(Y) \bar{S}(\phi X, Z)\right] \\
& -\frac{1}{n-2}\left[(n-1) \alpha^{2} \eta(Z) \bar{S}(X, Y)-\bar{S}^{2}(X, Z) \eta(Y)\right]
\end{align*}
$$

and

$$
\begin{align*}
\bar{S}(Y, \bar{C}(\xi, X) Z)= & {\left[\alpha^{2}-\frac{(n-1) \alpha^{2}}{n-2}+\frac{\bar{r}}{(n-1)(n-2)}\right] } \\
& \times\left[(n-1) \alpha^{2} \eta(Y) g(X, Z)-\eta(Z) \bar{S}(X, Y)\right] \tag{33}\\
& -\alpha\left[(n-1) \alpha^{2} \eta(Y) g(\phi X, Z)-\eta(Z) \bar{S}(\phi X, Y)\right] \\
& -\frac{1}{n-2}\left[(n-1) \alpha^{2} \eta(Y) \bar{S}(X, Z)-\bar{S}^{2}(X, Y) \eta(Z)\right]
\end{align*}
$$

Using (31) and (32) in (30), we get

$$
\begin{align*}
& {\left[\alpha^{2}-\frac{(n-1) \alpha^{2}}{n-2}+\frac{\bar{r}}{(n-1)(n-2)}\right]\left[(n-1) \alpha^{2}\{\eta(Z) g(X, Y)\right.} \\
& \quad+\eta(Y) g(X, Z)\}-\{\eta(Y) \bar{S}(X, Z)+\eta(Z) \bar{S}(X, Y)\}] \\
& \quad-\alpha\left[(n-1) \alpha^{2}\{\eta(Z) g(\phi X, Y)+\eta(Y) g(\phi X, Z)\}\right. \tag{34}\\
& \quad-\{\eta(Y) \bar{S}(\phi X, Z)+\eta(Z) \bar{S}(\phi X, Y)\}] \\
& \quad-\frac{1}{n-2}\left[(n-1) \alpha^{2}\{\eta(Z) \bar{S}(X, Y)+\eta(Y) \bar{S}(X, Z)\}\right. \\
& \left.\quad-\left\{\bar{S}^{2}(X, Z) \eta(Y)+\bar{S}^{2}(X, Y) \eta(Z)\right\}\right]=0
\end{align*}
$$

Finally, replacing $Z=\xi$ in (33) and using (23) and (24), we get (29).
An n-dimensional Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D is said to be η-Einstein if its Ricci tensor \bar{S} is of the form

$$
\begin{equation*}
\bar{S}(X, Y)=A g(X, Y)+B \eta(X) \eta(Y) \tag{35}
\end{equation*}
$$

where A, B are smooth functions on M. We consider the vector fields e_{i}, $i=1,2, \ldots, n$, which forms an orthonormal basis for the tangent space $T_{x} M$ of M.

Now, putting $X=Y=e_{i}, i=1,2, \ldots, n$, in (35) and summing over $i=1, \ldots, n$, we get

$$
\begin{equation*}
A n-B=\bar{r} . \tag{36}
\end{equation*}
$$

Again, replacing $X=Y=\xi$ in (35), we have that

$$
\begin{equation*}
A-B=(n-1) \alpha^{2} \tag{37}
\end{equation*}
$$

Solving (36) and (37), we obtain

$$
A=\frac{\bar{r}}{n-1}-\alpha^{2} \text { and } B=\frac{\bar{r}}{n-1}-n \alpha^{2} .
$$

Thus the Ricci tensor of an η-Einstein manifold with a semi-symmetric metric connection D is given by

$$
\begin{equation*}
\bar{S}(X, Y)=\left[\frac{\bar{r}}{n-1}-\alpha^{2}\right] g(X, Y)+\left[\frac{\bar{r}}{n-1}-n \alpha^{2}\right] \eta(X) \eta(Y) \tag{38}
\end{equation*}
$$

6. η-Einstein Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D satisfying the condition $\bar{C} \cdot \bar{S}=0$

Theorem 6.1. Let M be an η-Einstein Lorentzian α-Sasakian manifold of dimension n with the restriction $X=Z=\xi$. Then $\bar{C} \cdot \bar{S}=0$ if and only if

$$
g(\phi Y, \phi W)=-\alpha g(\phi Y, W), \quad Y, W \in \chi(M)
$$

Proof. Let M be an η-Einstein Lorentzian α-Sasakian manifold of the semi-symmetric metric connection D satisfying $\bar{C} \cdot \bar{S}=0$. Using (38) in (30), we get

$$
\eta(\bar{C}(X, Y) Z) \eta(W)+\eta(\bar{C}(X, Y) W) \eta(Z)=0
$$

Further, using (16), (21) and (23) in the above equation, we obtain that

$$
\begin{aligned}
& \{g(Y, Z) \eta(X) \eta(W)-g(X, Z) \eta(Y) \eta(W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)-g(X, W) \eta(Y) \eta(Z)\} \\
& \quad-\alpha\{g(\phi Y, Z) \eta(X) \eta(W)-g(\phi X, Z) \eta(Y) \eta(W) \\
& \quad+g(\phi Y, W) \eta(X) \eta(Z)-g(\phi X, W) \eta(Y) \eta(Z)\}=0 .
\end{aligned}
$$

Putting here $X=Z=\xi$, we get

$$
g(\phi Y, \phi W)=-\alpha g(\phi Y, W)
$$

Conversely,

$$
\begin{aligned}
\bar{C} . \bar{S}= & \{g(Y, Z) \eta(X) \eta(W)-g(X, Z) \eta(Y) \eta(W) \\
& +g(Y, W) \eta(X) \eta(Z)-g(X, W) \eta(Y) \eta(Z)\} \\
& -\alpha\{g(\phi Y, Z) \eta(X) \eta(W)-g(\phi X, Z) \eta(Y) \eta(W) \\
& +g(\phi Y, W) \eta(X) \eta(Z)-g(\phi X, W) \eta(Y) \eta(Z)\} .
\end{aligned}
$$

Using $X=Z=\xi$ in this equation, we get

$$
\bar{C} \cdot \bar{S}=g(Y, W)+\eta(Y) \eta(W)+\alpha g(\phi Y, W)
$$

Thus $\bar{C} \cdot \bar{S}=0$.

7. Ricci pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D

Theorem 7.1. A Ricci pseudosymmetric Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D and with restrictions $Y=$ $W=\xi, L_{\bar{S}}=\alpha^{2}$ is an Einstein manifold.

Proof. Recall that a Lorentzian α-Sasakian manifold M with a semisymmetric metric connection D is called Ricci pseudosymmetric if

$$
(\bar{R}(X, Y) \cdot \bar{S})(Z, W)=L_{\bar{S}}[((X \wedge Y) \cdot \bar{S})(Z, W)]
$$

or

$$
\begin{align*}
& \bar{S}(\bar{R}(X, Y) Z, W)+\bar{S}(Z, \bar{R}(X, Y) W) \\
& \quad=L_{\bar{S}}[\bar{S}((X \wedge Y) Z, W)+\bar{S}(Z,(X \wedge Y) W)] \tag{39}
\end{align*}
$$

Putting $Y=W=\xi$, in (39) and using (1), (20) and (23), we have

$$
\begin{align*}
{\left[L_{\bar{S}}\right.} & \left.-\alpha^{2}\right]\left[\bar{S}(Z, X)-(n-1) \alpha^{2} g(Z, X)\right] \tag{40}\\
& =-\alpha\left[\bar{S}(Z, \phi X)-(n-1) \alpha^{2} g(Z, \phi X)\right]
\end{align*}
$$

Then, for $L_{\bar{S}}=\alpha^{2}$,

$$
\bar{S}(Z, \phi X)=(n-1) \alpha^{2} g(Z, \phi X)
$$

Thus M is an Einstein manifold.
Corollary 7.1. If M is a Ricci pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D and with restriction $Y=W=\xi$, then

$$
\begin{equation*}
\alpha\left[\bar{S}(Z, X)-(n-1) \alpha^{2} g(Z, X)\right]=\bar{S}(Z, \phi X)-(n-1) \alpha^{2} g(Z, \phi X) \tag{41}
\end{equation*}
$$

Proof. If M is a Ricci pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D, then $L_{\bar{S}}=0$. Putting $L_{\bar{S}}=0$ in (40), we get (41).

8. Pseudosymmetric Lorentzian α-Sasakian manifold and Weyl pseudosymmetric Lorentzian α-Sasakian manifold with semi-symmetric metric connections

In the present section, we shall give the definitions of a pseudosymmetric and a Weyl-pseudosymmetric Lorentzian α-Sasakian manifolds with semisymmetric metric connections and discuss their properties.

Definition 8.1. A Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D is said to be pseudosymmetric if the curvature tensor \bar{R} of D satisfies the condition

$$
\begin{equation*}
(\bar{R}(X, Y) \cdot \bar{R})(U, V, W)=L_{\bar{R}}[((X \wedge Y) \cdot \bar{R})(U, V, W)] \tag{42}
\end{equation*}
$$

where

$$
\begin{gather*}
(\bar{R}(X, Y) \cdot \bar{R})(U, V, W)=\bar{R}(X, Y)(\bar{R}(U, V) W)-\bar{R}(\bar{R}(X, Y) U, V) W \\
-\bar{R}(U, \bar{R}(X, Y) V) W-\bar{R}(U, V)(R(X, Y) W) \tag{43}
\end{gather*}
$$

and

$$
\begin{gather*}
((X \wedge Y) \cdot \bar{R})(U, V, W)=(X \wedge Y)(\bar{R}(U, V) W)-\bar{R}((X \wedge Y) U, V) W \\
-\bar{R}(U,(X \wedge Y) V) W-\bar{R}(U, V)((X \wedge Y) W) \tag{44}
\end{gather*}
$$

Definition 8.2. A Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D is said to be Weyl pseudosymmetric if the curvature tensor \bar{R} of D satisfies the condition

$$
\begin{equation*}
(\bar{R}(X, Y) \cdot \bar{C})(U, V, W)=L_{\bar{C}}[((X \wedge Y) \cdot \bar{C})(U, V, W)] \tag{45}
\end{equation*}
$$

where

$$
\begin{gather*}
(\bar{R}(X, Y) . \bar{C})(U, V, W)=\bar{R}(X, Y)(\bar{C}(U, V) W)-\bar{C}(\bar{R}(X, Y) U, V) W \\
-\bar{C}(U, \bar{R}(X, Y) V) W-\bar{C}(U, V)(R(X, Y) W) \tag{46}
\end{gather*}
$$

and

$$
\begin{gather*}
((X \wedge Y) \cdot \bar{C})(U, V, W)=(X \wedge Y)(\bar{C}(U, V) W)-\bar{C}((X \wedge Y) U, V) W \\
-\bar{C}(U,(X \wedge Y) V) W-\bar{C}(U, V)((X \wedge Y) W) \tag{47}
\end{gather*}
$$

Theorem 8.1. Let M be an n-dimensional Lorentzian α-Sasakian manifold. If M is Weyl pseudosymmetric, then M is either conformally flat or $L_{\bar{C}}=\alpha^{2}$.

Proof. Let M be Weyl pseudosymmetric and $X, Y, U, V, W \in \chi(M)$. Then, using (45) and (46) in (44), we have

$$
\begin{aligned}
\bar{R}(X, Y)(& \bar{C}(U, V) W)-\bar{C}(\bar{R}(X, Y) U, V) W \\
& -\bar{C}(U, \bar{R}(X, Y) V) W-\bar{C}(U, V)(R(X, Y) W) \\
= & L_{\bar{C}}[(X \wedge Y)(\bar{C}(U, V) W)-\bar{C}((X \wedge Y) U, V) W \\
& -\bar{C}(U,(X \wedge Y) V) W-\bar{C}(U, V)((X \wedge Y) W)]
\end{aligned}
$$

Replacing here X with ξ, we obtain

$$
\begin{align*}
\bar{R}(\xi, Y)(& \bar{C}(U, V) W)-\bar{C}(\bar{R}(\xi, Y) U, V) W \\
& -\bar{C}(U, \bar{R}(\xi, Y) V) W-\bar{C}(U, V)(R(\xi, Y) W) \\
= & L_{\bar{C}}[(\xi \wedge Y)(\bar{C}(U, V) W)-\bar{C}((\xi \wedge Y) U, V) W \tag{48}\\
& -\bar{C}(U,(\xi \wedge Y) V) W-\bar{C}(U, V)((\xi \wedge Y) W)]
\end{align*}
$$

Using (1) and (20) in (47), and taking inner product of (47) with ξ, we get

$$
\begin{aligned}
\alpha^{2}[& -\bar{C}(U, V, W, Y)-\eta(\bar{C}(U, V) W) \eta(Y) \\
& +g(Y, U) \eta(\bar{C}(\xi, V) W)-\eta(U) \eta(\bar{C}(Y, V) W) \\
& +g(Y, V) \eta(\bar{C}(U, \xi) W)-\eta(V) \eta(\bar{C}(U, Y) W)-\eta(W) \eta(\bar{C}(U, V) Y)] \\
& +\alpha[\bar{C}(U, V, W, \phi Y)+\eta(U) \eta(\bar{C}(\phi Y, V) W)-g(\phi Y, U) \eta(\bar{C}(\xi, V) W) \\
& +\eta(V) \eta(\bar{C}(U, \phi Y) W)-g(\phi Y, V) \eta(\bar{C}(U, \xi) W)+\eta(W) \eta(\bar{C}(U, V) \phi Y)] \\
= & L_{\bar{C}}[-\bar{C}(U, V, W, Y)-\eta(Y) \eta(\bar{C}(U, V) W)+g(Y, U) \eta(\bar{C}(\xi, V) W) \\
& -\eta(U) \eta(\bar{C}(Y, V) W+g(Y, V) \eta(\bar{C}(U, \xi) W) \\
& -\eta(V) \eta(\bar{C}(U, Y) W)-\eta(W) \eta(\bar{C}(U, V) Y)] .
\end{aligned}
$$

Then, putting $Y=U=\xi$, we get

$$
\left[L_{\bar{C}}-\alpha^{2}\right] \eta(\bar{C}(\xi, V) W)=0
$$

This shows that either $\eta(\bar{C}(\xi, V) W)=0$ or $L_{\bar{C}}-\alpha^{2}=0$.
Now, if $L_{\bar{C}}-\alpha^{2} \neq 0$, then $\eta(\bar{C}(\xi, V) W)=0$, i.e., M is conformally flat and

$$
\bar{S}(V, W)=A g(V, W)+B \eta(V) \eta(W)-\alpha g(\phi V, W)
$$

with

$$
A=\left[\alpha^{2}-\frac{(n-1) \alpha^{2}}{n-2}+\frac{\bar{r}}{(n-1)(n-2)}\right](n-2)
$$

and

$$
B=\left[\alpha^{2}-\frac{2(n-1) \alpha^{2}}{n-2}+\frac{\bar{r}}{(n-1)(n-2)}\right](n-2) .
$$

But if $\eta(\bar{C}(\xi, V) W) \neq 0$, then we have $L_{\bar{C}}=\alpha^{2}$.
Theorem 8.2. Let M be an n-dimensional Lorentzian α-Sasakian manifold. If M is pseudosymmetric, then either M is a space of constant curvature and $F(X, Y)=\alpha g(\phi X, \phi Y)$ for $\alpha \neq 0$, or $L_{\bar{R}}=\alpha^{2}$ for $X, Y \in \chi(M)$.

Proof. Let M be pseudosymmetric and let $X, Y, U, V, W \in \chi(M)$. Then, using (42) and (43) in (41), we have that

$$
\begin{aligned}
\bar{R}(X, Y)(& \bar{R}(U, V) W)-\bar{R}(\bar{R}(X, Y) U, V) W \\
& \quad-\bar{R}(U, \bar{R}(X, Y) V) W-\bar{R}(U, V)(R(X, Y) W) \\
= & L_{\bar{R}}[(X \wedge Y)(\bar{R}(U, V) W)-\bar{R}((X \wedge Y) U, V) W \\
& -\bar{R}(U,(X \wedge Y) V) W-\bar{R}(U, V)((X \wedge Y) W)]
\end{aligned}
$$

Replacing here X with ξ, we obtain

$$
\begin{align*}
\bar{R}(\xi, Y)(& \bar{R}(U, V) W)-\bar{R}(\bar{R}(\xi, Y) U, V) W \\
& \quad-\bar{R}(U, \bar{R}(\xi, Y) V) W-\bar{R}(U, V)(R(\xi, Y) W) \\
= & L_{\bar{R}}[(\xi \wedge Y)(\bar{R}(U, V) W)-\bar{R}((\xi \wedge Y) U, V) W \tag{49}\\
& -\bar{R}(U,(\xi \wedge Y) V) W-\bar{R}(U, V)((\xi \wedge Y) W)]
\end{align*}
$$

Using (1), (20) in (48) and taking inner product of (48) with ξ, we get

$$
\begin{aligned}
\alpha^{2}[- & \bar{R}(U, V, W, Y)-\eta(\bar{R}(U, V) W) \eta(Y) \\
& +g(Y, U) \eta(\bar{R}(\xi, V) W)-\eta(U) \eta(\bar{R}(Y, V) W) \\
& +g(Y, V) \eta(\bar{R}(U, \xi) W)-\eta(V) \eta(\bar{R}(U, Y) W)-\eta(W) \eta(\bar{R}(U, V) Y)] \\
& +\alpha[\bar{R}(U, V, W, \phi Y)+\eta(U) \eta(\bar{R}(\phi Y, V) W)-g(\phi Y, U) \eta(\bar{R}(\xi, V) W) \\
& +\eta(V) \eta(\bar{R}(U, \phi Y) W)-g(\phi Y, V) \eta(\bar{R}(U, \xi) W)+\eta(W) \eta(\bar{R}(U, V) \phi Y)] \\
& L_{\bar{R}}[-\bar{R}(U, V, W, Y)-\eta(Y) \eta(\bar{R}(U, V) W)+g(Y, U) \eta(\bar{R}(\xi, V) W) \\
& -\eta(U) \eta(\bar{R}(Y, V) W+g(Y, V) \eta(\bar{R}(U, \xi) W) \\
& -\eta(V) \eta(\bar{R}(U, Y) W)-\eta(W) \eta(\bar{R}(U, V) Y)] .
\end{aligned}
$$

Then, putting $Y=U=\xi$, we get

$$
\left[L_{\bar{R}}-\alpha^{2}\right] \eta(\bar{R}(\xi, V) W)=0
$$

This shows that either $\eta(\bar{R}(\xi, V) W)=0$ or $L_{\bar{R}}-\alpha^{2}=0$.

Now, if $L_{\bar{R}}-\alpha^{2} \neq 0$, then $\eta(\bar{R}(\xi, V) W)=0$ which implies that M is a space of constant curvature and

$$
\alpha g(\phi V, \phi W)=g(\phi V, W)
$$

or

$$
F(V, W)=\alpha g(\phi V, \phi W) .
$$

If $\eta(\bar{R}(\xi, V) W) \neq 0$, then we have $L_{\bar{R}}=\alpha^{2}$.

9. Example of a pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D

Let us consider a three-dimensional manifold

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}: x_{1}, x_{2}, x_{3} \in R\right\}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ are the standard coordinates of R^{3}. We consider the vector fields

$$
e_{1}=e^{x_{3}} \frac{\partial}{\partial x_{2}}, \quad e_{2}=e^{x_{3}}\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right) \text { and } e_{3}=\alpha \frac{\partial}{\partial x_{3}},
$$

where α is a constant.
Clearly, $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a set of linearly independent vector fields for each point of M and hence a basis of $T_{x} M$. The Lorentzian metric g is defined by

$$
\begin{aligned}
& g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0 \\
& g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=-1 .
\end{aligned}
$$

Then the form of metric becomes

$$
g=-\frac{1}{\left(e^{x_{3}}\right)^{2}}\left(d x_{2}\right)^{2}-\frac{1}{\alpha^{2}}\left(d x_{3}\right)^{2}
$$

which is a Lorentzian metric.
Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$, and let ϕ be the (1,1)-tensor field defined by

$$
\phi e_{1}=-e_{1}, \quad \phi e_{2}=-e_{2}, \quad \phi e_{3}=0
$$

From the linearity of ϕ and g, we have that

$$
\eta\left(e_{3}\right)=-1, \phi^{2}(X)=X+\eta(X) e_{3} \text { and } g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)
$$

for any $X \in \chi(M)$. Then, for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection of the Lorentzian metric g. Then

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{1}, e_{3}\right]=-\alpha e_{1}, \quad\left[e_{2}, e_{3}\right]=-\alpha e_{2}
$$

Recall Koszul's formula:

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{aligned}
$$

From the above formula, we can calculate the following:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=-\alpha e_{3}, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{3}=-\alpha e_{1}, \\
& \nabla_{e_{2}} e_{1}=0, \quad \nabla_{e_{2}} e_{2}=-\alpha e_{3}, \quad \nabla_{e_{2}} e_{3}=-\alpha e_{2} \\
& \nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{3}=0
\end{aligned}
$$

Hence the structure (ϕ, ξ, η, g) is a Lorentzian α-Sasakian manifold (see [11]).
Using (9), we find D, the semi-symmetric metric connection on M :

$$
\begin{aligned}
& D_{e_{1}} e_{1}=(1-\alpha) e_{3},+, D_{e_{1}} e_{2}=0, \quad D_{e_{1}} e_{3}=-(1+\alpha) e_{1} \\
& D_{e_{2}} e_{1}=0, \quad D_{e_{2}} e_{2}=(1-\alpha) e_{3}, D_{e_{2}} e_{3}=-(1+\alpha) e_{1} \\
& D_{e_{3}} e_{1}=0, \quad D_{e_{3}} e_{2}=0, \quad D_{e_{3}} e_{3}=0
\end{aligned}
$$

Using (10), the torson tensor \bar{T} of the semi-symmetric metric connection D may be expressed as follows:

$$
\begin{aligned}
& \bar{T}\left(e_{i}, e_{i}\right)=0, \quad i=1,2,3 \\
& \bar{T}\left(e_{1}, e_{2}\right)=0, \quad \bar{T}\left(e_{1}, e_{3}\right)=-e_{1},++, \bar{T}\left(e_{2}, e_{3}\right)=-e_{2}
\end{aligned}
$$

Also,

$$
\left(D_{e_{1}} g\right)\left(e_{2}, e_{3}\right)=\left(D_{e_{2}} g\right)\left(e_{3}, e_{1}\right)=\left(D_{e_{3}} g\right)\left(e_{1}, e_{2}\right)=0
$$

Thus M is a Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D.

Now, we calculate the curvature tensor \bar{R} and the Ricci tensor \bar{S} as follows:

$$
\begin{aligned}
\bar{R}\left(e_{1}, e_{2}\right) e_{3} & =0, \quad \bar{R}\left(e_{1}, e_{3}\right) e_{3}=-\left(\alpha^{2}+\alpha\right) e_{1} \\
\bar{R}\left(e_{3}, e_{2}\right) e_{2} & =\left(\alpha^{2}-\alpha\right) e_{3}, \quad \bar{R}\left(e_{3}, e_{1}\right) e_{1}=\left(\alpha^{2}-\alpha\right) e_{3} \\
\bar{R}\left(e_{2}, e_{1}\right) e_{1} & =\left(\alpha^{2}-2 \alpha-1\right) e_{2}, \quad \bar{R}\left(e_{2}, e_{3}\right) e_{3}=-\left(\alpha^{2}+\alpha\right) e_{2} \\
\bar{R}\left(e_{1}, e_{2}\right) e_{2} & =\left(\alpha^{2}-2 \alpha-1\right) e_{1}, \quad \bar{S}\left(e_{3}, e_{3}\right)=-2 \alpha^{2} \\
\bar{S}\left(e_{1}, e_{1}\right) & =\bar{S}\left(e_{2}, e_{2}\right)=-(n-2)(\alpha+1) .
\end{aligned}
$$

Again, using (1), we get

$$
\begin{aligned}
\left(e_{1}, e_{2}\right) e_{3} & =0, \quad\left(e_{i} \wedge e_{i}\right) e_{j}=0, \quad i, j=1,2,3 \\
\left(e_{1} \wedge e_{2}\right) e_{2} & =\left(e_{1} \wedge e_{3}\right) e_{3}=-e_{1}, \quad\left(e_{2} \wedge e_{1}\right) e_{1}=\left(e_{2} \wedge e_{3}\right) e_{3}=-e_{2} \\
\left(e_{3} \wedge e_{2}\right) e_{2} & =\left(e_{3} \wedge e_{1}\right) e_{1}=-e_{3}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\bar{R}\left(e_{1}, e_{2}\right)\left(\bar{R}\left(e_{3}, e_{1}\right) e_{2}\right) & =0, \quad \bar{R}\left(\bar{R}\left(e_{1}, e_{2}\right) e_{3}, e_{1}\right) e_{2}=0 \\
\bar{R}\left(e_{3}, \bar{R}\left(e_{1}, e_{2}\right) e_{1}\right) e_{2} & =\left(1+2 \alpha-\alpha^{2}\right)\left(\alpha^{2}-\alpha\right) e_{3} \\
\left(\bar{R}\left(e_{3}, e_{1}\right)\left(\bar{R}\left(e_{1}, e_{2}\right) e_{2}\right)\right. & =\left(\alpha^{2}-2 \alpha-1\right)\left(\alpha^{2}-\alpha\right) e_{3}
\end{aligned}
$$

Then $\left(\bar{R}\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)=0$.

Again,

$$
\begin{aligned}
\left(e_{1} \wedge e_{2}\right)\left(\bar{R}\left(e_{3}, e_{1}\right) e_{2}\right) & =0, \\
\bar{R}\left(\left(e_{1} \wedge e_{2}\right) e_{3}, e_{1}\right) e_{2} & =0, \\
\bar{R}\left(e_{3},\left(e_{1} \wedge e_{2}\right) e_{1}\right) e_{2} & =\left(\alpha^{2}-\alpha\right) e_{3}, \\
\bar{R}\left(e_{3}, e_{1}\right)\left(\left(e_{1} \wedge e_{2}\right) e_{2}\right) & =\left(\alpha-\alpha^{2}\right) e_{3} .
\end{aligned}
$$

Consequently, $\left(\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)=0$. Thus

$$
\left(\bar{R}\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)=L_{\bar{R}}\left[\left(\left(e_{1}, e_{2}\right) \cdot \bar{R}\right)\left(e_{3}, e_{1}, e_{2}\right)\right]
$$

for any function $L_{\bar{R}} \in C^{\infty}(M)$. Similarly, for any combination of e_{1}, e_{2} and e_{3}, we can show (45). Hence M is a pseudosymmetric Lorentzian α-Sasakian manifold with semi-symmetric metric connection.

Acknowledgement

The authors are thankful to the referee for the valuable comments and suggestions that improved the quality of the paper.

References

[1] S. A. Akl, On partially pseudosymmetric contact metric three-manifold, Damascus Univ. J. Basic Sci. 24 (2008), 17-28.
[2] M. Belkhelfa, R. Deszcz, and L. Verstraelen, Symmetry properties of Sasakian space forms, Soochow J. Math. 31 (2005), 611-616.
[3] M. C. Chaki and B. Chaki, On pseudosymmetric manifolds admitting a type of semisymmetric connection, Soochow J. Math. 13 (1987), 1-7.
[4] J. T. Cho and J.-I. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), 913-932.
[5] F. Defever, R. Deszcz, and L. Verstraelen, On pseudosymmetric para-Kähler manifolds, Colloq. Math. 74 (1997), 253-260.
[6] F. Defever, R. Deszcz, L. Verstraelen, and L. Vrancken, On pseudosymmetric spacetimes, J. Math. Phys. 35 (1994), 5908-5921.
[7] R. Deszcz, On Ricci-pseudo-symmetric warped products, Demonstratio Math. 22 (1989), 1053-1065.
[8] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A, 44 (1992), 1-34.
[9] C. Özgür, On Kenmotsu manifolds satisfying certain pseudosymmetric conditions, World Appl. Sci. J. 1 (2006), 144-149.
[10] D. G. Prakasha, C. S. Bagewadi, and N.S. Basavarajappa, On pseudosymmetric Lorentzian α-Sasakian manifolds, Int. J. Pure Appl. Math. 48 (2008), 57-65.
[11] A. Yildiz, M. Turan, and B. E. Acet, On three-dimensional Lorentzian α-Sasakian manifolds, Bull. Math. Anal. Appl. 1 (2009), 90-98.

Department of Mathematics, Jadavpur University, Kolkata-700032, India
E-mail address: aribh22@hotmail.com
Purulia Polytechnic, W.B., India
E-mail address: patrachinmoy@yahoo.co.in

[^0]: Received November 29, 2012.
 2010 Mathematics Subject Classification. 53B30, 53C15, 53C25.
 Key words and phrases. Lorentzian α-Sasakian manifold, semi-symmetric metric connection, pseudosymmetric Lorentzian α-Sasakian manifold, Weyl pseudosymmetric, Ricci pseudosymmetric, η-Einstein manifold.
 http://dx.doi.org/10.12097/ACUTM.2014.18.17

