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Testing equality of scale parameters of two Weibull
distributions in the presence of unequal shape
parameters

KHURSHID ALAM AND SUDHIR PAUL

ABSTRACT. Data in the form of survival times arise in many fields of
studies such as engineering, manufacturing, aeronautics and bio-medical
sciences. A popular model for survival data is the two parameter Weibull
distribution. Often lifetime or survival time data that are collected in
the form of two independent samples are assumed to have come from
two independent Weibull populations with different shape and scale pa-
rameters. In such a situation it may be of interest to test the equality
of the scale parameters with the shape parameters being unspecified.
This is equivalent to testing the equality of the location parameters with
the shape parameters being unspecified in two extreme value distribu-
tions. Also, this is analogous to the traditional Behrens—Fisher problem
of testing the equality of the means @1 and pe of two normal popula-
tions where the variances o2 and o3 are unknown. We develop four test
procedures, namely, a likelihood ratio test, a C («) test based on the
maximum likelihood estimates of the nuisance parameters, a C' («) test
based on the method of moments estimates of the nuisance parameters
by Cran (1988), and a C («) test based on the method of moments esti-
mates of the nuisance parameters by Teimouri and Gupta (2013). These
test statistics are then compared, in terms of empirical size and power,
using a simulation study.

1. Introduction

The Weibull distribution has a long history in describing data in the form
of survival times since its initiation by the Swedish physicist Waloddi Weibull
and is one of the most popular distributions in survival analysis. This distri-
bution has been considered as an appropriate model in reliability studies and
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life-testing experiments and thus has versatile use in the fields such as en-
gineering, manufacturing, aeronautics and bio-medical sciences. For recent
review see Murthy et al. [9].

Let Y be a random variable that follows a two parameter Weibull distri-
bution with shape parameter 8 and scale parameter «. Then the probability
density function of Y can be written as

fly) = i <E>(ﬁ_1) exp [— <Z)B] , y>0, B,a>0. (1.1)

(%

Often lifetime or survival time data that are collected in the form of two
samples are assumed to have come from two independent Weibull popula-
tions with different shape and scale parameters. In such a situation it may
be of interest to test the equality of scale parameters with the shape param-
eters being unspecified. For example, Pike [14] gives the times from insult
with the carcinogen DMBA to mortality from vaginal cancer in two groups
of rats. Two groups were distinguished by a pretreatment regime and the
data are reproduced in Kalbfleisch and Prentice [5]. For details of analysis
see Pike [14].

However, the problem of testing the equality of scale parameters with
the shape parameters being unspecified is equivalent to testing the equal-
ity of location parameters with the shape parameters being unspecified in
two extreme value distributions. Also, this is analogous to the traditional
Behrens—Fisher problem of testing the equality of the means pu; and po of
two normal populations where the variances o7 and 03 are unknown.

Let y11,¥12, -+ , Y1in, and Y21, Y22, - - ,Y2n, be samples from two indepen-
dent Weibull populations with parameters (a1, 81) and (ag, 52) respectively.
As a motivational example we refer to the data from Lawless [6] on times to
fatigue failure in units of millions of cycles of 10 high-speed turbine engine
bearings made out of five different compounds. The data are reproduced in
Table 7 and the maximum likelihood estimates of the parameters («, ) for
the five compounds are (12.0607,2.5881), (6.8596,2.3202), (9.6847,3.1324),
(7.5107,4.0912), and (16.3507,3.6518). Obviously, the « as well as the
parameters differ from compound to compound. So, it will be of interest to
do a pairwise comparison of the a parameters where the 8 may be different.

Thus, our objective is to test the null hypothesis Hy : a3 = o, where 51
and (39 are unspecified. We develop four test procedures, namely, a likelihood
ratio test, a C (a) test based on the maximum likelihood estimates of the
nuisance parameters, a C' («) test based on the method of moments estimates
of the nuisance parameters by Cran [4], and a C' («) test based on the method
of moments estimates of the nuisance parameters by Teimouri and Gupta
[16]. These test statistics are then compared, in terms of empirical size and
power, using a simulation study.
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Paul and Islam [13] give a brief description on the construction mecha-
nism as well as the advantages of the C'(«) or score tests. The C (a) test
is constructed by regressing the residuals of the score function for the pa-
rameter(s) of interest on the score function for the nuisance parameters.
Afterwards, the nuisance parameters are replaced by y/n (where n = num-
ber of observations used in estimating the parameters) consistent estimates.
The maximum likelihood estimates (MLEs) are y/n consistent and once the
nuisance parameters are replaced by their MLEs then the C («) statistic re-
duces to the score statistic (see Rao [15]). Many authors have shown (see,
for example, Moran [8] and Cox and Hinkley [3]) that the C («) or score test
is asymptotically equivalent to the likelihood ratio test and to tests using
the MLEs (i. e., Wald tests). Some of the worth mentioning advantages of
C («) or score tests are: (i) it often maintains, at least approximately, a
preassigned level of significance, say («) (see Bartoo and Puri [1]), (ii) it re-
quires estimates of the parameters only under the null hypothesis, and (iii)
it often produces a statistic that is simple to calculate. For more details on
the choice of score tests see Breslow [2].

The estimates of the parameters as needed are given in Section 2 and the
tests are developed in Section 3. A simulation study is conducted in Section
4. A data set is analyzed in Section 5 and a discussion follows in Section 6.

2. Estimates of the parameters

2.1. The maximum likelihood estimates. The log-likelihood under the
alternative hypothesis, apart from a constant, can be written as

Ei Bi
2 B n; yij
i =1
I = E n; log (a ) +(Bi—1) E log (yij) — nilog (o) p — J 5
i v j=1 i

The maximum likelihood estimates of the parameters «; and 3; are obtained
by solving the following estimating equations obtained from I

nzﬁz Bi _
: 51+1 Z Yij =0
Z

and

0z N4

N - log (o

==+ Zlog (yij) — nilog (ei) + g(ﬂiz) Zy log (yij) = 0
= i =1
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simultaneously. The log-likelihood under the null hypothesis is

o= [mtor () 4 (3= 1) 8 Y- 10w ()~ milo ()~ -
. 2

o

and the maximum likelihood estimates of the parameters «, 31 and (2 are
obtained by solving the following estimating equations

2 n;
Z _mﬁz+ Bz yﬁi :0’

. o abitl £t
i=1 Jj=1
ni e log (o) <~ B RS B
5t > log (y15) — n log (o) + B 2.V T oE > uij log (y1;) =0
b= j=1 j=1
and
no = log («) - B2 1 B2
Bt > log (y2)) — nalog (a) + Bz Y2i = B2 > vh; log (12) =0
j=1 Jj=1 Jj=1

simultaneously. Denote the maximum likelihood estimates of § = («a, B1, B2)
by O = (@mz, Brmis /32ml>-

2.2. The method of moments estimates by Cran. Cran [4] proposes
moments estimates of the parameters for the three-parameter Weibull distri-
bution and applies this procedure for the two-parameter model considering
the location parameter as zero. Following Cran [4] the estimates of the
parameters «; and ;, under the alternative hypothesis, are

. mi 5 In(2)
Qe = ——— and ;. = - —,
1 In(my) —In(m
r(1+&c> (m1) — In (mg)
where
B n—1 Ak .
My = EO: (1 - ;) {Ye+1) =9} with yo) =0

and y(,) is the " ordered observation.

Note that the estimate of 3; is independent of «y, so, it should be the same
under the null and the alternative hypotheses. As a moment estimate of the
common value « of a; and as under the null hypothesis we use a weighted
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average of &;. as

2 2
= E wiaic/g w;,
=1 =1

where
‘ 2 1\)?
wi= =1, 92, Vw:afcr< >—{F< >} ,
‘/ic /Bzc /Bic

and V. is the variance of a random variable from the Weibull («;, ;) pop-
ulation (see Lawless [6]). Denote these method of moments estimates by

der = (@c, Bie, 52c>~

2.3. The method of moments estimates by Teimouri and Gupta.
In a recent article Teimouri and Gupta [16] propose a method of moment
estimate of the shape parameter of a three-parameter Weibull distribution
and apply this method to a two-parameter Weibull distribution for estimat-
ing the shape parameter of a two-parameter Weibull distribution. As the
estimate by Cran [4] this estimate is also independent of the estimate of the
scale parameter « (see Cran [4] for details). Following Teimouri and Gupta
[16] the moment estimate of j3; is

—In2
In [1 iy nﬂ]
.

where 7; and CV; denote the it" sample correlation coefficient between the
observations and their ranks and the coefficient of variation respectively.
Using this estimate of 8;;4, the estimate of Ay is

ditg = Fil
)
( + Bitg

As in Section 2.2 we estimate the common value « of ai and oo unde; the
null hypothesis as a weighted average of &y but using ;4 instead of ;. as

Bitg =

2 2
Qg = wiGitg/ Y w;, where w; = —, i =1, 2,

itg

Vitg = iy P(”B;) { (”A >}
(4

Denote these method of moments estimates by 5tg

tg /Bltg7 52tg>
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3. The tests

3.1. The likelihood ratio test. Let Zl and le be the maximized log-
likelihood under the alternative and the null hypothesis respectively. Then

the likelihood ratio test statistic is LR = 2 <il — le>; which, under the null

hypothesis, follows a y? distribution with 1 degree of freedom.

3.2. The C (a) tests. Suppose the alternative hypothesis is represented
by a; = a+ ¢y, ¢ = 1,2, with ¢3 = 0. Then the null hypothesis Hy : a1 = ao
can equivalently be written as Hy : ¢1 = 0 with a, ;1 and (o treated as
nuisance parameters. With this reparameterization, the log-likelihood can
then be written as

2 T4
=3 tog () + 6 > 1os )
-

=1

(3.1)
1 A
“nilog (a+ i)} - ——— >y
(a + ﬁbi)ﬁl j=1 !
Now, let ¢ = ¢1 and § = (o, 31, B2)" and define
YT TRV YRR )
- (9(;5 ¢:07 M= Do ¢:07 "2 = 861 ¢:07 V3 = 8&2 ¢:0-

Then the C(«) statistic is based on the adjusted score S(6) =¥ — a1y —
asy2 — asys, where ai, as, and as are partial regression coefficient of ¢ on
~v1, ¥ on 7, and ¥ on 73 respectively. The variance-covariance of S (9) is
D — AB A’ and the regression coefficients a = (a1,a2,a3) = AB™!, where

2
Dis1><1,Ais1><3andBisBxSwithelementsD:E—ﬂ‘ ,
d¢? lp=0

921 92 92l
A= E {_8¢8a’¢0]’ A2 = E [_ 8¢8ﬁ1’¢0]’ A3 = B {_&Z)@BQL&O}

B—E—azl’ By — B —E—azl‘ Bys — By —
1n = 9allso|” D12 = B = 8088, lo_o|” P13 = Bar =

021 521 521
EPa@ﬁ¢JB”—EPwﬂ»}&**@—EPWW@hJ

0%l
d By =E |~ |
i By~ | 053 o
Derivation of the above elements based on the Weibull log-likelihood (3.1)
are given in the Appendix.

Substituting /n (where n = nj 4+ ng) consistent estimate of § in S, D, A
and B, the C(«) statistic can be obtained as

C=5*/(D-AB'4), (3.2)
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which is approximately distributed as a chi-squared with 1 degree of freedom
(see Neyman [10], Neyman and Scott [12], Moran [8], and Neyman [11]).

If the maximum likelihood estimate Sml of ¢ is used then the maximized
scores 71, 72, and -3 are all zero and hence S = 1, and the C(«) statistic
reduces to a score statistic (see Rao [15])

Cpy =1/ (D—AB™ 4. (3.3)

Further, two C(a) statistics are obtained from equation (3.2) by using de,
and 5,59 in all the expressions of S, D, A and B. Denote these C(«) statistics
by Cg and Ci4 respectively. Each of the statistics Cy,;, Cor and Cyy is
approximately distributed as a chi-squared with 1 degree of freedom.

4. Simulation study

We conduct a simulation study to compare the performance of the test
procedures, namely, LR, C,;, C. and C, that were developed in Section
3. The performance of the test procedures are compared on the basis of
empirical level and power. To compare the statistics in terms of empirical
level we considered sample sizes n1 = no = 5, 10, 20, 50, values of scale
parameter a; = ag = 5, 10, 15, the values of first shape parameter 51 =
3, 6, 10, and the values of second shape parameter 5o = 8 + 81 with 8 =
0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00. The results are given in Table 1 and
Table 2 which are summarized in what follows.

Performance of score statistic is the worst in the sense that it shows most
conservative behaviour, ever for sample size as large as n; = ng = 50. The
best overall performance is of the C(«) statistic Cer. Even for sample size
as small as n; = ny = 5 the level never drops below 4.1%.

To compare power performance of the four statistics we considered the
same sample sizes as for the study of performance of the statistics in terms
of empirical level. The combinations of (S, B2) considered were (81, B2)
= (3, 4), (5, 8). Further, we considered as = a1 + «, with oy = 5,10,15
and « = 0.00,0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00. Except for the fact
that as sample size increases the power of all the statistics increases, the
comparative performance for ny = ng = 5, n1 = ng = 10, n; = ny = 20, and
n1 = no = 50 are similar. So, we present the power results in Table 3 for
n1 = n9 = 5 and in Table 4 for ny = ny = 50.

From Table 3 and Table 4 we see that power performance of the two C'(«)
statistics C, and Cj, are similar and best overall, although the former has
some edge over the latter. Power performance of the score test statistic C)
is the worst, as expected, as its level is the lowest.
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5. Examples

Lawless [6] presents a set of data (originally given by McCool [7]) that
represent the times to fatigue failure in units of millions of cycles of 10
high-speed turbine engine bearings made out of five different compounds.
The data are given in Table 7. We conduct a pairwise comparison of the five
different compound types. The maximum likelihood estimates of parameters,
under both alternative and null hypotheses, and the methods of moments
estimates are presented in Table 5 and the values of the test statistics along
with the corresponding p-values are given in Table 6.

Out of the 10 pairwise comparisons, conclusion of whether to reject or
not to reject the hypothesis of equality of the scale parameters is the same
for six pairs, namely the pairs (I, 1I), (I,11I), (I,IV), (II,V), (I11,1V),
and (I1I,1V) by all four methods. For three of the remaining four pairs,
namely, the pairs (I,V), (I1,I11), and (IV,V), the statistic C¢, rejects the
null hypothesis of equality of the scale parameters at 5% level of significance,
whereas, this hypothesis is not rejected by the other three statistics. For
the remaining pair (I1,1V’) both the statistics C¢, and C, reject the null
hypothesis, whereas the other two statistics LR and C),; do not reject the
null hypothesis. Further, rejection by the the statistic C¢, is stronger (p-
value is 0.0005) than by the statistic Cy, (p-value is 0.0011). The analysis
here agree with the finding in the simulation study that the statistic C., is
likely to be most powerful among the four statistics studies.

6. Discussion

In this section we dealt with the survival data that follow Weibull distri-
bution and we developed four test procedures to test the equality of scale
parameters of two Weibull distributions where the shape parameters are as-
sumed unknown and unequal. We developed four test procedures, namely,
a likelihood ratio statistic LR, a C («) (score) statistic based on maximum
likelihood estimates of the nuisance parameters C,,;, a C' («) statistic based
on method of moments estimates of the nuisance parameters by Cran [4] C,
and a C («a) statistic based on method of moments estimates of the nuisance
parameters by Teimouri and Gupta [16] Ct,.

A simulation study in terms of empirical level show the best overall perfor-
mance of the C(«) statistic C¢,. Even for sample size as small asn; =ng =5
the level never drops below 4.1%. Performance of score statistic is the worst
in the sense that it shows most conservative behaviour, ever for sample size
as large as ny = no = 50. Further simulations show that power performance
of the two C'(a) statistics C and Cyy are similar and best overall, although
the former has some edge over the latter. Power performance of the score
test statistic C,; is the worst which is expected, as its level is the lowest.
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The advantage of the C' («) or the score test is discussed in the introduc-
tion. Further, based on the fact that a C'(«) statistic, such as C¢,, performs
best overall, it would be of interest to explore whether the C («) or the
score test can be used to analyze two groups of survival data following a
three-parameter distribution such as the three-parameter Weibull distribu-
tion discussed by Teimouri and Gupta [16]. This problem will be investigated
in a future paper.

Appendix

A. Derivation of the elements of S, D, A, and B of the C(«) statistic
based on the Weibull likelihood (3.1).
After detailed calculation we obtain

2

/J’ ﬁ
V== =t aﬁ1+1 Zylj’ = Z - aﬁz+1z

=1
ny e log(ar) <=
1
V2 = E‘FZlOg(ylj)_nl log(ar)+ P 1] P Zylj g(y15),
j=1 j=1
n
+ilo log( )+log(0z) 3 Z ? log(
g(y25) —n2 log(a Bz Ya; g(Y2));
J=1 J=
 ompy mBABHE (y13> S B n151(51+1) (yU)
D__ a2 + a61+2 ’ 1= Oé2 + a181+2 ’
n; m{l-pilog(a )}E(yM) mBlE{yU log (yu)}
Ay = —— — A3=0
2 aPitl abitl ’ ’
5 i n@g niBi (Bi +1) E (Z/ZZ>
= Z o2 o Bit2 ’
7j=1
n, mf{l—pilog (a)}E<y15]1> n1 BB ! log (yu)}
Biy =By = = —
12 o abfitl afi+l ’
ny  ma{l=Palog ()} B(ys})  maBoB{us? log (u2)
Biz = Bs1 = o B2+1 N ab2tl ’
i millog(a))’ E(ylﬁmE{y?; (log (31,))°}
By = — + 3 , Bag = B3z =0,
1 o’
ny  m2{log ()Y B (457) +nab {yff (1o (42,))°}
Bsg = + .
52 aB2

These expressions are then evaluated at o = &, 51 = Bl and By = Bg,
where, for example, & is either &y,;, & and &y in Cyy, Cor and Cyy re-
spectively. Expectation of a function f(y,d&, p1, f2) of a Weibull random
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variable y is calculated as fooo fly, &, B, Bg)f(y)dy, where f(y) is as given in
equation (1.1).

B. The tables.
TABLE 1. Empirical level (%) of the test statistics LR, Cyyy,

Cer, and Cyy for oy = ap = av and B2 = B+ B1; based on 5000
iterations, and nominal level = 0.05.

ni, na Statistics  («, B1) B8
(5,3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00
14*5,5 LR 3.2 3.3 3.3 3.8 3.9 3.6 3.5
Chni 2.9 3.1 3.2 3.4 3.6 3.3 3.1
Cer 4.1 4.4 4.3 4.2 4.5 4.8 4.4
Cig 3.8 3.7 3.9 4.1 4.5 4.2 4.0
(10, 6)
LR 3.2 3.5 3.7 4.1 4.2 4.1 3.9
Chnt 3.0 3.1 34 34 38 36 33
Cer 4.3 4.6 4.9 5.1 4.9 5.2 4.8
Cig 3.7 4.1 4.4 4.7 4.5 4.8 4.4
(15, 10)
LR 3.4 3.8 4.1 4.2 4.3 4.5 4.4
Chnt 32 35 35 38 41 38 36
Cer 4.5 4.7 4.8 5.0 5.4 5.2 5.4
Cig 3.8 4.1 4.4 4.5 4.8 4.6 4.8
(5,3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00
14*10, 10 LR 3.6 3.8 4.2 4.4 4.4 4.4 4.5
Chnl 3.2 3.3 3.6 3.8 4.0 3.9 3.8
Cer 4.1 4.6 5.1 5.1 5.2 5.1 5.4
Cig 4.0 4.4 4.7 4.8 5.0 5.1 5.2
(10, 6)
LR 3.8 38 41 44 45 44 43
Chnt 3.4 3.5 4.0 4.0 4.3 4.4 4.1
Cer 4.5 4.7 5.1 5.0 5.3 5.4 5.0
Cig 41 43 45 47 47 51 48
(15, 10)
LR 34 39 41 46 46 4.7 44
Chnl 34 37 41 44 45 45 4.0
Cer 4.5 5.2 5.3 5.2 5.3 5.4 5.6
Cig 4.2 4.7 4.8 5.0 4.9 5.0 5.1
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TABLE 2. Empirical level (%) of the test statistics LR, Cyyy,
Cer, and Cyq for ag = ap = o and B2 = 5+ B1; based on 5000

iterations, and nominal level = 0.05.

ni, N2 Statistics  (a, B1) B8
(5,3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00
14*20, 20 LR 3.7 37 43 45 47 47 47
Coi 34 37 37 39 44 40 3.9
Cer 45 50 5.2 5.2 5.1 54 5.2
Cig 43 46 49 5.0 5.1 53 5.2
(10, 6)
LR 38 40 45 44 48 46 4.6
Cni 36 36 39 4.1 46 45 44
Cer 47 51 51 50 53 56 54
Ciyg 42 46 5.1 4.8 50 52 5.0
(15, 10)
LR 39 42 44 47 5.1 4.7 4.8
Coi 3.7 39 42 44 47 46 4.5
Cer 45 48 54 55 55 54 57
Cig 44 46 5.1 5.2 54 5.1 5.4
(5, 3) 0.00 050 1.00 1.50 2.00 2.50 3.00
14*50, 50 LR 43 45 48 50 49 48 48
Cmi 39 42 42 42 46 44 4.2
Cer 49 51 55 55 54 53 55
Cig 4.6 4.8 5.0 5.2 5.0 5.3 5.1
(10, 6)
LR 43 46 47 47 51 49 49
Chnt 4.1 42 45 46 4.7 47 4.6
Cer 5.1 5.1 5.5 54 53 56 56
Ciyg 48 50 52 5.1 53 54 5.2
(15, 10)
LR 4.4 47 48 5.1 5.2 5.1 5.0
Cmi 4.4 45 45 47 47 48 438
Cer 55 57 57 54 55 56 54
Cig 52 5.2 5.5 54 55 54 5.0
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TABLE 3. Empirical power (%) of test statistics LR, Cpy,
Cer, and Cyy for ap = aq + a; based on 5000 iterations,
n1 = ngy = 5, and nominal level = 0.05.
2*Statistics  2*(aa, 81, B2) «a
(5,3,4) 0.00 050 1.00 1.50 2.00 2.50 3.00 4.00 5.00
LR 3.1 3.8 6.0 106 16.7 24.8 36.8 57.6 81.9
Cri 2.7 3.3 5.4 9.7 153 22.7 344 548 785
Cer 4.0 4.8 70 119 17.5 26.1 38.5 59.4 8&83.7
Cig 36 42 64 108 170 249 376 583 82.6
(5, 5, 8)
LR 3.2 3.8 6.0 11.2 17.1 253 37.1 58.2 828
Chnt 28 34 55 103 159 231 35.0 553 788
Cer 4.0 4.7 7.1 124 183 275 39.7 61.0 8&84.1
Cig 3.7 45 6.7 11.7 177 26.0 379 588 83.1
(10, 3, 4)
LR 3.1 3.7 56 10.3 16.5 24.7 36.3 574 814
Chnl 2.8 3.3 5.3 9.8 153 223 345 54.1 76.2
Cer 41 47 6.7 115 180 27.1 389 60.6 83.6
Ciy 35 40 6.0 107 172 256 37.2 583 82.3
(10, 5, 8)
LR 3.1 3.6 59 10.8 17.1 25.1 37.1 57.7 8&83.1
Crmi 29 34 55 102 158 23.0 353 552 T7.5
Cer 43 49 71 120 186 279 39.8 60.9 84.7
Ciyg 3.6 4.2 6.3 11.1 176 26.3 38.7 594 &83.9
(15, 3, 4)
LR 3.2 3.9 5.7 10.5 16.8 24.3 359 56.8 825
Coi 3.1 3.6 54 10.0 153 224 35.0 54.6 76.4
Cer 4.5 5.1 6.9 11.8 17.8 27.1 38.4 59.3 &83.5
Cig 36 42 6.1 11.0 170 258 37.8 58.0 82.6
(15, 5, 8)
LR 3.5 4.2 6.1 11.2 17.1 249 36.7 57.3 82.9
Chni 33 39 57 105 158 23.7 354 553 T77.1
Cer 4.7 5.2 7.1 127 183 27.6 39.0 60.1 &83.9
Cig 3.6 4.4 6.2 119 176 26.4 38.3 58.8 8&83.1
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TABLE 4. Empirical power (%) of test statistics LR, Cyy,
Cer, and Cyy for ap = aq + a; based on 5000 iterations,
n1 = ng = 50, and nominal level = 0.05.
2*Statistics  2*(aa, 81, B2) «a
(5,3,4) 0.00 050 1.00 1.50 2.00 2.50 3.00 4.00 5.00
LR 46 59 80 134 232 350 489 754 100
Cri 4.1 5.5 7.5 127 22.0 33.7 471 73.2 100
Cer 5.5 6.7 87 142 247 369 520 784 100
Cig 49 6.2 81 138 239 358 50.3 77.0 100
(5, 5, 8)
LR 4.7 6.1 8.1 13.7 245 364 503 772 100
Cru 4.1 5.6 7.5 13.1 234 34.3 484 75.1 100
Cer 54 70 9.0 146 26.3 381 534 79.6 100
Cig 51 6.5 86 145 258 373 52.1 78.6 100
(10, 3, 4)
LR 46 59 79 147 259 38.0 52.6 79.8 100
Chnl 4.5 5.8 7.6 139 24.1 349 491 76.4 100
Cer 55 69 87 158 294 41.1 579 84.2 100
Ciy 51 64 84 153 279 39.8 555 81.6 100
(10, 5, 8)
LR 4.7 6.2 81 156 26.3 38.6 53.2 80.3 100
Crmi 4.5 59 79 143 247 355 49.7 773 100
Cer 54 69 89 171 327 440 614 86.3 100
Ciyg 5.1 6.5 84 164 29.1 414 575 &83.1 100
(15, 3, 4)
LR 4.6 6.1 8.0 14.1 23.6 353 487 74.8 99.7
Coi 4.4 5.7 7.5 13.6 229 33.2 464 71.7 98.8
Cer 56 7.0 88 157 26.0 37.7 53.1 789 100
Cig 52 65 83 15.0 249 36.1 51.7 782 100
(15, 5, 8)
LR 49 6.2 80 153 258 379 526 794 100
Chni 48 6.0 7.8 140 245 352 49.0 76.8 100
Cer 5.3 6.6 8.8 17.0 324 434 60.7 85.6 100
Cig 51 6.5 85 163 28.6 41.0 56.8 82.4 100
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TABLE 5. Estimates of parameters obtained by different
methods for compound combinations of bearing specimens
data in Table 7

2*Estimates Compound type combinations

(I,IT) (I,III) (I,IV)  (I,V) (II,III)

Go 9.0056  10.4848 11.7213  14.7887  8.5093
B1o 1.8385 2.2491 2.5351 2.4628 2.3276
fBao 2.2376 3.2077 1.9758 3.1844 2.6780
A1q 12.0607 12.0607  12.0607  12.0607  6.8596
Q24 6.8596 9.6847 7.5107 16.3507  9.6847
Bia 2.5881 2.5881 2.5881 2.5881 2.3202
Baa 2.3202 3.1324 4.0912 3.6518 3.1324
Ger 7.9472  10.4246  11.4968  13.1814 7.8480
Bier 2.4941 2.4941 2.4941 2.4941 2.6956
Bocr 2.6956 3.0152 2.5244 3.5348 3.0152
Gig 7.9686  10.4688  11.5176  14.2777 7.9218
Bltg 2.0733 2.0733 2.0733 2.0733 2.2457
Bgtg 2.2457 2.5192 2.0992 2.9636 2.5192

(II,IV) (II,V) (II1,1V) (III,V) (IV,V)

Go 7.1645 9.5075 8.6567 13.8549  15.0676
Blo 2.3718 2.1549 2.3160 2.2909 1.9228
Bgo 1.5713 1.4804 1.3236 2.8340 3.2844
Q1a 6.8596 6.8596 9.6847 9.6847 7.5107
24 7.5107  16.3507 7.5107 16.3507  16.3507
Bla 2.3202 2.3202 3.1324 3.1324 4.0912
Bga 4.0912 3.6518 4.0912 3.6518 3.6518
Ger 7.8763 8.8612 10.1640  11.7659 13.4134
Blc’r 2.6956 2.6956 3.0152 3.0152 2.5244
BQU. 2.5244 3.5348 2.5244 3.5348 3.5348
Gitg 7.8992 8.9299 10.2093  11.8609  13.5077
Bltg 2.2457 2.2457 2.5192 2.5192 2.0992

thg 2.0992  2.9636 2.0992 2.9636 2.9636
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TABLE 6. Test statistics along with p-values for compound
combinations of bearing specimens data in Table 7

2*Statistics Compound type combinations

(I,IT) (I,III) (I,IV)  (I,V) (II,III)
2*LR 7.0443  1.6233  0.5067  3.4073  3.4310
(0.0080) (0.2026)  (0.4766)  (0.0649) (0.0640)

2%Clpy 54028  1.4351  0.1191  2.6298  2.7254
(0.0201) (0.2309)  (0.7300)  (0.1049)  (0.0988)

2%Cly 13.1311  1.9438  0.8346  4.0383  4.5123
(0.0003) (0.1633)  (0.3609) (0.0445) (0.0337)

2%Cly 11.8042  1.1957  0.0147  2.5652  3.3701
(0.0006) (0.2742)  (0.9034)  (0.1092) (0.0664)

(I1,1V) (IL,V) (III,IV) (III,V) (IV,V)
LR 74850  18.8333  1.0934  10.1554  2.0559
(0.0062)  (0.0000)  (0.2957)  (0.0014) (0.0856)

2*Clony 3.6041 85357  0.8114  5.8044  2.6429
(0.0576)  (0.0035)  (0.3677) (0.0152)  (0.1040)

2*C.r 12.0014 21.4434  2.3691  16.8222  4.3819
(0.0005) (0.0000)  (0.1238)  (0.0000) (0.0363)

2%Cq 10.6301  98.0519  0.9900  15.7253  3.8369
(0.0011)  (0.0000) (0.3198)  (0.0001) (0.0501)

TABLE 7. Failure times of different bearing specimens

Type of compound
1 17 117 IV v
3.03 3.19 346 588 6.43
553 4.26 522 6.74 9.97
5.60 4.47 5.69 6.90 10.39
9.30 4.53 6.54 6.98 13.55
9.92 4.67 9.16 7.21 14.45
12.51 4.69 9.40 8.14 14.72
12.95 5.78 10.19 859 16.81
1521 6.79 10.71 9.80 18.39
16.04 9.37 12.58 12.28 20.84
16.84 12.75 13.41 25.46 21.51
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