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Global behavior of a fourth order difference
equation

R. ABO-ZEID

ABSTRACT. We determine the forbidden set, introduce an explicit for-
mula for the solutions, and discuss the global behavior of solutions of a
fourth order difference equation.

1. Introduction

Difference equations have played an important role in analysis of mathe-
matical models of biology, physics and engineering. Recently, there has been
a great interest in studying properties of nonlinear and rational difference
equations (see [1] and [4]—[13], and references therein). In [5], the authors
showed that the second order rational difference equation

B Ax,? + Bz, 1 + Cxyq? — o1
Tnt1 = oo + B , n=01,...,
has several qualitatively different types of positive solutions, where A, B, C, «,
[ are nonnegative real numbers. Amleh et al. [2, 3] studied in details the
difference equation

_a+ BTpTp-1 + VTn-1
A+ Brpz,_1 + Cryg ’
with nonnegative parameters and initial conditions such that A+ B4+ C > 0.
Sedaghat [12] determined the global behavior of all solutions of the rational
difference equations
aTp—1 ATpTn—1

— Ty =——7—, n=0,1,...
I’nl'n—l"i‘b’ n+ xn+b$n—2’ ) )

Tn+1 n=0,1,...,

Tn+l1l =
where a,b > 0.
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In this paper, we determine the forbidden set, introduce an explicit for-
mula for the solutions and discuss the global behavior of solutions of the
difference equation

ATpTn—2

Tptl = n=0,1,..., (1.1)

bz, + cxp_3’

where a, b, c are positive real numbers and the initial conditions xz_3,x_o,
r_1,xo are real numbers.

2. Forbidden set and solutions of equation (1.1)

In this section we derive the forbidden set and introduce an explicit for-
mula for the solutions of the difference equation (1.1).

Proposition 2.1. The forbidden set F' of equation (1.1) is

F= go {(vo,vl,vg,vg) Lo = vy <—m> }

U{(vo,vq,vfz,v,g) cvp =0} U{(UOavfl,U—z,Uf?)) cv_y =0}
U{('UOa'U—hU—Qa’U—3) tv_g = 0}.

Proof. Suppose that xgx_12x_o = 0. Then we have the following. If xg =0
and T_q1x_o # 0, then x4 is undefined. If x_1 = 0 and zgz_9 # 0, then z3 is
undefined. If x_s = 0 and xoxr_1 # 0, then xo is undefined.

Now, if z_3 = 0 and woz_17_2 # 0, then 71 = Fz_2 # 0. Therefore, we
can start with the nonzero initial conditions z_o,x_1, 2, x1, which we shall
discuss. Suppose that z_; # 0 for all ¢ € {0,1,2,3}. From equation (1.1),

using the substitution I, = x;;?’, we can obtain the first order difference
equation
c b T_3
l = -] =, o= —=. 2.1
n+1 a n + 0/7 0 70 ( )

We shall deduce the forbidden set of equation (1.1). For, consider the
function

b
h(z) = Cot 2
a a
and suppose that we start from an initial point (xg,x_1,2_2,2_3) such that
Tr_3 . b
i) N Cc
If we define
a T_ b

Uy = hil(un,l) = —Up_1—— with wg=—=—-,
c c
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then we obtain

un = $n_3 = h_n(uo) = —
Tn

Therefore,

= ()

On the other hand, we can observe that if we start from an initial point
(xo,x_1,2_2,2_3) such that

i=0
for a certain ng € N, then according to equation (2.1) we obtain

o Tno—3 - _é

lng
Ty c

This implies that bz, + czp,—3 = 0. Therefore, z,,1 is undefined. This
completes the proof. O

Theorem 2.2. Let x_3,x_o,2_1 and xg be real numbers such that

(mo,x71,$72,$73) ¢ F. (22)
If a # ¢, then the solution {x,}7° 4 of equation (1.1) is
( n—1
3 a—c
2o [ e m=1,4,7,...,
jE[o O(£)3+L +b
n—2
3
a—c
Tp = $7lnw, n:2,5,8,..., (23)
o O(£)3+2 4+ b
n=3
3 a—c
ZTo W, n:3,6,9,...,
o O(£)%+3 4+ b
where § = =<2 gpd o = P
-3

Proof. We can write the given solution (2.3) as

m
Tymyi = T_34i | [ Bi(j), i=1,2,3 and m=0,1,..., (2.4)
j=0

where
Bi(d) = Wa 1=1,2,3.
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Hence, we can see that

a—c (a — c)ax ao aror_o
1 =X 97— —TLT_9 =T_9 =
O+ cla — ¢ — ba) + ba c+ba  brg+cr_3’
a—c (a — c)a’a a’a
T =T g = T_] =r g5
(£)20+0 2(a — ¢ —ba) + ba’a 2+ ba(c+ a)
__azq Ei
_ CL2=T71330 W ppten; W17, amxg
- - bxoa - 1
clcx_s + bxg) + broa ¢+ o o by bry +crog
and
a—c (a—c)a’a ada
I3 = X0 = X0 =X
(£)360+0 A3(a—c—ba)+bada 3+ ba(a? + ac+ c?)
3 __azq
— a~xo — ag bro+cr_3
= Zo =T00"
c2(cx_g + bxg) + brpala + ) 2 4 baoalate)
bro+cxr_3
1
_ I
= .I‘oa2 = = x0a2

¢ +b(a+c);2 c(cx_g + bxy) + baxry

ari T2

o cx_o+bxy - T_1 aroxg
= 4o az1 = Zo o — .
C+bm$1 C+ba b.’L’l +cr_9

Now assume that m > 1. Then
az3m1T3m—1 02 ][ f1(j)z 1 1_[;71:_01 Ba(4)
brgmi1 +cram—2  br_o[[jLyB1(j) +cr2 H?:ol B1(7)
Car s [ B(Dea [T B206)  api(m)z 1 [T Ba(d)

T [ BiG) (BB (m) +¢) bBr(m) + ¢
a5 0) e — e I A0)
 bEmte ba— o T e(@P )
B a(a—c)xfl H;n:?f /82(]) _ a—c m—1 .

— c0(2)3 1 1 ab = :EAW jl_[o Ba(5)

m—1 m
=z 18(m) [] £206) = 21 [ ] B2(5) = @3-
j=0 J=0

This completes the proof.
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3. Global behavior of equation (1.1)

In this section, we investigate the global behavior of equation (1.1) with
a # ¢, using the explicit formula of its solution.

Theorem 3.1. Let {x,}°2 _5 be a solution of equation (1.1) such that
(2.2) holds. Then the following statements are true.

(1) Ifa < c, then {x,}52 _4 converges to 0.

n=
(2) If a > ¢, then we have the following:
(a) If %55 < 1, then {x,};2_3 converges to 0.

b) If %€ > 1, then the subsequences {T3m+i}°__, 1 =1,2,3, are
5 +iSm 1
unbounded.

Proof. (1) If a < ¢, then B;(j) converges to 0 as j — oo, @ = 1,2,3. It
follows that, for a given 0 < € < 1, there exists jo € N such that, | 5;(j) |< €
for all j > jg. Therefore,

m
| Z3mai | =] 2343 || Hﬁz‘(j) ‘

j=0
Jo—1 m

=z sy |l [T 8:) I T] B:G) |
Jj=0 J=jo
Jo—1

<|z_3+i || H Bi(j) | emrott,
=0

As m tends to infinity, the solution {z,}>2 5 converges to 0.
(2) Suppose that a > ¢. Then we have the following.
(i) If ¢ < 1, then S;(j) converges to 3¢ < 1 as j — o0, i = 1,2,3.
This implies that, there exists j; € N such that, 8;(j) < u1, where
0 < pp <1forall j >4 and i = 1,2,3. Therefore, the solution
{zn}oe 5 converges to 0 as in the proof of (1).
(ii) If %3¢ > 1, then B;(j) converges to 43¢ > 1 as j — oo, 1 = 1,2,3.
Then for a given ps > 1 there exists jo € N such that, 5;(j) > p2 > 1,
for all j > jo and i =1,2,3.

For large values of m we have

| @3mi | =l 234 || [] Bi() |
=0
J2—1 m
=z s || [T 8:G) 11 TI 8:G) |
§=0

J=Jj2
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Ja2—1
, —ja+1
>la_sp || [ 8iG) | py 2
=0

Therefore, the subsequences {z3,,1:}5°__;, i = 1,2, 3, are unbounded. O

Example 1. Figure 1 shows that ifa =1.5,b=1,¢=1 (a—c < b), then
the solution {z, }7° 4 with initial conditions z_3 =2, x_9 = =2, z_; = 2
and zg = —7 converges to zero.

1.5znTpn—2
Tp—1+Tn—3"

FicUre 1. The difference equation x, 1 =

Example 2. Figure 2 shows that ifa =2, b=10.5, ¢ =1 (a—c¢ > b), then

the solution {z, }7° 4 with initial conditions z_3 =2, x_9 = =2, x_; = 2
and xg = 7 is unbounded.

1x100F

500000 5

—500000 - 5

0 10 20 30 40 50

2TnTn—2

FIGURE 2. The difference equation z,4; = T —
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4. Case a—c=0b
In this section, we study the case when a — ¢ = b.

Theorem 4.1. Assume that {z,} 2 _5 is a solution of equation (1.1) such
that (2.2) holds and let a —c =b. If a = 1, then {x,}32 _4 is a periodic
solution with period 3.

Proof. Assume that a —c =b. If o = 1, then 8 = 0. Therefore,

m

a—c .

x3m+i:$—3+inm:x_3+i, 1=1,2,3 and m=0,1,....
j=0"\a

O

Theorem 4.2. Assume that {z,} > 5 is a solution of equation (1.1) such
that (2.2) holds and let a —c =b. If o # 1, then {x,}22 4 converges to a
solution with period 3.

Proof. Suppose that {z,}°2 5 is a solution of equation (1.1) such that
(2.2) holds and let a — c =b. As

a—cC

Jj—o0 j—o0 9(%)3]—&-1 +b , 1 ) 73)

there exists jo € N such that, 8;(j) > 0, for all i = 1,2,3 and j > jy. Hence,

m Jo—1 m
Tamri = w-avi | [ Bi1) = 340 [ B:() [] B:i4)
Jj=0 Jj=0 J=Jo
Jo—1 m
=z gy [[ B exp (3 W(B:(1)))-
Jj=0 J=Jo

We shall test the convergence of the series > 2% . '[In(5;(j))|. Since

In (6;(j
lim —n(ﬁz(Jfl))‘ _0
using I'Hospital’s rule we obtain
| (Bi(d + 1))’ C\3
lim |—————* | = ()’ < 1.
j—o0 In (/Bz(.])) (a)

It follows from d’Alembert’s test that the series 2% . [In(53;(j))] is conver-
gent.
This ensures that there are three positive real numbers vy, v5, V3 such that

lim T3m+i = Vi, 1= 1)273)
m—r0o0
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where
o b
VZ':$73+Z'HW, Z:1,2,3
0 O(£)% I+ 4+ b
O
Example 3. Figure 3 shows that if a =2,b=1,¢=1 (a — ¢ =b), then
the solution {z, }7° 4 with initial conditions z_3 =1, x_9 =2, x_; = —2
and xg = —3 converges to a 3-period solution.
ol 1
47 |

N
T
|

d

B S S S R S
0 10 20 30 40 50

2TnTn—2

F1GURE 3. The difference equation x,4+1 = FRPE—
n— n—

5. Case a=c
We end this work by introducing the main results when a = c.

Proposition 5.1. Assume that a = c¢. Then the forbidden set G of equa-
tion (1.1) is

J{(uo,u1,ug,us) s ug = 0} | J{(uo, u—1,u_2,u_3) s u_y =0}
U{(UO,Ufl,U,Q,’U,,g) U2 = 0}
Theorem 5.2. Let x_3,x_o,2_1 and xg be real numbers such that

(wo,w_l,w_g,l‘_g) ¢ G. (5.1)

If a = ¢, then the solution {x,}32 _4 of equation (1.1) is
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( n—1
3
ax
_ _ =1,4,7,...
x2j1;[0a+ba(3j+1)’ n s Ey by )
n—2
Ta=1 f[ aa n =258
n —lj:0a+ba(3j+2)7 — 43950500y
n=3
v ﬁL n=3,6,9
Oj:0a+ba(3j—i—3)’ — 9, 0,d ...

where o = £,
zT_3

Theorem 5.3. Let {z,}°°_5 be a solution of equation (1.1) such that
(5.1) holds. If a = ¢, then {x,}5° _4 converges to 0.

Example 4. Figure 4 shows that if a = 1.5, b=1, ¢ = 1.5 (a = ¢), then
the solution {z, }7° 4 with initial conditions z_3 =14, 29 =2, 2_; =1
and zg = —7 converges to a 3-period solution.

0 10 20 30 40 50

1.52nTp—2

F1cURE 4. The difference equation x,4+1 = RS i
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