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A note on embedding of semigroup amalgams

Kristiina Rahkema and Nasir Sohail

Abstract. We give necessary conditions for the embedding of com-
pletely regular semigroup, Clifford semigroup and commutative regular
semigroup amalgams.

A semigroup amalgam (cf. [3]) is a list A ≡ (U ;S1, S2;φ1, φ2) comprising
three semigroups U , S1 and S2, and two monomorphisms φi : U −→ Si, i ∈
{1, 2} (recall that monomorphisms of semigroups are precisely the injective
semigroup homomorphisms). We say that A is embeddable if there exist a
semigroup T and monomorphisms ψi : Si −→ T such that

(1) ψ1 ◦ φ1 = ψ2 ◦ φ2 and

(2) ψ1(s1) = ψ2(s2), s1 ∈ S1, s2 ∈ S2 implies that s1 = φ1(u), s2 = φ2(u)
for some u ∈ U .

If condition (2) is not necessarily satisfied, we call A weakly embeddable. In
[1], Theorem 2.4, Howie proved that a semigroup amalgam (U ;S1, S2;φ1, φ2),
in which S1 and S2 are both groups, is embeddable if and only if U is also
a group. The main objective of this note is to generalize the necessity part
of this theorem to the unions and semilattices of groups. A semigroup S
is called completely regular if it is a union of groups. We call S a Clifford
semigroup if it is a semilattice of groups.

A semigroup S is called regular (cf. [3], pp. 50–51) if there exists a unary
operation −1 : S −→ S given by s 7−→ s−1 such that ss−1s = s, s−1ss−1 =
s−1. The element s−1 is called an inverse of s. One can show (see [3],
Proposition 4.1.1) that S is completely regular if and only if it is regular and
ss−1 = s−1s for all s ∈ S. Also, S is a Clifford semigroup if and only if it is
completely regular and (ss−1)(tt−1) = (tt−1)(s−1s) for all s, t ∈ S (refer to
Theorem 4.2.1 of [3]). A regular semigroup S is termed an inverse semigroup
if (ss−1)(tt−1) = (tt−1)(s−1s) for all s, t ∈ S. Thus Clifford semigroups are
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completely regular inverse semigroups. Moreover, every commutative regular
semigroup is a Clifford semigroup.

Theorem 1. A semigroup amalgam (U ;S1, S2;φ1, φ2), in which S1 and
S2 are completely regular, is embeddable only if U is also completely regular.

Proof. Consider an amalgam A ≡ (U ;S1, S2;φ1, φ2) in which S1 and S2
are both completely regular. Suppose A is embeddable, say in a semigroup
T , and consider an element u ∈ U . Let us denote φ1(u) = s1 and φ2(u) = s2.
Now, because S1 and S2 are completely regular, there exist inverses s−11 ∈ S1
and s−12 ∈ S2 of s1 and s2 respectively. Let ψi : Si −→ T , i ∈ {1, 2}, be the
embedding monomorphisms. First note that ψ1(s1) = ψ1φ1(u) = ψ2φ2(u) =
ψ2(s2). We can calculate in T :
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Now, using condition (2) of embeddability, there exists u′ ∈ U such that
φi(u

′) = s−1i , i ∈ {1, 2}. Then, because s1s
−1
1 s1 =s1 implies φ−11 (s1s

−1
1 s1) =

φ−11 (s1), we have uu′u = u due to injectivity of φ1. Similarly we can conclude
that u′uu′ = u′ and uu′ = u′u. Thus U is completely regular. �

Corollary 1. It suffices to show that U is an inverse semigroup. To
this end, observe that the niqueness of u′ (see Theorem 5.1.1 of [3]) in the
previous proof follows from the uniqueness of s−11 .

Proof. The corollary follows by noting that there exists u ∈ U such that
u−1 6∈ U . �
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Corollary 2. A semigroup amalgam (U ;S1, S2;φ1, φ2), in which S1 and
S2 are commutative regular semigroups, is embeddable if and only if U is
regular.

Proof. Because S1 and S2 are completely regular, the necessity part fol-
lows from the argument employed in the above corollary. The sufficiency
part follows from Theorem 3.1 of [2]. �

Conclusion 1. Can we generalize Theorem 1 to the class of inverse semi-
groups? Also, can embedding be replaced by weak embedding in Theorem
1?
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