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The n-exponential convexity for majorization
inequality for functions of two variables and

related results

M. Adil Khan, Sadia Khalid, and J. Pečarić

Abstract. We apply the refined method of producing n-exponential
convex functions of J. Pečarić and J. Perić to extend some known results
on majorization type and related inequalities.

1. Introduction

In [11], J. Pečarić and J. Perić introduced the notion of n-exponentially
convex functions. In this paper, we give extensions of some results given in
[1] – [4]. For several results concerning exponential convexity, see [5, 8, 11].

In order to obtain our main results, let us recall some known results.

Matrix majorization. The notion of majorization concerns a partial
ordering of the diversity of the components of two vectors x and y such that
x,y ∈ Rm. A natural problem of interest is the extension of this notion from
m-tuples (vectors) to n×m matrices. For example, let

X = (x1,x2, . . . ,xn)′ and Y = (y1,y2, . . . ,yn)′

be two n × m real matrices, where x1,x2, . . . ,xn; y1,y2, . . . ,yn are the
corresponding row vectors.

Definition 1 (see [12]). Let X,Y be two n×m real matrices for n ≥ 2,
m ≥ 2. X is said to row-wise majorize Y (X �r Y ) if xi � yi holds for
i = 1, 2, . . . , n.

In the following result, the inner product on Rm is defined in the usual way.
Furthermore, e = {e1, e2, . . . , em} is a basis in Rm, and d = {d1,d2, . . . ,dm}
is the dual basis of e, that is 〈ei,dj〉 = δij (Kronecker delta). One denotes
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J = {1, 2, . . . ,m}. Let J1 and J2 be two sets of indices such that J1∪J2 = J .
Let v ∈ Rm and µ ∈ R. A vector z ∈ Rm is said to be µ,v-separable on J1

and J2 (with respect to the basis e) if

〈ei, z− µv〉 ≥ 0 for i ∈ J1, and 〈ej , z− µv〉 ≤ 0 for j ∈ J2.

A vector z ∈ Rm is said to be v-separable on J1 and J2 (w.r.t. e) if z
is µ,v-separable on J1 and J2 for some µ. For an interval I, one says
that a function ϕ : I → R preserves v-separability on J1 and J2 w.r.t. e, if
(ϕ(z1), ϕ(z2), . . . , ϕ(zm)) is v-separable on J1 and J2 w.r.t. e for each z =
(z1, z2, . . . , zm) ∈ Im such that z is v-separable on J1 and J2 w.r.t. e.

Theorem 1 (see [2]). Let φ : (a, b) → R be a convex function and X =
[xij ], Y = [yij ] and W = [wij ] be matrices, where xij , yij ∈ (a, b) and wij ∈ R
(i = 1, 2, . . . , n, j = 1, 2, . . . ,m).

(a) If X �r Y , then

n∑
i=1

m∑
j=1

φ(xij) ≥
n∑
i=1

m∑
j=1

φ(yij). (1)

If φ is strictly convex on (a, b), then the strict inequality holds in (1) if and
only if X 6= Y .

(b) If (xij)j=1,m , (yij)j=1,m (i = 1, 2, . . . , n) are decreasing and satisfy

the conditions
k∑
j=1

wijxij ≥
k∑
j=1

wijyij , k = 1, 2, . . . ,m− 1, (2)

and
m∑
j=1

wijxij =

m∑
j=1

wijyij , (3)

then
n∑
i=1

m∑
j=1

wijφ(xij) ≥
n∑
i=1

m∑
j=1

wijφ(yij). (4)

(c) If (yij)j=1,m (i = 1, 2, . . . , n) is decreasing with wij > 0 (i = 1, 2, . . . , n,

j = 1, 2, . . . ,m) and satisfying conditions (2) and (3), then (4) holds. If φ
is strictly convex on I, then the strict inequality holds in (4) if and only if
X 6= Y .

(d) If (xij)j=1,m (i = 1, 2, . . . , n) is increasing with wij > 0 (i = 1, 2, . . . , n,

j = 1, 2, . . . ,m) and satisfying conditions (2) and (3), then the reverse in-
equality in (4) holds. If φ is strictly convex on (a, b), then the reverse strict
inequality holds in (4) if and only if X 6= Y .

(e) If (xij − yij)j=1,m and (yij)j=1,m (i = 1, 2, . . . , n) are nondecreasing

(nonincreasing) with wij ≥ 0 (i = 1, 2, . . . , n, j = 1, 2, . . . ,m) and satisfying
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condition (3), then (4) holds. If φ is strictly convex on (a, b) and wij > 0,
then the strict inequality holds in (4) if and only if X 6= Y .

(f) Let wij > 0 (i = 1, 2, . . . , n, j = 1, 2, . . . ,m) and u,v ∈ Rm with
〈u,v〉 > 0. If there exist index sets J1 and J2 with J1 ∪ J2 = J such that,
for each i = 1, 2, . . . , n,

(i) (yij)j=1,m is v-separable on J1 and J2 w.r.t. e,

(ii) (xij − yij)j=1,m is λ,u-separable on J1 and J2 w.r.t. d, where

λ = 〈(xij − yij)j=1,m ,v〉/〈u,v〉,
(iii) 〈(xij − yij)j=1,m ,v〉 = 0, or 〈(xij − yij)j=1,m ,v〉〈(zij)j=1,m,u〉 ≥ 0 ,

where (zij)j=1,m = (ϕ(yi1), . . . , ϕ(yim)),

(iv) ϕ preserves v-separability on J1 and J2 w.r.t. e,

then (4) holds.

The following theorem is an integral analogue of the above theorem.

Theorem 2 (see [1]). (a) Let φ : I → R be a continuous convex function
on an interval I, let w, x, y : [a, b]× [c, d]→ I be continuous functions such
that x(t, s), y(t, s) are decreasing in t ∈ [a, b], and let µ : [a, b] → R be a
function of bounded variation and u : [c, d]→ R an increasing function.

(a1) If, for each s ∈ [c, d],∫ ν

a
w(t, s)y(t, s) dµ(t) ≤

∫ ν

a
w(t, s)x(t, s) dµ(t), ν ∈ [a, b], (5)

and ∫ b

a
w(t, s)x(t, s) dµ(t) =

∫ b

a
w(t, s)y(t, s) dµ(t), (6)

then ∫ d

c

∫ b

a
w(t, s)φ (y(t, s)) dµ(t)du(s)

≤
∫ d

c

∫ b

a
w(t, s)φ (x(t, s)) dµ(t)du(s).

(7)

(a2) If, for each s ∈ [c, d], inequality (5) holds, then, for any continuous
increasing convex function φ : I → R, inequality (7) holds.

(b) Suppose that φ : [0,∞)→ R is a convex function and w, x, y : [a, b]×
[c, d] → R+ are integrable functions. Let µ : [a, b] → R, u : [c, d] → R be
increasing functions and satisfying conditions (5) and (6).

(b1) If, for each s ∈ [c, d], the function y(t, s) is decreasing in t ∈ [a, b],
then (7) holds.

(b2) If, for each s ∈ [c, d], the function x(t, s) is increasing in t ∈ [a, b],
then the reverse inequality in (7) holds.

10
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(c) Let φ : I → R be a continuous convex function, let w, x, y : [a, b] ×
[c, d]→ I be continuous functions with w(t, s) > 0 being of bounded variation,
and let µ : [a, b] → R and u : [c, d] → R be increasing functions. If y(t, s)
and x(t, s) − y(t, s) are increasing (decreasing) in t ∈ [a, b] and satisfying
condition (6), then (7) is true.

(d) Let φ : I → R be a continuous convex function, ϕ ∈ ∂φ (∂φ is the
subdifferential of φ), let w, x, y, g, h : [a, b] × [c, d] → R be continuous func-
tions with x(t, s), y(t, s) ∈ I, w(t, s), g(t, s), h(t, s) > 0, and let µ : [a, b]→ R
and u : [c, d]→ R be increasing functions. Denote

λ =

∫ b
a w(t, s)(x(t, s)− y(t, s)) dµ(t)∫ b
a w(t, s)g(t, s)h(t, s) dµ(t)

and suppose that there exist two intervals I1 and I2 with I1 ∪ I2 = [a, b] such
that, for each s ∈ [c, d], t1 ∈ I1 and t2 ∈ I2, we have

ϕ(y(t2, s))

h(t2, s)
≤ ϕ(y(t1, s))

h(t1, s)

and
x(t2, s)− y(t2, s)

g(t2, s)
≤ λ ≤ x(t1, s)− y(t1, s)

g(t1, s)
.

If∫ b

a
w(t, s)(x(t, s)− y(t, s))h(t, s) dµ(t)

∫ b

a
w(t, s)ϕ(y(t, s))w(t, s) dµ(t) ≥ 0,

then (7) holds.

Consider the Green function G defined on [α, β]× [α, β] by

G(t, s) =

{
(t−β)(s−α)

β−α , α ≤ s ≤ t,
(s−β)(t−α)

β−α , t ≤ s ≤ β.
(8)

The function G is convex in s, it is symmetric, so it is also convex in t. The
function G is continuous in s and continuous in t.

For any function φ : [α, β] → R, φ ∈ C2([α, β]), we can easily show by
using integration by parts that

φ(x) =
β − x
β − α

φ(α) +
x− α
β − α

φ(β) +

∫ β

α
G(x, s)φ′′(s) ds,

where the function G is defined by (8) (see [14]).

The following theorem is given in [2].

Theorem 3 (see [2]). Let X = [xij ], Y = [yij ] and W = [wij ] be matrices,
where xij , yij ∈ [α, β] and wij ∈ R (i = 1, 2, . . . , n, j = 1, 2, . . . ,m) such that
condition (3) is satisfied. Then the following two statements are equivalent.
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(i) For every continuous convex function φ : [α, β] → R, inequality (4)
holds.

(ii) For all τ ∈ [α, β],

n∑
i=1

m∑
j=1

wijG(xij , τ) ≥
n∑
i=1

m∑
j=1

wijG (yij , τ) . (9)

Moreover, the statements (i) and (ii) are also equivalent if we reverse the
inequalities in (4) and (9).

Theorem 4 (see [1]). Let w, x, y : [a, b] × [c, d] → R, µ : [a, b] → R and
u : [c, d]→ R be continuous functions, and let [α, β] be an interval such that
x(t, s), y(t, s) ∈ [α, β] for (t, s) ∈ [a, b]× [c, d ]. Also, let (6) hold.

Then the following statements are equivalent.

(i) For every continuous convex function φ : [α, β] → R, the inequal-
ity (7) holds.

(ii) For all τ ∈ [α, β],∫ d

c

∫ b

a
w(t, s)G(y(t, s), τ)dµ(t)du(s)

≤
∫ d

c

∫ b

a
w(t, s)G(x(t, s), τ)dµ(t)du(s).

(10)

Moreover, the statements (i) and (ii) are also equivalent if we reverse the
inequalities in (7) and (10).

Theorem 5 (see [9]). Let φ : (a, b)→ R be a differentiable convex function
and let xi ∈ (a, b), i = 1, 2, . . . , n (n ≥ 2). Define

ȳ =
1

Wn

n∑
i=1

wiφ(xi),

where wi ≥ 0 (i = 1, 2, . . . , n) are such that Wn =
∑n

i=1wi > 0. If d ∈ (a, b),
then we have

ȳ ≤ φ(d) +
1

Wn

n∑
i=1

wi(xi − d)φ′(xi). (11)

Also, when φ is strictly convex, we have the equality in (11) if and only if
xi = d for all i with wi > 0.

Inequality (11) of Matić and Pečarić is the best in the sense that if

n∑
i=1

wiφ
′(xi) 6= 0 and ¯̄x =

∑n
i=1wixiφ

′(xi)∑n
i=1wiφ

′(xi)
∈ (a, b),
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then, by setting d = ¯̄x in (11), we immediately obtain Slater’s inequality

1

Wn

n∑
i=1

wiφ(xi) ≤ φ
(∑n

i=1wiφ
′(xi)xi∑n

i=1wiφ
′(xi)

)
.

This is more general than the inequality obtained by Slater for monotone
convex functions in [13]. For a multidimensional version of Slater’s inequal-
ity, see [10]. Also, by setting d = x̄ in (11), we get the converse of Jensen’s
inequality given in [7]. For further refinements of Jensen’s inequality, see [6].

The following theorem is the integral analogue of Theorem 5.

Theorem 6 (see [9]). Let (Ω, A, µ) be a measure space with 0 < µ(Ω) <∞
and let φ : (a, b) → R be a differentiable convex function. If f : Ω → (a, b)
is such that f , φ(f), φ′(f) and φ′(f)f are in L1(µ), then, for any d ∈ (a, b),
we have

1

µ(Ω)

∫
Ω
φ(f) dµ ≤ φ(d) +

1

µ(Ω)

∫
Ω

(f − d)φ′(f) dµ. (12)

Also, when φ is strictly convex, we have the equality in (12) if and only if
f = d almost everywhere on Ω.

From (12), we can obtain Slater’s integral inequality and a converse of
Jensen’s inequality.

In [1] – [4], the authors used some families of convex functions and proved
exponential convexity and log-convexity of the functionals associated with
majorization type inequalities and the inequalities (11) and (12). They es-
tablished improvements and reversions of Slater’s and related inequalities.
In this paper, we give all these results for some general family of functions
having some special property. In this way the results given in [1] – [4] become
special cases of our results (see Examples 1 and 2).

2. Main results

Definition 2 (see, e.g., [12, p. 2]). A function φ : I → R is convex on an
interval I if

φ(x1)(x3 − x2) + φ(x2)(x1 − x3) + φ(x3)(x2 − x1) ≥ 0 (13)

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

Definition 3 (see [11]). A function φ : I → R is n-exponentially convex
in the Jensen sense on I if

n∑
k,l=1

αkαlφ

(
xk + xl

2

)
≥ 0

holds for αk ∈ R and xk ∈ I, k = 1, 2, . . . , n.
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Definition 4 (see [11]). A function φ : I → R is n-exponentially convex
on I if it is n-exponentially convex in the Jensen sense and continuous
on I.

Remark 1. From the definition it is clear that 1-exponentially convex
functions in the Jensen sense are in fact non-negative functions. Also,
n-exponentially convex functions in the Jensen sense are m-exponentially
convex in the Jensen sense for every m ∈ N, m ≤ n.

Proposition 1. If φ : I → R is an n-exponentially convex in the Jensen

sense function, then the matrix
[
φ
(
xk+xl

2

) ]m
k,l=1

is a positive semi-definite

matrix for all m ∈ N, m ≤ n. In particular,

det

[
φ

(
xk + xl

2

)]m
k,l=1

≥ 0

for all m ∈ N, m = 1, 2, . . . , n.

Definition 5. A function φ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

Definition 6. A function φ : I → R is exponentially convex if it is expo-
nentially convex in the Jensen sense and continuous.

Remark 2. It is easy to show that φ : I → R+ is log-convex in the Jensen
sense if and only if

α2φ(x) + 2αβφ

(
x+ y

2

)
+ β2φ(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I. It follows that a function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen
sense.

Also, using basic convexity theory it follows that a function is log-convex
if and only if it is 2-exponentially convex.

When dealing with functions with different degree of smoothness, divided
differences are found to be very useful.

Definition 7. The second order divided difference of a function φ : I → R
at mutually different points y0, y1, y2 ∈ I is defined recursively by

[yi;φ] = φ(yi), i = 0, 1, 2,

[yi, yi+1;φ] =
φ(yi+1)− φ(yi)

yi+1 − yi
, i = 0, 1,

[y0, y1, y2;φ] =
[y1, y2;φ]− [y0, y1;φ]

y2 − y0
. (14)

11
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Remark 3. The value [y0, y1, y2;φ] is independent of the order of the
points y0, y1, and y2. By taking limits, this definition may be extended to
include the cases in which any two or all three points coincide as follows: for
all y0, y1, y2 ∈ I,

lim
y1→y0

[y0, y1, y2;φ]=[y0, y0, y2;φ]=
f(y2)− f(y0)− φ′(y0)(y2 − y0)

(y2 − y0)2 , y2 6= y0,

provided that φ′ exists, and furthermore, taking the limits yi → y0 (i = 1, 2)
in (14), we get

[y0, y0, y0;φ] = lim
yi→y0

[y0, y1, y2;φ] =
φ
′′
(y0)

2
for i = 1, 2

provided that φ
′′

exists.

Let X, Y , W and φ be defined as in Theorem 1. We define the functional
Λ1(X,Y,W ;φ) by

Λ1(X,Y,W ;φ) =

n∑
i=1

m∑
j=1

wijφ(xij)−
n∑
i=1

m∑
j=1

wijφ(yij).

Let w, x, y, u, µ, φ be defined as in Theorem 4. We define the functional
Λ2(x, y, w;φ) by

Λ2(x, y, w;φ) =

∫ d

c

∫ b

a
w(t, s)φ(x(t, s))dµ(t)du(s)

−
∫ d

c

∫ b

a
w(t, s)φ(y(t, s)) dµ(t)du(s).

Under the assumptions of Theorems 5 and 6, we consider the functionals

z5(x, d, φ) = φ(d) +
1

Wn

n∑
i=1

wi(xi − d)φ′(xi)−
1

Wn

n∑
i=1

wiφ(xi)

and

z6(f, d, φ) = φ(d) +
1

µ(Ω)

∫
Ω

(f − d)φ′(f)dµ− 1

µ(Ω)

∫
Ω
φ(f)dµ,

respectively.

We use an idea from [8] to give an elegant method of producing
n-exponentially convex functions and exponentially convex functions.

Theorem 7. Let Ω = {φt : t ∈ I ⊆ R} be a family of differentiable func-
tions defined on (a, b) such that the function t 7→ [y0, y1, y2;φt] is
n-exponentially convex in the Jensen sense on I for every three mutually
different points y0, y1, y2 ∈ (a, b). Consider z1 = Λ1(X,Y,W ;φt) and z2 =
Λ2(x, y, w;φt) if (9) and (10) hold for every τ ∈ [α, β], and consider z3 =
−Λ1(X,Y,W ;φt) and z4 = −Λ2(x, y, w;φt) if the reverse inequalities in (9)
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and (10) hold for every τ ∈ [α, β]. Then, for the linear functionals zj(., ., φt)
(j = 1, 2, .., 6), the following statements hold.

(i) The function t 7→ zj(., ., φt) is n-exponentially convex in the Jensen
sense on I and the matrix [zj(., ., φ tk+tl

2

)]mk,l=1 is a positive semi-

definite matrix for all m ∈ N,m ≤ n, t1, . . . , tm ∈ I. In particular,

det[zj(., ., φ tk+tl
2

)]mk,l=1 ≥ 0 for all m ∈ N, m = 1, 2, . . . , n.

(ii) If the function t 7→ zj(., ., φt) is continuous on I, then it is
n-exponentially convex on I.

Proof. Fix j = 1, 2, . . . , 6. To prove (i), let us define the function

ω(y) =
n∑

k,l=1

bkblφtkl(y),

where

tkl =
tk + tl

2
, tk ∈ I, bk ∈ R, k = 1, 2, . . . , n.

Since the function t 7→ [y0, y1, y2;φt] is n-exponentially convex in the Jensen
sense on I by assumption, it follows that

[y0, y1, y2;ω] =

n∑
k,l=1

bkbl[y0, y1, y2;φtkl ] ≥ 0.

This implies that ω is convex on (a, b). Hence zj(., ., ω) ≥ 0, which is
equivalent to

n∑
k,l=1

bkblzj(., ., φtkl) ≥ 0,

and so we conclude that the function t 7→ zj(., ., φt) is n-exponentially con-
vex function in the Jensen sense on I. The remaining part follows from
Proposition 1.

(ii) If the function t 7→ zj(., ., φt) is continuous on I, then it is
n-exponentially convex on I by definition. �

As a consequence of the above theorem we can give the following corollary.

Corollary 1. Let Ω = {φt : t ∈ I ⊆ R} be a family of differentiable
functions defined on (a, b) such that the function t 7→ [y0, y1, y2;φt] is ex-
ponentially convex in the Jensen sense on I for every three mutually dif-
ferent points y0, y1, y2 ∈ (a, b). Consider z1 = Λ1(X,Y,W ;φt) and z2 =
Λ2(x, y, w;φt) if (9) and (10) hold for every τ ∈ [α, β], and consider z3 =
−Λ1(X,Y,W ;φt) and z4 = −Λ2(x, y, w;φt) if the reverse inequalities in (9)
and (10) hold for every τ ∈ [α, β]. Then, for the linear functionals zj(., ., φt)
(j = 1, 2, . . . , 6), the following statements hold.
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(i) The function t 7→ zj(., ., φt) is exponentially convex in the Jensen
sense on I and the matrix [zj(., ., φ tk+tl

2

)]mk,l=1 is a positive semi-

definite matrix for all m ∈ N, t1, . . . , tm ∈ I. In particular,

det[zj(., ., φ tk+tl
2

)]mk,l=1 ≥ 0.

(ii) If the function t 7→ zj(., ., φt) is continuous on I, then it is exponen-
tially convex on I.

Corollary 2. Let Ω = {φt : t ∈ I ⊆ R} be a family of differentiable
functions defined on (a, b) such that the function t 7→ [y0, y1, y2;φt] is 2-
exponentially convex in the Jensen sense on I for every three mutually dif-
ferent points y0, y1, y2 ∈ (a, b). Consider z1 = Λ1(X,Y,W ;φt) and z2 =
Λ2(x, y, w;φt) if (9) and (10) hold for every τ ∈ [α, β], and consider z3 =
−Λ1(X,Y,W ;φt) and z4 = −Λ2(x, y, w;φt) if the reverse inequalities in (9)
and (10) hold for every τ ∈ [α, β]. Suppose that zj(., ., φt) (j = 1, 2, . . . , 6)
is strictly positive for φt ∈ Ω. Then, for the linear functionals zj(., ., φt)
(j = 1, 2, . . . , 6), the following statements hold.

(i) If the function t 7→ zj(., ., φt) is continuous on I, then it is log-
convex on I and, for r, s, t ∈ I such that r < s < t, we have

(zj(., ., φs))
t−r ≤ (zj(., ., φr))

t−s(zj(., ., φt))
s−r. (15)

If r < t < s or s < r < t, then the reverse inequality in (15) holds.
(ii) If the function t 7→ zj(., ., φt) is differentiable on I, then, for every

s, t, u, v ∈ I, such that s ≤ u and t ≤ v, we have

Bs,t(., .,zj ,Ω) ≤ Bu,v(., .,zj ,Ω) (16)

where

Bj
s,t(Ω) = Bs,t(., .,zj ,Ω) =


(
zj(.,.,φs)
zj(.,.,φt)

) 1
s−t

, s 6= t,

exp

(
d
ds

zj(.,.,φs)

zj(.,.,φs)

)
, s = t,

(17)

for φs, φt ∈ Ω.

Proof. (i) By Remark 2 and Theorem 7, we have log-convexity of zj(., ., φt),
and, by using φ(x) = logzj(., ., φx) in (13), we get (15).

(ii) For a convex function φ, the inequality

φ (s) − φ (t)

s − t
≤ φ (u) − φ (v)

u − v
, (18)

holds for all s, t, u, v ∈ I such that s ≤ u, t ≤ v, s 6= t, u 6= v (see [12, p. 2]).
Since, because of (i), the function zj(., ., φs) is log-convex, by setting φ(s) =
lnzj(., ., φs) in (18), we have

lnzj(., ., φs) − lnzj(., d, φt)

s− t
≤ lnzj(., ., φu)− lnzj(., ., φv)

u− v
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for s ≤ u, t ≤ v, s 6= t, u 6= v, which is equivalent to (16). The cases s = t
and u = v can be treated similarly. �

The following improvement and reversion of Slater’s inequality are valid.

Theorem 8. Let Λ = {φt : t ∈ I ⊆ R} be a family of differentiable func-
tions defined on (a, b) such that the function t 7→ [y0, y1, y2;φt] is
2-exponentially convex in the Jensen sense on I for every three mutually dif-
ferent points y0, y1, y2 ∈ (a, b). Let the function t 7→ z5(x, d, φt) be strictly
positive and continuous on I,

∑n
i=1wiφ

′
t(xi) 6= 0, and

dt =

∑n
i=1wixiφ

′
t(xi)∑n

i=1wiφ
′
t(xi)

∈ (a, b).

Consider the function Ft defined by

Ft = φt (dt)−
1

Wn

n∑
i=1

wiφt(xi).

Then
Ft ≥ [z5(x, dt, φs)]

t−r
s−r [z5(x, dt, φr)]

s−t
s−r (19)

for r, s, t ∈ I such that r < s < t or t < r < s, and

Ft ≤ [z5(x, dt, φs)]
t−r
s−r [z5(x, dt, φr)]

s−t
s−r (20)

for r, s, t ∈ I with r < t < s.

Proof. For j = 5 and d = dt in (15), we have

(z5(x, dt, φs))
t−r ≤ (z5(x, dt, φr))

t−s(Ft)
s−r,

where r, s, t ∈ I are such that r < s < t, which is equivalent to

(Ft)
s−r ≥ (z5(x, dt, φs))

t−r (z5(x, dt, φr))
s−t . (21)

From (21), we have (19) and, similarly, by setting d = dt in (15) for r, s, t ∈ I
such that t < r < s, we get

(z5(x, dt, φr))
s−t ≤ (Ft)

s−r(z5(x, dt, φs))
r−t,

which is equivalent to (19).
As, for r < t < s, the reverse inequality holds in (15), by taking d = dt

for j = 5 in the reverse of (15), we get (20). �

Theorem 9. Let Λ = {φt : t ∈ I ⊆ R} be a family of differentiable func-
tions defined on an interval (a, b) such that the function t 7→ [y0, y1, y2;φt]
is 2-exponentially convex in the Jensen sense on I for every three mutually
different points y0, y1, y2 ∈ (a, b). Then, for every m ∈ N and for any tk ∈ I,
k ∈ {1, 2, . . . ,m}, the matrix [z5(x, dt, φ tk+tl

2

)]mk,l=1 is positive semi-definite.

In particular,
det[z5(x, dt, φ tk+tl

2

)]mk,l=1 ≥ 0. (22)

12
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Proof. By taking j = 5 and d = dt in Corollary 1 (i), we get the required
result. �

Remark 4. We note that z5(x, dt, φt) = Ft. So, by setting m = 2, t = t1
in (22), we have the special case of (19) for t = t1, s = t2, r = t1+t2

2 if

t1 < t2, and for t = t1, r = t2, s = t1+t2
2 if t2 < t1. Similarly, for the case

m = 2, t = t1+t2
2 in (22), we have the special case of (20) for r = t1, s = t2,

t = t1+t2
2 if t1 < t2, and for r = t2, s = t1, t = t1+t2

2 if t2 < t1.

The following improvement and reversion of the right inequality in [9,
(3.6)] are also valid.

Theorem 10. Let Λ = {φt : t ∈ I ⊆ R} be a family of differentiable func-
tions defined on an interval (a, b) such that the function t 7→ [y0, y1, y2;φt]
is 2-exponentially convex in the Jensen sense on I for every three mutually
different points y0, y1, y2 ∈ (a, b). Let the function t 7→ z5(x, d, φt) be strictly
positive and continuous on I, and

d̄t = (φ′t)
−1

(
1

Wn

n∑
i=1

wiφ
′
t(xi)

)
∈ (a, b). (23)

Consider the function Gt defined by

Gt = φt(d̄t) +
1

Wn

n∑
i=1

wi(xi − d̄t)φ′t(xi)−
1

Wn

n∑
i=1

wiφt(xi).

Then
Gt ≥ [z5(x, d̄t, φs)]

t−r
s−r [z5(x, d̄t, φr)]

s−t
s−r

for r, s, t ∈ I such that r < s < t or t < r < s, and

Gt ≤ [z5(x, d̄t, φs)]
t−r
s−r [z5(x, d̄t, φr)]

s−t
s−r

for r, s, t ∈ I such that r < t < s.

Proof. The proof is similar to the proof of Theorem 8, but uses d̄t instead
of dt. �

Theorem 11. Let Λ = {φt : t ∈ I ⊆ R} be a family of differentiable
functions defined on (a, b) such that the function t 7→ [y0, y1, y2;φt] is 2-
exponentially convex in the Jensen sense on I for every three mutually dif-
ferent points y0, y1, y2 ∈ (a, b). If (23) holds, then for every m ∈ N and for
any tk ∈ I, k ∈ {1, 2, . . . ,m}, the matrix [z5(x, d̄t, φ tk+tl

2

)]mk,l=1 is positive

semi-definite. In particular,

det[z5(x, d̄t, φ tk+tl
2

)]mk,l=1 ≥ 0. (24)

Proof. For j = 5 and d = d̄t in Corollary 1 (i), we get the required results.
�
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Remark 5. We note that z5(x, d̄t, φt) = Gt. So, by setting m = 2,
t = t1 in (24), we have the special case of (10) for t = t1, s = t2, r = t1+t2

2

if t1 < t2, and for t = t1, r = t2, s = t1+t2
2 if t2 < t1. Similarly, by setting

m = 2, t = t1+t2
2 in (24), we have the special case of (10) for r = t1, s = t2,

t = t1+t2
2 if t1 < t2, and for r = t2, s = t1, t = t1+t2

2 if t2 < t1.

Remark 6. Analogously, we can give the integral versions of Theorems
8 – 11.

3. Examples

In this section, we present several families of functions which fulfil the
conditions of the results proved in the previous section. This enables us to
construct large families of functions which are exponentially convex.

Example 1. Let

Ξ1 = {ϕt : (0,∞) 7→ R : t ∈ R}
be a family of functions defined by

ϕt(x) =


xt

t(t−1) , t 6= 0, 1,

− lnx, t = 0,

x lnx, t = 1.

Since ϕt is convex on R+ and t 7→ d2

dx2
ϕt(x) is exponentially convex (see [8]),

we have that g(y) =
∑n

k,l=1 bkblϕtkl(y) is convex on R+, implying that t 7→
[y0, y1, y2;ϕt] is exponentially convex (and thus exponentially convex in the
Jensen sense). By using Corollary 1, we conclude that t 7→ zj(., ., ϕt) (j =
1, 2, . . . , 6) are exponentially convex in the Jensen sense. These mappings
are continuous (see [3] – [4]), thus t 7→ zj(., ., ϕt) are exponentially convex.
Therefore, the results proved in the previous section can be applied to this
family.

In [3] – [4], the authors proved all the results of the previous section for Ξ1

and also constructed a class of Cauchy means.

Example 2. Let

Ξ2 = {ψt : R→ [0,∞) : t ∈ R}
be a family of functions defined by

ψt(x) =

{
1
t2
etx, t 6= 0,

1
2 x

2, t = 0.

We have d2

dx2
ψt(x) = etx > 0, which shows that ψt is convex on R for every

t ∈ R and t 7→ d2

dx2
ψt(x) is exponentially convex by definition (see [8]). It is

easy to prove that the function t 7→ [y0, y1, y2;ψt] is exponentially convex.
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Arguing as in Example 1, we have that t 7→ zj(., ., ψt) (j = 1, 2, . . . , 6)
are exponentially convex. Therefore, for this family of functions, results of
Theorems 8 – 11 hold. For Ξ2, means are of the form

lnBj
s,t =


1
s−t ln

(
zj(.,.,ψs)
zj(.,.,ψt)

)
, s 6= t,

zj(.,.,id.ψs)
zj(.,.,ψs) −

2
s , s = t 6= 0,

zj(.,.,id.ψ0)
3zj(.,.,ψ0) , s = t = 0.

For j = 1, 2, 3, 4, the authors in [2] and [1] proved all the results of the
previous section for Ξ2 and also constructed a class of Cauchy means.

For j = 5, we have

lnB5
s,t =

1

s− t
ln

(
t2

s2
·
∑n

i=1wi[e
sd − esxi − sesxi(d− xi)]∑n

i=1wi[e
td − etxi − tetxi(d− xi)]

)
, s 6= t,

lnB5
s,s =

∑n
i=1wi[de

sd − xiesxi − esxi(sxi + 1)(d− xi)]∑n
i=1wi[e

sd − esxi − sesxi(d− xi)]
− 2

s
, s 6= 0,

lnB5
0,0 =

∑n
i=1wi[d

3 − x3
i − 3x2

i (d− xi)]
3
∑n

i=1wi[d
2 − x2

i − 2xi(d− xi)]
.

By (16), these means are monotonic.

Example 3. Let

Ξ3 = {θt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

θt(x) =
e−x
√
t

t
.

The function t 7→ d2

dx2
θt(x) = e−x

√
t is exponentially convex (see [8]). By

the same argument as given in Example 1, the functions zj(., ., θt) (j =
1, 2, . . . , 6) are exponentially convex. Therefore, for this family of functions,

Theorems 8 – 11 hold. Also, Bj
s,t(Ξ3) (j = 1, 2, . . . , 6) from (17) becomes

Bj
s,t(Ξ3) =


(
zj(.,.,θs)
zj(.,.,θt)

) 1
s−t

, s 6= t,

exp
(
− zj(.,.,id.θs)

2
√
s(zj(.,.,θs))

− 1
s

)
, s = t.

In particular, for j = 1, 2, using the notation

S(zij)=

n∑
i=1

m∑
j=1

zij , T (z(t, s))=

∫ d

c

∫ b

a
z(t, s) dµ(t) du(s), (25)
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we have

B1
s,t(Ξ3) =



(
t
s

S
(
wij

(
exij

√
s−eyij

√
s
))

S
(
wij

(
exij

√
t−eyij

√
t
))
) 1

s−t

, s 6= t,

exp

(
S
(
wij

(
xije

xij
√
s−yijeyij

√
s
))

2
√
s S

(
wij

(
eyij
√
s−exij

√
s
)) − 1

s

)
, s = t,

and

B2
s,t(Ξ3) =


(
m
l

T
(
w(t,s)

(
e−x(t,s)

√
l−e−y(t,s)

√
l
))

T(w(t,s)(e−x(t,s)
√
m−e−y(t,s)

√
m))

) 1
l−m

, l 6= m,

exp

(
T(w(t,s)(x(t,s) e−x(t,s)

√
m−y(t,s) e−y(t,s)

√
m))

2
√
mT(w(t,s)(e−y(t,s)

√
m−e−x(t,s)

√
m))

− 1
m

)
, l = m.

By (16), these means are monotonic in parameters s and t .

Example 4. Let

Ξ4 = {δt : (0,∞)→ (0,∞) : t ∈ (0,∞)}

be a family of functions defined by

δt(x) =

{
t−x

(ln t)2
, t 6= 1,

x2

2 , t = 1.

Since d2

dx2
δt(x) = t−x = e−x ln t > 0 for x > 0, by the same argument as given

in Example 1, the functions t 7→ zj(., ., δt) (j = 1, . . . , 6) are exponentially
convex. Therefore, for this family of functions, Theorems 8 – 11 hold and

Bj
s,t(Ξ4) (j = 1, 2, . . . , 6) from (17) becomes

Bj
s,t(Ξ4) =


(
zj(.,.,δs)
zj(.,.,δt)

) 1
s−t

, s 6= t,

exp
(
− zj(.,.,id.δs)

szj(.,.,δs) −
2

s ln s

)
, s = t 6= 1,

exp
(
− 1

3
zj(.,.,id.δ1)
zj(.,.,δ1)

)
, s = t = 1.

In particular, for j = 1, 2, we have

B1
s,t(Ξ4) =



(
(ln t)2

(ln s)2
S(wij(s−xij−s−yij ))
S(wij(t−xij−t−yij ))

) 1
s−t

, s 6= t,

exp

(
S(wij(yij s−yij−xij s−xij ))
s S(wij(s−xij−s−yij ))

− 2
s ln s

)
, s = t 6= 1,

exp

(
1
3

S(wij(y3ij−x3ij))
S(wij(x2ij−y2ij))

)
, s = t = 1,

13
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and

B2
l,m(Ξ4) =



(
(lnm)2

(ln l)2
T(w(t,s)(l−x(t,s)−l−y(t,s)))
T(w(t,s)(m−x(t,s)−m−y(t,s)))

) 1
l−m

, l 6= m,

exp

(
T(w(t,s)(y(t,s) l−y(t,s)−x(t,s) l−x(t,s)))

l T(w(t,s)(l−x(t,s)−ly(t,s)))
− 2
l ln l

)
, l = m 6= 1,

exp
(

1
3
T (w(t,s)(y3(t,s)−x3(t,s)))
T (w(t,s)(x2(t,s)−y2(t,s)))

)
, l = m = 1,

where S and T are defined by (25). The monotonicity of Bj
s,t(Ξ4) follows

from (16).
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