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Cumulant-moment relation
in free probability theory

Jolanta Pielaszkiewicz, Dietrich von Rosen,
and Martin Singull

Abstract. The goal of this paper is to present and prove a cumulant-
moment recurrent relation formula in free probability theory. It is con-
venient tool to determine underlying compactly supported distribution
function. The existing recurrent relations between these objects re-
quire the combinatorial understanding of the idea of non-crossing par-
titions, which has been considered by Speicher and Nica. Furthermore,
some formulations are given with additional use of the Möbius function.
The recursive result derived in this paper does not require introducing
any of those concepts. Similarly like the non-recursive formulation of
Mottelson our formula demands only summing over partitions of the set.
The proof of non-recurrent result is given with use of Lagrange inversion
formula, while in our proof the calculations of the Stieltjes transform of
the underlying measure are essential.

1. Introduction and background

Free moments and free cumulants are functionals defined within free prob-
ability theory. The theory was established in the middle of the 80’s by
Voiculescu in [14] and together with the result published in [15] regarding
asymptotic freeness of random matrices it has established new branches of
theories and tools, among others free cumulants and moments.

It is of great importance to understand the behavior of free cumulants, or
related free moments, as they give us essentially the full information about a
particular probability measure such as the measure connected to the spectral
distribution.
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266 JOLANTA PIELASZKIEWICZ, DIETRICH VON ROSEN, AND MARTIN SINGULL

We will consider a general formulation, but in the last section a partic-
ular example is given. In order to state the results of the article we fix
notation and recall the basic definitions and properties. Let us consider a
non-commutative ∗-probability space (A, τ), where A is a unitary algebra
over the field of real numbers and τ is a functional such that τ : A → R is
linear, τ(1A) = 1 and τ(a∗a) ≥ 0 for all a ∈ A. The algebra is equipped
with a ∗-operation such that ∗ : A → A, (a∗)∗ = a and (ab)∗ = b∗a∗ for
all a, b ∈ A. For more details, see [9]. Then the free k-th moment of a
self-adjoint element a ∈ A is defined as

mk := τ(ak) :=

∫
R
xkdµ(x), (1)

where µ is a compactly supported ∗-distribution of element a ∈ A charac-
terized by moments mk, k = 1, . . .. The form of the chosen functional τ
determines the ∗-distribution of the element a.

To introduce the concept of free cumulants as well as to obtain the relation
formula between free cumulants and moments we use the Stieltjes transform.
It appears among others in formulations of a number of results published
within Random matrix theory, see for example, [6, 2, 11, 4].

Definition 1.1. Let µ be a probability measure on R. Then, the Stieltjes
(Cauchy–Stieltjes) transform of µ is given by

Gµ(z) =

∫
R

1

z − x
dµ(x),

for all z ∈ C, =(z) > 0, where =(z) denotes the imaginary part of a complex
number z.

Defined in such a way the Stieltjes transform can be inverted on any
interval. It can also be given as a series of free moments {mi}∞i=1.

Theorem 1.1. Let the free moments mk =
∫
R x

kdµ(x), k = 1, 2, . . ..
Then, a formal power series representing the Stieltjes transform is given by

Gµ(z) =
1

z

(
1 +

∞∑
i=1

z−imi

)
.

Proof. We have

Gµ(z) =

∫
R

1

z − x
dµ(x) =

1

z

∫
R

1

1− x
z

dµ(x) =
1

z

∫
R

∞∑
i=0

(
x

z

)i
dµ(x)

=
1

z

∞∑
i=0

z−i
∫
R
xidµ(x) =

1

z

(
1 +

∞∑
i=1

z−imi

)
,

which completes the proof. �
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Although the Stieltjes transform Gµ is a convenient tool, even better
suited for studying convolution of measure µ (see [9, 1]) on a non-commuta-
tive ∗-probability spaces is the R-transform. The R-transform linearizes free
convolution and plays the same role as the log of the Fourier transform
in classical probability theory. The relation between the R- and Stieltjes
transform Gµ, or more precisely G−1µ , which is the inverse with respect to
composition, is often considered as a definition of the R-transform.

Definition 1.2. Let µ be a probability measure and Gµ(z) the related
Stieltjes transform. Then

Rµ(z) = G−1µ (z)− 1

z
or, equivalently, Rµ(Gµ(z)) = z − 1

Gµ(z)

defines the R-transform Rµ(z) for the underlying measure µ.

The free cumulants {ki}∞i=1 are given as the coefficients of a power series
expansion of the R-transform.

Definition 1.3. Let µ be a probability measure and Rµ(z) be the re-
lated R-transform. Then for a, which is an element of a non-commutative
∗-algebra A, the free cumulants of a, {ki}∞i=1, are defined by

Rµ(z) =
∞∑
i=0

ki+1(a)zi.

To put our result in relation to the other cumulant-moment formulas in
free probability theory we recall that a combinatorial branch of free prob-
ability theory points out that free cumulants defined by the R-transform,
as in Definition 1.3, following [7] and [9], can be defined via non-crossing
partitions using the following recursive relation

k1(a) = τ(a), τ(a1 · . . . · ak) =
∑

π∈NC(k)

kπ[a1, . . . , ak], (2)

where τ(a1 · . . . · ak) describes mixed free moments of a1, . . . , ak, the sum is
taken over all non-crossing partitions NC(k) of the set {1, 2, . . . , k}, ai ∈ A
for all i = 1, 2, . . . , k and kπ[a1, . . . , ak] =

∏r
i=1 kV (i)[a1, . . . , ak], where

π = {V (1), . . . , V (r)} and kV [a1, . . . , ak] = ks(av(1), . . . , av(s)), where V =
(v(1), . . . , v(s)). Then, for a ∈ A the cumulant of a is defined as kn =
kn(a, . . . , a). The calculations with use of (2) come after the proof of Corol-
lary 2.1.
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268 JOLANTA PIELASZKIEWICZ, DIETRICH VON ROSEN, AND MARTIN SINGULL

Another way to look at free cumulants, see [9], is with use of the Möbius
function as well as non-crossing partitions

kπ[a1, . . . , ak] =
∑

σ∈NC(k),σ≤π

τσ[a1, . . . , ak]µ(σ, π),

where τk(a1, . . . , ak) := τ(a1, . . . , ak), τπ[a1, . . . , ak] :=
∏
V ∈π τV [a1, . . . , ak]

and µ is the Möbius function on NC(k). For more details about above for-
mulations see [9] and [12]. In the next section we will compare our recursive
formula with the result given by equation (2).

Furthermore, the following non-recursive relation between free moment
and free cumulant has been shown in [8] together with proof which is based
on Lagrange inversion formula and is inspired by the work of Haagerup [3]:

kp = mp +

p∑
j=2

(−1)j−1

j

(
p+ j − 2

j − 1

)∑
Qj

mq1 · · ·mqj ,

mp = kp +

p∑
j=2

1

j

(
p

j − 1

)∑
Qj

kq1 · · · kqj ,

where Qj = {(q1, q2, . . . , qj) ∈ Nj |
∑j

i=1 qi = p}.
For a better understanding of the idea with free cumulants we would like

to mention that the free and classical cumulants for the ∗-distribution differ
by the elements associated with crossing partitions. In the classical case we
consider all partitions while in the free cumulant case only non-crossing ones
are of interest. Then, obviously, the first three cumulants are the same in
free and classical sense, since the sets {1}, {1, 2}, {1, 2, 3} have no crossing
partitions. However, for the fourth cumulant and cumulants of the higher
order the free and classical cumulants differ.

2. Main result

The purpose of this paper is to present a recursive formula which is not
based on non-crossing partitions.

First introduce a shortened notation for the sum of products of hmoments,
where each of moments has degree given by index ik, k = 1, . . . , h, the sum
of indexes i1 + i2 + . . .+ ih = t and each index ik � 0, where � reflects the
ordering relation(

m, h,�
t

)
=

∑
i1+i2+...+ih=t
∀kik�0

mi1mi2 · . . . ·mih .

Theorem 2.1. Let {ki}∞i=1 be the free cumulants and {mi}∞i=1 be the free
moments for an element of a non-commutative probability space. Then k1 =
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m1 and the following recursive formula holds:

kt =

t∑
i=1

(−1)i+1

(
m, i, >

t

)
−

t−1∑
h=2

kh

(
m, h− 1,≥

t− h

)
, t = 2, 3, . . . . (3)

Proof. Let us consider a non-commutative ∗-probability space (A, τ),
where A is a unitary ∗-algebra equipped with the functional τ(·). Then,
the mi = τ(ai) describes the i-th free moment of the element a ∈ A as in
(1). By Theorem 1.1 the Stieltjes transform Gµ(z) is given as

Gµ(z) =
1

z

(
1 +

∞∑
i=1

z−imi

)
.

Suppose

G−1µ (z) =
1

z
+

∞∑
i=0

ki+1z
i,

then it will be shown that ki can be determined by a recursive formula
depending on mj , j = 1, 2, . . . , i. In this case Definition 1.2 and 1.3 imply
that the free cumulants have been found. Now, combining formulas for Gµ(z)
and G−1µ (z) the following relation will be utilized:

z = G−1µ (Gµ(z)) =
1

Gµ(z)
+

∞∑
i=0

ki+1 Gµ(z)i

=
z

1 +
∑∞

i=1 z
−imi

+
∞∑
i=0

ki+1

(
1

z

(
1 +

∞∑
j=1

z−jmj

))i
= z

∞∑
j=0

(
−
∞∑
i=1

z−imi

)j
+
∞∑
i=0

ki+1

zi

(
1 +

∞∑
j=1

z−jmj

)i
= z + z

∞∑
j=1

(
−
∞∑
i=1

z−imi

)j
+
∞∑
i=0

ki+1

zi

( ∞∑
j=0

z−jmj

)i
.

By simple arithmetic calculations this relation leads to the equation

z

∞∑
j=0

j+1∑
l=0

(
j + 1

l

)
(−1)l+1

( ∞∑
i=0

z−imi

)l
=

∞∑
i=0

ki+1

zi

( ∞∑
j=0

z−jmj

)i
.

The next step will be to apply a formula for the powers of a power series
(see [5]) ( ∞∑

i=0

miz
i

)k
=
∞∑
n=0

(
m, k,≥
n

)
zn.
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Therefore,

∞∑
j=0

(
− 1 +

j+1∑
l=1

(
j + 1

l

)
(−1)l+1

∞∑
t=0

(
m, l,≥
t

)
z−t
)

=
k1
z

+

∞∑
i=1

ki+1

∞∑
t=0

(
m, i,≥

t

)
z−t−i−1.

By the identification of coefficients of z−t the cumulants are obtained. Let us
denote left hand side and right hand side of the equation by corresponding
LHS and RHS. Let t = 0, then

LHS =
∞∑
j=0

(
− 1 +

j+1∑
l=1

(
j + 1

l

)
(−1)l+1

(
m, l,≥

0

))

=
∞∑
j=1

j∑
l=0

(
j

l

)
(−1)l+1 = 0 = RHS.

For t = 1 we get k1 = m1 since RHS = k1 and

LHS =

∞∑
j=0

j+1∑
l=1

(
j + 1

l

)
(−1)l+1

(
m, l,≥

1

)
=

∞∑
j=1

j∑
l=1

(
j

l

)
(−1)l+1lm1 = m1.

For t ≥ 2,

∞∑
j=0

j+1∑
l=1

(
j + 1

l

)
(−1)l+1

(
m, l,≥
t

)
=

t−1∑
i=1

ki+1

(
m, i,≥
t− i− 1

)

= kt

(
m, t− 1,≥

0

)
+

t−2∑
i=1

ki+1

(
m, i,≥
t− i− 1

)

= kt +

t−2∑
i=1

ki+1

(
m, i,≥
t− i− 1

)
,

kt =
∞∑
j=0

j+1∑
l=1

(
j + 1

l

)
(−1)l+1

(
m, l,≥
t

)
−

t−2∑
i=1

ki+1

(
m, i,≥
t− i− 1

)
.

Let us now show that
∞∑
j=t

j+1∑
l=1

(
j + 1

l

)
(−1)l+1

(
m, l,≥
t

)
= 0. (4)

Using the fact that
(
m,l
t

)
is a polynomial of maximally t-th order of l it is

enough to show that
∑∞

j=t

∑j+1
l=1

(
j+1
l

)
(−1)l+1lW = 0 for all W = 1, 2, . . . , t.

We prove the above equation by showing that each element of the sum is
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zero, i.e., that for any fixed L such that L ≥ t and for all W = 1, 2, . . . , t we
have

∑L+1
l=1

(
L+1
l

)
(−1)l+1lW = 0. Furthermore, the sum can be expressed as

L+1∑
l=1

(
L+ 1

l

)
(−1)l+1lW = (L+ 1)

L∑
h=0

(
L

h

)
(−1)h(h+ 1)W−1.

We will prove using mathematical induction with respect to L that for all L
and all W such that L ≥ t ≥W , L,W ∈ N \ {0},

L∑
h=0

(
L

h

)
(−1)h(h+ 1)W−1 = 0.

Let L = 1, then
∑1

h=0

(
1
h

)
(−1)h(h + 1)W−1 = 1 − 2W−1 = 0 as W ≤ L = 1

and W ∈ N \ {0}. If L = 2, then

2∑
h=0

(
2

h

)
(−1)h(h+ 1)W−1 = 1− 2W + 3W−1

W∈{1,2}
= 0.

Let assume that the equation holds for L. Then

L+1∑
h=0

(
L+ 1

h

)
(−1)h(h+ 1)W−1 =

L∑
h=0

(
L

h

)
(−1)h(h+ 1)W−1︸ ︷︷ ︸

=0

+
L−1∑
h=0

(
L

h

)
(−1)h+1(h+ 2)W−1 + (−1)L+1(L+ 2)W−1︸ ︷︷ ︸

=0

= 0

and (4) is proved. Then finally k1 = m1 and for t = 2, 3, . . .

kt =
t−1∑
i=0

i+1∑
h=1

(−1)h+1

(
i+ 1

h

)(
m, h,≥

t

)
−

t−1∑
h=2

kh

(
m, h− 1,≥

t− h

)
.

Now it is left to show that

t−1∑
i=0

i+1∑
h=1

(−1)h+1

(
i+ 1

h

)(
m, h,≥

t

)
=

t−1∑
i=0

(−1)i+2

(
m, i+ 1, >

t

)
. (5)

Indeed, the equality

i+1∑
h=1

(−1)h+1

(
i+ 1

h

)(
m, h,≥

t

)
= (−1)i+2

(
m, i+ 1, >

t

)

22
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holds elementwise for all i = 0, . . . , t− 1. Then

LHS =

i∑
h=1

(−1)h+1

(
i+ 1

h

)(
m, h,≥

t

)
︸ ︷︷ ︸

U

+(−1)i+2

(
i+ 1

i+ 1

)(
m, i+ 1,≥

t

)

= U+(−1)i+2

(
m, i+ 1, >

t

)
+(−1)i+2

∑
j1+j2+...+ji+1=t

∃k jk=0

mj1 · . . . ·mji+1 .

So equation (5) is equivalent to

i∑
h=1

(−1)h−i
(
i+ 1

h

)(
m, h,≥

t

)
=

∑
j1+j2+...+ji+1=t

∃k jk=0

mj1 · . . . ·mji+1 .

Then

RHS =

i∑
h=1

(
i+ 1

h

)(
m, i− h+ 1, >

t

)
=

i∑
h=1

(
i+ 1

h

)(
m, h,>

t

)
,

LHS =

i∑
h=1

(−1)h−i
(
i+ 1

h

) h−1∑
k=0

(
h

k

)(
m, h− k,>

t

)

=

i∑
h=1

(−1)h−i
(
i+ 1

h

) h∑
H=1

(
h

H

)(
m, H,>

t

)

=

i∑
H=1

i∑
h=H

(−1)h−i
(
h

H

)(
i+ 1

h

)
︸ ︷︷ ︸

=
Γ(2+i)

Γ(H+1)Γ(2−H+i)
=(i+1

H )

(
m, H,>

t

)
= RHS,

where Γ(k) := (k − 1)! denotes the Gamma function. Equation (5) holds.
Hence, k1 = m1 and

kt =
t∑
i=1

(−1)i+1

(
m, i, >

t

)
−

t−1∑
h=2

kh

(
m, h− 1,≥

t− h

)
, (6)

which completes the proof of the theorem. �

The first five free cumulants ki, i = 1, . . . , 5, given as a function of mj ,
j = 1, . . . , i, are stated in Corollary 2.1.

Corollary 2.1. Let (A, τ) be a non-commutative ∗-probability space and
mi = τ(ai) denotes the i-th free moment of an element a ∈ A. Then, the
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first five free cumulants ki of a are given by

k1 = m1,

k2 = m2 −m2
1,

k3 = m3 − 3m2m1 + 2m3
1,

k4 = m4 − 4m3m1 − 2m2
2 + 10m2m

2
1 − 5m4

1,

k5 = m5 − 5m4m1 + 15m3m
2
1 + 15m2

2m1 − 35m2m
3
1 − 5m3m2 + 14m5

1.

Proof. By definition k1 = m1. Using relation (3) we obtain

k2 =

2∑
i=1

(−1)i+1
∑

j1+...+ji=2
∀k jk>0

mj1 · . . . ·mji

= (−1)2m2 + (−1)3m2
1 = m2 −m2

1,

k3 =

3∑
i=1

(−1)i+1
∑

j1+...+ji=3
∀k jk>0

mj1 · . . . ·mji

−
3−1∑
h=2

kh
∑

j1+...+jh−1=3−h
∀k jk≥0

mj1 · . . . ·mjh−1

= (−1)2m3 + (−1)32m1m2 + (−1)4m3
1 − k2m1

= m3 − 3m2m1 + 2m3
1,

k4 =

4∑
i=1

(−1)i+1
∑

j1+...+ji=4
∀k jk>0

mj1 · . . . ·mji

−
3∑

h=2

kh
∑

j1+...+jh−1=4−h
∀k jk≥0

mj1 · . . . ·mjh−1

= m4 − 2m3m1 −m2
2 + 3m2m

2
1 −m4

1 − k2m2 − 2k3m1

= m4 − 4m3m1 − 2m2
2 + 10m2m

2
1 − 5m4

1,

k5 =

5∑
i=1

(−1)i+1
∑

j1+...+ji=5
∀k jk>0

mj1 · . . . ·mji

−
4∑

h=2

kh
∑

j1+...+jh−1=5−h
∀k jk≥0

mj1 · . . . ·mjh−1

= m5 − 5m4m1 − 5m3m2 + 15m3m
2
1 + 15m2

2m1 − 35m2m
3
1 + 14m5

1,
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which completes the proof. More details in the proof are given in [10]. �

The above-presented proof of Corollary 2.1 gives examples of direct cal-
culations of free cumulants using Theorem 2.1. Now consider equation (2),
which was used to obtain the free cumulants of degree 1 to 5 by the combi-
natorial approach. The equality k1 = m1 is again assumed to hold. Then

m2 := τ(a, a) =
∑

π∈NC(2)

kπ[a, a].

If π ∈ NC(2), then π = {1, 2} or π = {{1}, {2}}, hence m2 = k1k1 + k2 and
k2 = m2 − k21 = m2 −m2

1.

To obtain the third free cumulant the sum is taken over all non-crossing
partitions of the three elements set NC(3). Then

π ∈ {{1, 2, 3},` ` ` {{1, 2}, {3}},` ` ` {{1, 3}, {2}},` ` ` {{1}, {2, 3}},` ` ` {{1}, {2}, {3}}}.` ` `
Each of the sets is illustrated with a simple graph. The elements belonging
to the same subset are connected with a line. The crossing partition is
indicated by the cross of at least two lines from two distinct subsets. Hence,

m3 =
∑

π∈NC(3)

kπ[a, a, a] = k3 + k2k1+ k2k1+ k1k2 + k31

= k3 + 3k1k2+ k31,

k3 = m3−3k1k2−k31 = m3−3m1(m2 −m2
1)−m3

1

= m3−3m1m2+ 2m3
1.

While calculating the fourth free cumulant we notice that there is only one

crossing partition indicated by cross of line illustrating subsets {1, 3} and
{2, 4}, i.e.,

NC(4) 63 {{1, 3}, {2, 4}}.` ` ` `
Hence,

m4 =
∑

π∈NC(4)

kπ[a, a, a, a] = k4 + 4k3k1 + 2k22 + 6k2k
2
1 + k41,

k4 = m4 − 4k1k3 − 2k22 − 6k2k
2
1 − k41 = m4 − 4m1(m3 − 3m1m2 + 2m3

1)

−2(m2 −m2
1)

2 − 6m2
1(m2 −m2

1)−m4
1

= m4 − 4m1m3 − 2m2
2 + 10m2m

2
1 − 5m4

1.

The calculations of the fifth free cumulant, by use of (2), demand the sum-
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ming over NC(5). Consider the crossing partitions of the set {1, 2, 3, 4, 5}:

NC(5) 63{{1, 2, 4}, {3, 5}},` ` ` ` ` NC(5) 63{{1, 4}, {2, 3, 5}},` ` ` ` `
NC(5) 63 {{1, 3, 4}, {2, 5}},` ` ` ` ` NC(5) 63{{1, 3}, {2, 4, 5}},` ` ` ` `
NC(5) 63 {{2, 4}, {1, 3, 5}},` ` ` ` ` NC(5) 63 {{1, 3}, {2, 4}, {5}},` ` ` ` `
NC(5) 63 {{1}, {2, 4}, {3, 5}},` ` ` ` ` NC(5) 63{{1, 4}, {2}, {3, 5}},` ` ` ` `
NC(5) 63 {{1, 3}, {2, 5}, {4}},` ` ` ` ` NC(5) 63 {{1, 4}, {2, 5}, {3}}.` ` ` ` `

Then

m5 =
∑

π∈NC(5)

kπ[a, a, a, a, a] = k5 + 5k4k1 +

((
5

2

)
− 5

)
k3k2

+

(
5

3

)
k3k

2
1 +

((
5

1

)
1

2

(
4

2

)
− 5

)
k22k1 +

(
5

2

)
k2k

3
1 + k51

= k5 + 5k4k1 + 5k3k2 + 10k3k
2
1 + 10k22k1 + 10k2k

3
1 + k51,

k5 = m5 − 5k4k1 − 5k3k2 − 10k3k
2
1 − 10k22k1 − 10k2k

3
1 − k51

= m5 − 5(m4 − 4m3m1 − 2m2
2 + 10m2m

2
1 − 5m4

1)m1

−5(m3 − 3m2m1 + 2m3
1)(m2 −m2

1)− 10(m3 − 3m2m1 + 2m3
1)m

2
1

−10(m2 −m2
1)

2m1 − 10(m2 −m2
1)m

3
1 −m5

1

= m5 − 5m4m1 + 15m3m
2
1 + 15m2

2m1 − 35m2m
3
1 − 5m3m2 + 14m5

1.

The calculations with use of both methods are presented. To some extent we
find that summing over the i1, . . . , ih, such that i1 + . . .+ ih = k is simpler
than summing over non-crossing partitions.

3. Example of calculations for free cumulants and moments

It is important to mention a particular example of a non-commutative
∗-probability space (RMp(R), τ) as an illustration and due to the extended
engineering applications. Here, A = RMp(R) denotes set of all p×p random
matrices with entries being real random variables on a probability space
(Ω,F , P ) with finite moments of any order. Defined in this way RMp(R)
is a ∗-algebra, with the classical matrix product as multiplication and the

23
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transpose as ∗–operation. The ∗-algebra is equipped with tracial functional
τ defined as expectation of the normalized trace by

τ(X) := E
(

1

p
Tr X

)
=

1

p
E

p∑
i=1

λi =

∫
R
x

1

p

p∑
i=1

δ{λi≤x}dx =

∫
R
xdµ(x),

where X = (Xij)
p
i,j=1 ∈ RMp(R), δB denotes Dirac delta function on set

B, λi are eigenvalues of matrix X and µ = 1
p

∑p
i=1 δ{λi≤x} is ∗-distribution,

usually called the eigenvalue distribution (spectral density) of the matrix X.
This set up is of common use, when studying the spectral measure of ran-
dom matrices. Often related research problems arise within, e.g., theoretical
physics and wireless communication, see [1] and [13].

Let us consider a matrix Mp = 1
pXX′, where Xij ∼ N (0, 1), which also

belongs to (RMp(R), τ). A matrix W = pMp = XX′ ∼ Wp(I, p). For the
Wishart matrix W the relation

E(Tr Wk+1) = kE(Tr Wk) +
∑
i+j=k
i,j≥0

E(Tr Wi Tr Wj)

holds. Then

τ(Mk+1
p ) =

1

pk+2
E(Tr Wk+1)

=
k

pk+2
E(Tr Wk) +

1

pk+2

∑
i+j=k
i,j≥0

E(Tr Wi Tr Wj).

And the first free moments mk = τ(Mk
p) for the matrix Mp are given by

m1 =
1

p2
E(Tr W1) =

1

p2
E(Tr W0 Tr W0) =

p2

p2
= 1,

m2 =
1

p3
E(Tr W2) =

1

p3

(
E(Tr W) +

∑
i+j=1
i,j≥0

E(Tr Wi Tr Wj)

)
= 2 +

1

p
.

Similarly,

m3 =
4 + 6p+ 5p2

p2
,

m4 =
20 + 42p+ 29p2 + 14p3

p3
.
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Then, using Corollary 2.1, we get the free cumulants for the p × p matrix
Mp as follows:

k1 = m1 = 1,

k2 = m2 −m2
1 = 1 +

1

p
,

k3 = m3 − 3m2m1 + 2m3
1 =

4p2 + 3p3 + p4

p4
,

k4 =
20 + 24p+ 7p2 + p3

p3
.

The free cumulants for the fixed p give us the R-transform for the desired
matrices Mp. While p→∞ the matrix Mp→∞, which is an “infinite matrix”
realized by a sequence of matrices of increasing size, has the R-transform
RMp→∞(z) =

∑∞
j=0 kj+1z

j = 1+z+z2+z3+. . ., which by the inverse Stieltjes
formula corresponds to the spectral distribution given by the Marčenko–
Pastur law [6], i.e., µ′p→∞(x) = 1

2πx

√
4x− x2.

4. Conclusions

In this article we prove a new recursive relation formula between free
cumulants and moments using the concepts of Stieltjes and R-transforms.
The demonstrated results are not based on the combinatorial idea of non-
crossing partitions as in the previous studies. This implies that the relation
can be obtained with use of, in our opinion, simpler computations. There
is a strong believe that the result can successfully complete already existing
knowledge regarding cumulant-moment relations in free probability and in
some particular cases replace previously used formulas in order to provide
easier calculations or avoid introducing crossing partition related concepts.
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