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Approximating the Riemann—Stieltjes integral
via a Chebyshev type functional

S.S. DRAGOMIR

ABSTRACT. Some new sharp upper bounds for the absolute value of the
error functional D (f, ) in approximating the Riemann—Stieltjes integral

f; f (t) du (t) by the quantity [u (b) — u (a)] - ;2 f: f (t)dt are given.

1. Introduction

In order to approximate the Riemann-Stieltjes integral f; f(t)du(t) by
the simpler quantity

b—a
provided that both integrals exist, Dragomir and Fedotov introduced in [11]
the following error functional of Chebyshev type

b b
D(fiw) = [ F®du(®) - )~ @) ;= [ F)a

and pointed out the following sharp upper bound for |D (f;u)|, namely

b
[ (b) — u(@)] - — /f(t)dt,

1
D (fiw)] < SL(M —m) (b~ a). (1)
provided the integrator u : [a,b] — R is L-Lipschitzian on [a,b], i.e.,
u(z) —u(y)| < Lz —y
for any z,y € [a,b] and the integrand f : [a,b] — R is Riemann integrable
on [a,b] and satisfies the boundedness condition

—co<m< f(z) <M< oo forae. z€la,b.
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The multiplicative constant % in (1.1) is the best possible in the sense that
it cannot be replaced by a smaller constant.
In the follow-up paper [12], the authors provided a different bound, namely

b
1
D(fu)l < 5K (b= a)\/ (), (12)
a
provided that f is K-Lipschitzian and u is of bounded variation on [a, b] .
The result (1.2) was improved in [10] for the case of monotonic non-
decreasing functions. We have shown in this case that

1D (f;u)] < %K(b— a) [u(b) —u(a) =5 (u)] (1.3)

(< 1k 0 aety o).

S (u) ::(bj‘a)z/abu(t) (t—a;b> dt > 0.

In (1.3) the constant 1 is the best possible in both inequalities.

For other sharp bounds on the error functional D (f;u), see the recent
papers [9], [7] and [14]. For other inequalities for the Riemann-Stieltjes
integral, see [1], [2], [3], [4], [6] and [13].

The main aim of this paper is to further investigate the error functional
D (f;u). Two representations are given. These are applied to obtain some
inequalities for D (f;u) which improve earlier results.

Applications for the classical Chebyshev functional C (f,g), where

where

b b b
Cltg) =y [ F0g@a- i [ rwar o [Tgwar @y

and f,g are integrable and belonging to different classes of functions, are
also provided.

2. Representation results
For a function ¢ : [a,b] — R, consider the generalised trapezoid error
transform ®g4 : [a,b] — R given by
1
@y (1) i= = [0 1)g (@) + (=) g (4)] — 9 (1), € [a]

and if g is Lebesgue integrable, the Ostrowski transform, which is the error
of approximating the function by its integral mean, defined by

b
Gg(t)::g(t)—bia/g(s)ds, t € la,b].
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We also define the kernel @ : [a, b]2 — R,
t—b if a<s<t<b,

Q(t,s) = (2.1)

t—a if a<t<s<b.

The following representation result in terms of ©4 and @ may be stated.

Lemma 1. If f,u : [a,b] — R are bounded functions and such that the

Riemann—Stieltjes integral f; f(t)du(t) and the Riemann integral f; f(t)dt
exist, then we have the representation

/@f ) du (s b_a/ </Qtsdf ) u(s). (2.2)

Proof. We have by the definition of @) and integrating by parts in the
Riemann—Stieltjes integral that

— f(/abc;u,s)df(t))du(s)

=bia/::/:<t—a>df<> /b<t—b>df<>] u(s)
:bia/ab:f (t—a) /f Vit (t—b) [ /f dt]du )
bia/b-f(s)s‘“ - [rwas s /f )at] o
/@f )du (s

and the second equality is proved.
The first identity is obvious by the definition of D (f;u). O

The following corollary can be stated about the representation of the
Chebyshev functional C (f,g) defined in (1.4).

Corollary 1. Assume that f,g : [a,b] — R are Riemann integrable on
[a,b], then

1 b
Clh9)= 5=, | Ors)g(s)ds

i ([ewsan)son

Proof. It is well known (see for instance [5, Theorem 7.33, p. 162] that if
g is Riemann integrable and wu ( f g (s)ds, then for any Riemann inte-
grable function f we have that the Riemann-Stieltjes integral ff f(t)du(t)
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exists and fab f(t)du f f(t)g(t)dt. Therefore, we have D (f;u) =
(b—a)C(f,g)and

/(/Wf e /</@Mf st

The second representation of D (f;u) is incorporated in

Lemma 2. With the assumptions in Lemma 1, we have

D (f:u) Z/ab%(t)df(t) - bi/b (/j@(t,smu(s)) ¥, @23

where Q is defined by (2.1).

Proof. By the Fubini type theorem for the Riemann—Stieltjes integral (see
for instance [5, Theorem 7.41, p. 167]) we have that

/</Qt8du )df(t)Z/ab(/abQ(t,s)df(tOdu(s)’

and the equality between the first and the last term in (2.3) is proved.
Now, observe that

/abQ(t,s)du(s):/at(t—b)du(s)+/tb(t—a)du(s)

= (t—b) [u(t) — u(@)] + (t — a)[u (b) —u ()]
— (b—a) @ (1),

for any ¢ € [a,b], and then integrating over f (¢), we deduce the second
equality in (2.3). O

Corollary 2. Assume that f and g are Riemann integrable on [a,b]. Then

1 b
Ctro) == [ % war
— ot [ ([ewnsma) o,

where
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3. Bounds in the case when v is of bounded variation
The following lemma is of interest in itself.

Lemma 3. Ifp: [a,b] — R is continuous on [a,b] and v : [a,b] — R is of
bounded variation on [a,b], then

fmmka%wd;
swwr{fuﬂdgm”i (3.1)

b
< max [p ()| \/ (v),

t€la,b]

where ¢ > 1, 1/q+ 1/r = 1.

Proof. Since the Stieltjes integral fab p(t)dv (t) exists, for any division
I, :a =t <t < - < th1 < t, = b with the norm v (I,) :=
maX;e(o,..n—1} (ti+1 — ti) — 0 and for any intermediate points &; € [t;, ti41],
i€{0,...,n— 1}, we have

b
/mwmw—p%Zp& (te2) — v (1)
n—1
< Jim, @l ) - v (6]
However,
tit1 tit1 t;
o (ti) —v () <\ (0) =\ (v) =\ (v) (32)
t; a a

for any i € {0,...,n — 1} and by (3.2) we have
b tit1 t;
/(MU]sgnZ@@IVw—Vw]
:/@@MN@L

and the last Riemann-Stieltjes integral exists since [p| is continuous and

V (v) is monotonic nondecreasing.
a
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The last part follows from the following Hélder type inequality

b 1 1 1
[s@ao| <o -—e@i | [ sorao] o1 tilan
a qQ T
that holds for any continuous function g : [a,b] — R and any monotonic
nondecreasing function v : [a,b] — R. The details are omitted. O

The following result holds.

Theorem 1. Assume that f,u : [a,b] — R are of bounded variation and
such that the Riemann—Stieltjes integral f;f (t) du (t) exists. Then

[/ s—a—b)d<\7(u)>

a

b

+2/ab <\/(U)-\:/(f)> a5V [ (\Z/(f)) ds]

1D (f;

b
+\V @ -\ (). (3.3)

Proof. Utilising the identity (2.2) and the first inequality in (3.1) we have

D (f;u) S_/I/Qtsdf ‘ (\/())
_bia/a /a(t—a)df() /Sb(t—bdf ' (\/ )
_bia/ab[/as(t—a)df(t)’+/sb@—b ) df (¢ Hd<\/ >

a

=1 (3.4)
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Since f is of bounded variation, by the same inequality in (3.1) we have

L ([ (Vo)a)a(Ve) 535
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However, integrating by parts in the Riemann—Stieltjes integral we have
s t s
[ (ve)e)o(ve)
' ' s ’ b b s s
—/a V() \/ (1) ds
b b t : s ' s '
:\/(u)-/a (\/ )dt /\/ A\ () ds

Inserting this value in the expression of I from (3.5) we deduce the first
inequality in (3.3).
The other inequalities are obvious. O

The following result may be stated as well.

Theorem 2. If u : [a,b] — R is of bounded variation and f : [a,b] — R
is L-Lipschitzian, then

b
\D<f;u>\SL[§<b—a>\/<u>

_bfa/ab (\:/(M) (s—a;b) ds] (3.6)

The constant % s sharp in both inequalities.

Proof. Tt is well known that if p : [a, ] — R is L-Lipschitzian and
v [a, B] — R is Riemann integrable then the Riemann-Stieltjes integral

f s ) exists and s)dv (s ) <L f h |p (s)| ds. Utilising this prop-

erty, we then have

/as(t—a)df(t)‘ <[ -mi=Ea—a?
[uvae]<e o ga-Lo

Therefore, by relation (3.4) we have

I§2(bL_a)/ab{(b—s)2 (s—a } <\:/ )
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b b s

—2/ \/(u)(28—a—b)ds
L ’ b* a+b
:2(b—a)_(b_“)2\!(“)_4/a \a/(u)<s— :

a
) ds]
and the first inequality in (3.6) is proved.
To prove the last part, we use the Chebyshev inequality which states that
for two nondecreasing functions ¢g and h,

bia/abg(S)h(S)dSZbia/abg(s)ds.bia/abh(s)ds_
bia/ab\:/(u)<s—a;b)ds
b

> bia/a <\S/(u)> ds-bia/ab<s—a;_b>ds

_ z(bL_a) (b= 5)+ (s — 0 \S/(u)

Then

a

and since fab (s - GTH’) ds = 0, the inequality is proved.

For the sharpness of the constant, we consider the functions f(t)=t— “TH’,

t € [a,b], and u : [a,b] — R defined by

1 if t=a,
u(t):=4¢ 0 if t€(a,b),
1 if t=0.

Then f is Lipschitzian with L = 1 and u is of bounded variation on [a, b] .

s b
We have \/ (u) =1, s € (a,b), and \/ (u) = 2. Also,

’ u(b) —u(a) [°

and

b
)ds:/ <s—a;b>ds:o.

Replacing the values in (3.6) we get in all sides the same quantity b— a. This
shows that the constant % is the best possible in both inequalities. U

/ab (Q(u)> <S_a—2i—b

a
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Remark 1. The inequality between the first and last term in (3.6) was
firstly discovered by Dragomir and Fedotov in [12] where they also showed
the sharpness of the constant %

The following result may be stated as well.

Theorem 3. Assume that u : [a,b] — R is of bounded variation and
f : la,b] — R is monotonic nondecreasing and such that the Riemann—

Stieltjes integral ff f(t)du(t) exists. Then,

b s
rD<f;u>r§b_1a[/ (2S—a—b)f(8)d<\/(U)>

b s b b
—|—2/ (\/(u))f(s)ds—/f(s)ds\/(u)]

Proof. Tt is well known that if the Stieltjes integrals [’ p s (t)dv (t) and

I s |p (t)| dv (t) exist and v is monotonic nondecreasing on [«, 3], then

/ p () dv (1) s/ 1p ()] dv (1

Utilising this property we then have

[u-aqw|< [ c-agw=c-ase- [ 1o

/sb(t—b)df(t)S/sbt—b )df (¢ /f Yt — (b~ 5) f (5)

for any s € [a, b] .
Utilising relation (3.4), we obtain

Vb{s—a /ft

(3.7)

and

_bia[/a (25—a—b)f(s)d<\/(u)) (3.8)
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However, integrating by parts in the Riemann—Stieltjes integral, we have

A (/Sbf(t)dt>d<\2(u)>
- ([ swa). w| -
-/

A (\:/(u)) o [sa)

a

b/ s
(\/ (U)> f(s)ds

a

and
/ab</asf(t)dt>d<\2(u)>
- </:f(t)dt> ~ (u)b—/ab (\:/(u)) d(/:f(t)dt>
z/abf(t)dt~\:/(U)—/ab (\:/(U)>f(8)d8~
Therefore,

1 b *
J = [/a (25—a—b)f(s)d<\/(u)>

b S
:bla[/ (25—a—b)f(s)d<\/(u)>
b s b b
+2/ (\/(u))f(s)ds—/f(s)ds-\/(u)].

This together with inequalities (3.4) and (3.8) produces the desired result
(3.7). O

4. Bounds in the case when f is of bounded variation

We can state the following result as well.

Theorem 4. Assume that f : [a,b] — R is of bounded variation on [a,].
Ifu: [a,b] — R is continuous and such that there exists constants Lg, Ly > 0
and a, 8 > 0 with the properties

u(t) —ula)] < La(t—a)®,  |u(t) —u(d) < Ly(b—1)° (4.1)
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for any t € [a,b], then

|D (f;u)| < ;

(4.2)

b
8 / (\/ <f>) (t—a) (b—1)" L at

-/ (\/ (f)) <b—t>ﬁdt] .

Proof. Utilising the identity (2.3) and the first inequality in (3.1), we have

successively,
/ Q (1, 5) du (s ( (f))
/ Q (t,s)du (s

|D fUI<7

Q (t,s)du (s

—b_a/[

Now, on making use of condition (4.1), we can state that

a

b t
I (\/ (f)) (43)

Pt [ro-ne-ar+na-ao-1]a (\/ )
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However,

b [t )
:_/a <\/(f)> {—(t—a)a—i-a(b—t)(t—a)o‘_l} dt

t

b [t b
-/ (\/(f)) (t-ayit-a | (\/(f)) (b— 1) (t—a)* "t

a

and from (4.3) we deduce the desired inequality (4.2). O

Corollary 3. If f is as in Theorem 4 and u is of r-H-Hdélder type, i.e.,
() —u(s) < Hlu—t"  for any t,s € [a,b],

where H > 0 and r € (0,1) are given, then

b t
D)< ot [ (\/(f)){(t—av—(b—tv

Fro-0 a9 - -0
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Remark 2. If r = % in Corollary 3, then we obtain the inequality

< — :(\:/(ﬂ) (Vi—a—v5—1)

1
X <1+2 (b—t)(t—a))dt‘

The following particular result may be useful for applications.

with the constant K > 0, then

|D

Corollary 4. If f is as in Theorem 4 and u : [a,b] — R is Lipschitzian

<f;u>r§bfa-f</ab (t—“;b) '\:/(f)dt

b
Kb=a)V(f);
Y LAY
< 2(((]"+1))3K<fj[\a/(f)] dt),p>1,;+}1—1 (4.4)

\ 2K [° (\t/ ( f)> dt.

The multiplication constant 4 is the best possible.

and a =0 =1.

Proof. The first inequality follows by Theorem 4 on choosing L, = Ly = K

Now, on utilising Holder’s inequality, we have

52 ()

IN

o] a) (1)

I <\7 <f>) dt sup [t — %]

a

tefad] <\:/ (f)> 2|t — tt| dt;

4.5
. p> 17 %_i_ % =1: ( )
tela,b]
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However, sup;c(q,p] ‘t — aTH)’ — bf?a and
b q b .
b b
/ t_a+ dt:2/ t_aJr "
a 2 aTer 2
_ \q+1
_b-o™ o
24 (q+1)
and by (4.5) we deduce
b t
a+b
/a <t - 2 > \a/(f) dt
b—a)? ¢
SV ()

IN
T
A
-
+
Q=
N

and the second part is proved.
To prove the sharpness of the constant 4 in the first inequality in (4.4)
assume that there exists A > 0 such that
¢

rD<f;u>\§b_“‘a-K/ab(t‘L;b)-\/wt, (46)

a

provided that f is of bounded variation and wu is K-Lipschitzian.
Let f:[a,b] — R,
0 if te [a, “TH’],
f@) =
koif te (%2,0],
with k£ > 0. Then
t 0 if te [a, “Ter],
V= "
a k‘ lf te (G'T,b] .

Also, we have

/ab<t_a—2rb> '\:/(f)dt:/a;, (t—a;b>kdt

k(b—a)?
——




254 S.S. DRAGOMIR

Consider u : [a,b] — R, u(t) = |t — %2|. Then u is K-Lipschitzian with
K =1. Also,

b u —ula b
D= [ f@anw - 0= g
b

:k/mdu(t):k [u(b)—u<a;b>}

(b —2a) k
—

Substituting these values into (4.6) produces the inequality

(b-a)k _ A k(b—a)?
2 “b—a 8 ’
which implies that A > 4. O

5. Inequalities for (I, L)-Lipschitzian functions
The following simple lemma holds.
Lemma 4. Let u : [a,b] =& R and [,L € R with L > . The following
statements are equivalent:

(i) The function u — L - e, where e(t) = t, t € [a,b] is 3 (L —1)-
Lipschitzian;
(ii) We have the inequalities

L u(t) —u(s)
- t—s

< L for each t,s € [a,b], t#s;
(iii) We have the inequalities
l(t—s)<u(t)—u(s)<L(t—s) foreach t,sé€ [a,b] with t>s.

The proof is obvious and we omit the details.

Definition 1 (see also [14]). The function u : [a,b] — R which satisfies
one of the equivalent conditions (i) — (iii) from Lemma 4 is said to be (I, L)-
Lipschitzian on [a,b] . If L > 0 and [ = —L, then (—L, L)-Lipschitzian means
L-Lipschitzian in the classical sense.

The following result can be stated.



RIEMANN-STIELTJES INTEGRAL VIA A CHEBYSHEV TYPE FUNCTIONAL 255
Theorem 5. Let f : [a,b] — R be a function of bounded variation and
w: [a,b] = R an (I, L) — Lipschitzian function. Then

t

D<o [ (-25) Vi

a

LI b-a)V();

t p %
[\!(f)} dt> , p>1, S =1

IN
=
|
&
Q=
~
7 N\
)
k=l

a

p [
=g (Vi)
The constant 2 in the first inequality is sharp.

Proof. Observe that
D(f;u—l—;L-e>
= [[(ro-35 [ rea)afun -]
- [(ro-31, [ roa)wo
s ab (f(t)—b_la/:ﬂs)ds) dt

=D(f;u).

Now, applying Corollary 4 for the function u — H'L

e, which is % (L —1)-
Lipschitzian, we get
D fu L) < 4 1(L—l)/b a+b \t/
T S h—a 2 . 2 V
2 b a+b !
b—a(L_l)/a (t 5 ) Y

and the theorem is proved. O

+

The second result may be stated as follows.
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Theorem 6. Let u : [a,b] — R be a function of bounded variation. If
f:]a,b] = R is (¢, ®)-Lipschitzian with ® > ¢, then

(5.1)

<1 @-0b-aV W,

a
The constant % in front of (® — ¢) and % are the best possible.

Proof. Observe that

o5
:/:{f(t)—gbj;q).t_b1a/ab<f(s)—¢;q)~s>ds}du(t)
Pl o (5 [ #5a
:D(f;u)_“f/a <t—bia/absds)du(t)

=D(f;u>—¢;q’/ab (t—”‘;b)du(t).

Integrating by parts in the Riemann—Stieltjes integral we have

I e ey RCL

Then
P ® [u(b b
D —te;u :D(f;u)—¢+ u()+u(a)(b—a)—/u(t)dt :
2 2 2 .
Now, on applying Theorem 2 for the function f — 2t%e which is 5 L(L-1-

Lipschitzian, we deduce the desired result (5.1). O
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6. Applications for the Chebyshev functional

If we choose u ( f g (1)dr, t € [a,b], where g : [a,b] — R is Lebesgue
integrable on [a, b] then we have the equality
1

C(f;g):mD(f;U)~

Also, u is of bounded variation on any subinterval [a, s], s € [a,b], and if g
is continuous on [a, b], then

:/s\g(7)|d7', s € a,b].

If f is of bounded variation on [a,b], then on utilising the inequality (3.3)
we have

b s
O < G [/ @ —a=0ls()\ (9)ds

/(/ 9 (r \dT) ds—/|g IdT/ab<\2(f)>d81
g(b_la)Q/a@s—a—bm I\ ()

a
S

S ([e rdf) () ds

1 1 b b
<o / s=o-nly N [a 1m0,

Now, if f is monotonic nondecreasing, then by (3.7) we have

1 b
Ol < o | [ a0 £ o0l

/(/yg ym) ds—/f ds/\g |d7}.

The case where f is L-Lipschitzian provides via (3.6) a simpler inequality

IC(f;g)ISL[/ lg()|dr

e ([oner) (=55
L/a 19 (5)] ds.




258 S.S. DRAGOMIR

Now, if f is of bounded variation and |g| is bounded above by M, i.e.,
lg (t)] < M for a.e. t € [a,b], then by (4.4) we have

O (f:9)] < (bf‘agM/ab (- “;b)\t/mdt

a

MV (f);

)
( b
a

3 =

IN

2(b—a)$_1M <fb |:

(q+1)7

D<o¢-

(f)]pdt> , p>1,

t
b
g (V) a
a
The constant 4 in (6.1) is the best possible.

Finally, if —oo < ¢ < g(t) < @ for a.e. t € [a,b], then ‘g(t) - M‘ <
% (® — ¢), and since

c(ra-23") =cta,

by (6.1) we deduce the inequalities

2 b a+b\y
cuals G Zm @0 [ (=57 Ve

IN
I~
7
IS
N
Q-

The constant 2 in the first inequality is the best possible.
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