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Testing equality of scale parameters of two Weibull
distributions in the presence of unequal shape

parameters

Khurshid Alam and Sudhir Paul

Abstract. Data in the form of survival times arise in many fields of
studies such as engineering, manufacturing, aeronautics and bio-medical
sciences. A popular model for survival data is the two parameter Weibull
distribution. Often lifetime or survival time data that are collected in
the form of two independent samples are assumed to have come from
two independent Weibull populations with different shape and scale pa-
rameters. In such a situation it may be of interest to test the equality
of the scale parameters with the shape parameters being unspecified.
This is equivalent to testing the equality of the location parameters with
the shape parameters being unspecified in two extreme value distribu-
tions. Also, this is analogous to the traditional Behrens–Fisher problem
of testing the equality of the means µ1 and µ2 of two normal popula-
tions where the variances σ2

1 and σ2
2 are unknown. We develop four test

procedures, namely, a likelihood ratio test, a C (α) test based on the
maximum likelihood estimates of the nuisance parameters, a C (α) test
based on the method of moments estimates of the nuisance parameters
by Cran (1988), and a C (α) test based on the method of moments esti-
mates of the nuisance parameters by Teimouri and Gupta (2013). These
test statistics are then compared, in terms of empirical size and power,
using a simulation study.

1. Introduction

The Weibull distribution has a long history in describing data in the form
of survival times since its initiation by the Swedish physicist Waloddi Weibull
and is one of the most popular distributions in survival analysis. This distri-
bution has been considered as an appropriate model in reliability studies and
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life-testing experiments and thus has versatile use in the fields such as en-
gineering, manufacturing, aeronautics and bio-medical sciences. For recent
review see Murthy et al. [9].

Let Y be a random variable that follows a two parameter Weibull distri-
bution with shape parameter β and scale parameter α. Then the probability
density function of Y can be written as

f(y) =
β

α

( y
α

)(β−1)
exp

[
−
( y
α

)β]
, y ≥ 0, β, α > 0. (1.1)

Often lifetime or survival time data that are collected in the form of two
samples are assumed to have come from two independent Weibull popula-
tions with different shape and scale parameters. In such a situation it may
be of interest to test the equality of scale parameters with the shape param-
eters being unspecified. For example, Pike [14] gives the times from insult
with the carcinogen DMBA to mortality from vaginal cancer in two groups
of rats. Two groups were distinguished by a pretreatment regime and the
data are reproduced in Kalbfleisch and Prentice [5]. For details of analysis
see Pike [14].

However, the problem of testing the equality of scale parameters with
the shape parameters being unspecified is equivalent to testing the equal-
ity of location parameters with the shape parameters being unspecified in
two extreme value distributions. Also, this is analogous to the traditional
Behrens–Fisher problem of testing the equality of the means µ1 and µ2 of
two normal populations where the variances σ21 and σ22 are unknown.

Let y11, y12, · · · , y1n1 and y21, y22, · · · , y2n2 be samples from two indepen-
dent Weibull populations with parameters (α1, β1) and (α2, β2) respectively.
As a motivational example we refer to the data from Lawless [6] on times to
fatigue failure in units of millions of cycles of 10 high-speed turbine engine
bearings made out of five different compounds. The data are reproduced in
Table 7 and the maximum likelihood estimates of the parameters (α, β) for
the five compounds are (12.0607, 2.5881), (6.8596, 2.3202), (9.6847, 3.1324),
(7.5107, 4.0912), and (16.3507, 3.6518). Obviously, the α as well as the β
parameters differ from compound to compound. So, it will be of interest to
do a pairwise comparison of the α parameters where the β may be different.

Thus, our objective is to test the null hypothesis H0 : α1 = α2, where β1
and β2 are unspecified. We develop four test procedures, namely, a likelihood
ratio test, a C (α) test based on the maximum likelihood estimates of the
nuisance parameters, a C (α) test based on the method of moments estimates
of the nuisance parameters by Cran [4], and a C (α) test based on the method
of moments estimates of the nuisance parameters by Teimouri and Gupta
[16]. These test statistics are then compared, in terms of empirical size and
power, using a simulation study.
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Paul and Islam [13] give a brief description on the construction mecha-
nism as well as the advantages of the C (α) or score tests. The C (α) test
is constructed by regressing the residuals of the score function for the pa-
rameter(s) of interest on the score function for the nuisance parameters.
Afterwards, the nuisance parameters are replaced by

√
n (where n = num-

ber of observations used in estimating the parameters) consistent estimates.
The maximum likelihood estimates (MLEs) are

√
n consistent and once the

nuisance parameters are replaced by their MLEs then the C (α) statistic re-
duces to the score statistic (see Rao [15]). Many authors have shown (see,
for example, Moran [8] and Cox and Hinkley [3]) that the C (α) or score test
is asymptotically equivalent to the likelihood ratio test and to tests using
the MLEs (i. e., Wald tests). Some of the worth mentioning advantages of
C (α) or score tests are: (i) it often maintains, at least approximately, a
preassigned level of significance, say (α) (see Bartoo and Puri [1]), (ii) it re-
quires estimates of the parameters only under the null hypothesis, and (iii)
it often produces a statistic that is simple to calculate. For more details on
the choice of score tests see Breslow [2].

The estimates of the parameters as needed are given in Section 2 and the
tests are developed in Section 3. A simulation study is conducted in Section
4. A data set is analyzed in Section 5 and a discussion follows in Section 6.

2. Estimates of the parameters

2.1. The maximum likelihood estimates. The log-likelihood under the
alternative hypothesis, apart from a constant, can be written as

l1 =

2∑
i=1

ni log

(
βi
αi

)
+ (βi − 1)


ni∑
j=1

log (yij)− ni log (αi)

−
ni∑
j=1

yβiij

αβii

 .

The maximum likelihood estimates of the parameters αi and βi are obtained
by solving the following estimating equations obtained from l1

−niβi
αi

+
βi

αβi+1
i

ni∑
j=1

yβiij = 0

and

ni
βi

+

ni∑
j=1

log (yij)− ni log (αi) +
log(αi)

αβii

ni∑
j=1

yβiij −
1

αβii

ni∑
j=1

yβiij log (yij) = 0

4
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simultaneously. The log-likelihood under the null hypothesis is

l0 =
2∑
i=1

ni log

(
βi
α

)
+ (βi − 1)


ni∑
j=1

log (yij)− ni log (α)

−
ni∑
j=1

yβiij

αβi


and the maximum likelihood estimates of the parameters α, β1 and β2 are
obtained by solving the following estimating equations

2∑
i=1

−niβi
α

+
βi

αβi+1

ni∑
j=1

yβiij

 = 0,

n1
β1

+

n1∑
j=1

log (y1j)− n1 log (α) +
log (α)

αβ1

n1∑
j=1

yβ11j −
1

αβ1

n1∑
j=1

yβ11j log (y1j) = 0

and

n2
β2

+

n2∑
j=1

log (y2j)− n2 log (α) +
log (α)

αβ2

n2∑
j=1

yβ22j −
1

αβ2

n2∑
j=1

yβ22j log (y2j) = 0

simultaneously. Denote the maximum likelihood estimates of δ = (α, β1, β2)

by δ̂ml =
(
α̂ml, β̂1ml, β̂2ml

)
.

2.2. The method of moments estimates by Cran. Cran [4] proposes
moments estimates of the parameters for the three-parameter Weibull distri-
bution and applies this procedure for the two-parameter model considering
the location parameter as zero. Following Cran [4] the estimates of the
parameters αi and βi, under the alternative hypothesis, are

α̂ic =
m̄1

Γ
(

1 + 1
β̂ic

) and β̂ic =
ln (2)

ln (m̄1)− ln (m̄2)
,

where

m̄k =
n−1∑
r=0

(
1− r

n

)k {
y(r+1) − y(r)

}
with y(0) = 0

and y(r) is the rth ordered observation.
Note that the estimate of βi is independent of αi, so, it should be the same

under the null and the alternative hypotheses. As a moment estimate of the
common value α of α1 and α2 under the null hypothesis we use a weighted
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average of α̂ic as

α̂c =
2∑
i=1

wiα̂ic/
2∑
i=1

wi,

where

wi =
ni

V̂ic
, i = 1, 2, V̂ic = α̂2

ic

[
Γ

(
1 +

2

β̂ic

)
−
{

Γ

(
1 +

1

β̂ic

)}2
]
,

and Vic is the variance of a random variable from the Weibull (αi, βi) pop-
ulation (see Lawless [6]). Denote these method of moments estimates by

δ̂cr =
(
α̂c, β̂1c, β̂2c

)
.

2.3. The method of moments estimates by Teimouri and Gupta.
In a recent article Teimouri and Gupta [16] propose a method of moment
estimate of the shape parameter of a three-parameter Weibull distribution
and apply this method to a two-parameter Weibull distribution for estimat-
ing the shape parameter of a two-parameter Weibull distribution. As the
estimate by Cran [4] this estimate is also independent of the estimate of the
scale parameter α (see Cran [4] for details). Following Teimouri and Gupta
[16] the moment estimate of βi is

β̂itg =
−ln2

ln

[
1− ri√

3
CVi

√
ni + 1

ni − 1

] ,
where ri and CVi denote the ith sample correlation coefficient between the
observations and their ranks and the coefficient of variation respectively.
Using this estimate of β̂itg, the estimate of α̂itg is

α̂itg =
m̄1

Γ
(

1 + 1
β̂itg

) .
As in Section 2.2 we estimate the common value α of α1 and α2 under the
null hypothesis as a weighted average of α̂itg but using β̂itg instead of β̂ic as

α̂tg =
2∑
i=1

wiα̂itg/
2∑
i=1

wi, where wi =
ni

V̂itg
, i = 1, 2,

V̂itg = α̂2
itg

Γ

(
1 +

2

β̂itg

)
−

{
Γ

(
1 +

1

β̂itg

)}2
 .

Denote these method of moments estimates by δ̂tg =
(
α̂tg, β̂1tg, β̂2tg

)
.
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3. The tests

3.1. The likelihood ratio test. Let l̂1 and l̂0 be the maximized log-
likelihood under the alternative and the null hypothesis respectively. Then

the likelihood ratio test statistic is LR = 2
(
l̂1 − l̂0

)
; which, under the null

hypothesis, follows a χ2 distribution with 1 degree of freedom.

3.2. The C (α) tests. Suppose the alternative hypothesis is represented
by αi = α+φi, i = 1, 2, with φ2 = 0. Then the null hypothesis H0 : α1 = α2

can equivalently be written as H0 : φ1 = 0 with α, β1 and β2 treated as
nuisance parameters. With this reparameterization, the log-likelihood can
then be written as

l =

2∑
i=1

ni log

(
βi

α+ φi

)
+ (βi − 1)


ni∑
j=1

log (yij)

−ni log (α+ φi)} −
1

(α+ φi)
βi

ni∑
j=1

yβiij

 .
(3.1)

Now, let φ = φ1 and δ = (α, β1, β2)
′ and define

ψ =
∂l

∂φ

∣∣∣
φ=0

, γ1 =
∂l

∂α

∣∣∣
φ=0

, γ2 =
∂l

∂β1

∣∣∣
φ=0

, and γ3 =
∂l

∂β2

∣∣∣
φ=0

.

Then the C(α) statistic is based on the adjusted score S(δ) = ψ− a1γ1−
a2γ2 − a3γ3, where a1, a2, and a3 are partial regression coefficient of ψ on
γ1, ψ on γ2, and ψ on γ3 respectively. The variance-covariance of S (δ) is
D − AB−1A′ and the regression coefficients a = (a1, a2, a3) = AB−1, where

D is 1 × 1, A is 1 × 3 and B is 3 × 3 with elements D = E

[
− ∂

2l

∂φ2

∣∣∣
φ=0

]
,

A1 = E

[
− ∂2l

∂φ∂α

∣∣∣
φ=0

]
, A2 = E

[
− ∂2l

∂φ∂β1

∣∣∣
φ=0

]
, A3 = E

[
− ∂2l

∂φ∂β2

∣∣∣
φ=0

]
,

B11 = E

[
− ∂

2l

∂α2

∣∣∣
φ=0

]
, B12 = B21 = E

[
− ∂2l

∂α∂β1

∣∣∣
φ=0

]
, B13 = B31 =

E

[
− ∂2l

∂α∂β2

∣∣∣
φ=0

]
, B22 = E

[
− ∂

2l

∂β21

∣∣∣
φ=0

]
, B23 = B32 = E

[
− ∂2l

∂β1∂β2

∣∣∣
φ=0

]
and B33 = E

[
− ∂

2l

∂β22

∣∣∣
φ=0

]
.

Derivation of the above elements based on the Weibull log-likelihood (3.1)
are given in the Appendix.

Substituting
√
n (where n = n1 + n2) consistent estimate of δ in S, D, A

and B, the C(α) statistic can be obtained as

C = S2 /
(
D −AB−1A′

)
, (3.2)
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which is approximately distributed as a chi-squared with 1 degree of freedom
(see Neyman [10], Neyman and Scott [12], Moran [8], and Neyman [11]).

If the maximum likelihood estimate δ̂ml of δ is used then the maximized
scores γ1, γ2, and γ3 are all zero and hence S = ψ, and the C(α) statistic
reduces to a score statistic (see Rao [15])

Cml = ψ2 / (D −AB−1A′). (3.3)

Further, two C(α) statistics are obtained from equation (3.2) by using δ̂cr
and δ̂tg in all the expressions of S, D, A and B. Denote these C(α) statistics
by Ccr and Ctg respectively. Each of the statistics Cml, Ccr and Ctg is
approximately distributed as a chi-squared with 1 degree of freedom.

4. Simulation study

We conduct a simulation study to compare the performance of the test
procedures, namely, LR, Cml, Ccr and Ctg that were developed in Section
3. The performance of the test procedures are compared on the basis of
empirical level and power. To compare the statistics in terms of empirical
level we considered sample sizes n1 = n2 = 5, 10, 20, 50, values of scale
parameter α1 = α2 = 5, 10, 15, the values of first shape parameter β1 =
3, 6, 10, and the values of second shape parameter β2 = β + β1 with β =
0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00. The results are given in Table 1 and
Table 2 which are summarized in what follows.

Performance of score statistic is the worst in the sense that it shows most
conservative behaviour, ever for sample size as large as n1 = n2 = 50. The
best overall performance is of the C(α) statistic Ccr. Even for sample size
as small as n1 = n2 = 5 the level never drops below 4.1%.

To compare power performance of the four statistics we considered the
same sample sizes as for the study of performance of the statistics in terms
of empirical level. The combinations of (β1, β2) considered were (β1, β2)
= (3, 4), (5, 8). Further, we considered α2 = α1 + α, with α1 = 5, 10, 15
and α = 0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00. Except for the fact
that as sample size increases the power of all the statistics increases, the
comparative performance for n1 = n2 = 5, n1 = n2 = 10, n1 = n2 = 20, and
n1 = n2 = 50 are similar. So, we present the power results in Table 3 for
n1 = n2 = 5 and in Table 4 for n1 = n2 = 50.

From Table 3 and Table 4 we see that power performance of the two C(α)
statistics Ccr and Ctg are similar and best overall, although the former has
some edge over the latter. Power performance of the score test statistic Cml
is the worst, as expected, as its level is the lowest.

5
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5. Examples

Lawless [6] presents a set of data (originally given by McCool [7]) that
represent the times to fatigue failure in units of millions of cycles of 10
high-speed turbine engine bearings made out of five different compounds.
The data are given in Table 7. We conduct a pairwise comparison of the five
different compound types. The maximum likelihood estimates of parameters,
under both alternative and null hypotheses, and the methods of moments
estimates are presented in Table 5 and the values of the test statistics along
with the corresponding p-values are given in Table 6.

Out of the 10 pairwise comparisons, conclusion of whether to reject or
not to reject the hypothesis of equality of the scale parameters is the same
for six pairs, namely the pairs (I, II), (I, III), (I, IV ), (II, V ), (III, IV ),
and (III, IV ) by all four methods. For three of the remaining four pairs,
namely, the pairs (I, V ), (II, III), and (IV, V ), the statistic Ccr rejects the
null hypothesis of equality of the scale parameters at 5% level of significance,
whereas, this hypothesis is not rejected by the other three statistics. For
the remaining pair (II, IV ) both the statistics Ccr and Ctg reject the null
hypothesis, whereas the other two statistics LR and Cml do not reject the
null hypothesis. Further, rejection by the the statistic Ccr is stronger (p-
value is 0.0005) than by the statistic Ctg (p-value is 0.0011). The analysis
here agree with the finding in the simulation study that the statistic Ccr is
likely to be most powerful among the four statistics studies.

6. Discussion

In this section we dealt with the survival data that follow Weibull distri-
bution and we developed four test procedures to test the equality of scale
parameters of two Weibull distributions where the shape parameters are as-
sumed unknown and unequal. We developed four test procedures, namely,
a likelihood ratio statistic LR, a C (α) (score) statistic based on maximum
likelihood estimates of the nuisance parameters Cml, a C (α) statistic based
on method of moments estimates of the nuisance parameters by Cran [4] Ccr,
and a C (α) statistic based on method of moments estimates of the nuisance
parameters by Teimouri and Gupta [16] Ctg.

A simulation study in terms of empirical level show the best overall perfor-
mance of the C(α) statistic Ccr. Even for sample size as small as n1 = n2 = 5
the level never drops below 4.1%. Performance of score statistic is the worst
in the sense that it shows most conservative behaviour, ever for sample size
as large as n1 = n2 = 50. Further simulations show that power performance
of the two C(α) statistics Ccr and Ctg are similar and best overall, although
the former has some edge over the latter. Power performance of the score
test statistic Cml is the worst which is expected, as its level is the lowest.
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The advantage of the C (α) or the score test is discussed in the introduc-
tion. Further, based on the fact that a C(α) statistic, such as Ccr, performs
best overall, it would be of interest to explore whether the C (α) or the
score test can be used to analyze two groups of survival data following a
three-parameter distribution such as the three-parameter Weibull distribu-
tion discussed by Teimouri and Gupta [16]. This problem will be investigated
in a future paper.

Appendix

A. Derivation of the elements of S, D, A, and B of the C(α) statistic
based on the Weibull likelihood (3.1).

After detailed calculation we obtain

ψ = −n1β1
α

+
β1

αβ1+1

n1∑
j=1

yβ11j , γ1 =

2∑
i=1

−niβi
α

+
βi

αβi+1

ni∑
j=1

yβiij

 ,
γ2 =

n1
β1

+

n1j∑
j=1

log(y1j)−n1 log(α)+
log(α)

αβ1

n1∑
j=1

yβ11j −
1

αβ1

n1∑
j=1

yβ11j log(y1j),

γ3 =
n2
β2

+

n2j∑
j=1

log(y2j)−n2 log(α)+
log(α)

αβ2

n2∑
j=1

yβ22j −
1

αβ2

n2∑
j=1

yβ22j log(y2j),

D=−n1β1
α2

+
n1β1(β1+1)E

(
yβ11j

)
αβ1+2

, A1=−n1β1
α2

+
n1β1(β1+1)E

(
yβ11j

)
αβ1+2

,

A2 =
n1
α
−
n1{1−β1 log (α)}E

(
yβ11j

)
αβ1+1

−
n1β1E

{
yβ11j log (y1j)

}
αβ1+1

, A3=0,

B11 =

ni∑
j=1

−niβi
α2

+
niβi (βi + 1)E

(
yβiij

)
αβi+2

 ,
B12 = B21 =

n1
α
−
n1{1−β1 log (α)}E

(
yβ11j

)
αβ1+1

−
n1β1E

{
yβ11j log (y1j)

}
αβ1+1

,

B13 = B31 =
n2
α
−
n2{1−β2 log (α)}E

(
yβ22j

)
αβ2+1

−
n2β2E

{
yβ22j log (y2j)

}
αβ2+1

,

B22 =
n1
β21

+
n1{log (α)}2E

(
yβ11j

)
+n1E

{
yβ11j (log (y1j))

2
}

αβ1
, B23 = B32 = 0,

B33 =
n2
β22

+
n2 {log (α)}2E

(
yβ22j

)
+ n2E

{
yβ22j (log (y2j))

2
}

αβ2
.

These expressions are then evaluated at α = α̂, β1 = β̂1 and β2 = β̂2,
where, for example, α̂ is either α̂ml, α̂cr and α̂tg in Cml, Ccr and Ctg re-

spectively. Expectation of a function f(y, α̂, β̂1, β̂2) of a Weibull random
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variable y is calculated as
∫∞
0 f(y, α̂, β̂1, β̂2)f(y)dy, where f(y) is as given in

equation (1.1).

B. The tables.

Table 1. Empirical level (%) of the test statistics LR, Cml,
Ccr, and Ctg for α1 = α2 = α and β2 = β+β1; based on 5000
iterations, and nominal level = 0.05.

n1, n2 Statistics (α, β1) β

(5, 3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00

14*5, 5 LR 3.2 3.3 3.3 3.8 3.9 3.6 3.5

Cml 2.9 3.1 3.2 3.4 3.6 3.3 3.1

Ccr 4.1 4.4 4.3 4.2 4.5 4.8 4.4

Ctg 3.8 3.7 3.9 4.1 4.5 4.2 4.0

(10, 6)

LR 3.2 3.5 3.7 4.1 4.2 4.1 3.9

Cml 3.0 3.1 3.4 3.4 3.8 3.6 3.3

Ccr 4.3 4.6 4.9 5.1 4.9 5.2 4.8

Ctg 3.7 4.1 4.4 4.7 4.5 4.8 4.4

(15, 10)

LR 3.4 3.8 4.1 4.2 4.3 4.5 4.4

Cml 3.2 3.5 3.5 3.8 4.1 3.8 3.6

Ccr 4.5 4.7 4.8 5.0 5.4 5.2 5.4

Ctg 3.8 4.1 4.4 4.5 4.8 4.6 4.8

(5, 3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00

14*10, 10 LR 3.6 3.8 4.2 4.4 4.4 4.4 4.5

Cml 3.2 3.3 3.6 3.8 4.0 3.9 3.8

Ccr 4.1 4.6 5.1 5.1 5.2 5.1 5.4

Ctg 4.0 4.4 4.7 4.8 5.0 5.1 5.2

(10, 6)

LR 3.8 3.8 4.1 4.4 4.5 4.4 4.3

Cml 3.4 3.5 4.0 4.0 4.3 4.4 4.1

Ccr 4.5 4.7 5.1 5.0 5.3 5.4 5.0

Ctg 4.1 4.3 4.5 4.7 4.7 5.1 4.8

(15, 10)

LR 3.4 3.9 4.1 4.6 4.6 4.7 4.4

Cml 3.4 3.7 4.1 4.4 4.5 4.5 4.0

Ccr 4.5 5.2 5.3 5.2 5.3 5.4 5.6

Ctg 4.2 4.7 4.8 5.0 4.9 5.0 5.1
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Table 2. Empirical level (%) of the test statistics LR, Cml,
Ccr, and Ctg for α1 = α2 = α and β2 = β+β1; based on 5000
iterations, and nominal level = 0.05.

n1, n2 Statistics (α, β1) β

(5, 3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00

14*20, 20 LR 3.7 3.7 4.3 4.5 4.7 4.7 4.7

Cml 3.4 3.7 3.7 3.9 4.4 4.0 3.9

Ccr 4.5 5.0 5.2 5.2 5.1 5.4 5.2

Ctg 4.3 4.6 4.9 5.0 5.1 5.3 5.2

(10, 6)

LR 3.8 4.0 4.5 4.4 4.8 4.6 4.6

Cml 3.6 3.6 3.9 4.1 4.6 4.5 4.4

Ccr 4.7 5.1 5.1 5.0 5.3 5.6 5.4

Ctg 4.2 4.6 5.1 4.8 5.0 5.2 5.0

(15, 10)

LR 3.9 4.2 4.4 4.7 5.1 4.7 4.8

Cml 3.7 3.9 4.2 4.4 4.7 4.6 4.5

Ccr 4.5 4.8 5.4 5.5 5.5 5.4 5.7

Ctg 4.4 4.6 5.1 5.2 5.4 5.1 5.4

(5, 3) 0.00 0.50 1.00 1.50 2.00 2.50 3.00

14*50, 50 LR 4.3 4.5 4.8 5.0 4.9 4.8 4.8

Cml 3.9 4.2 4.2 4.2 4.6 4.4 4.2

Ccr 4.9 5.1 5.5 5.5 5.4 5.3 5.5

Ctg 4.6 4.8 5.0 5.2 5.0 5.3 5.1

(10, 6)

LR 4.3 4.6 4.7 4.7 5.1 4.9 4.9

Cml 4.1 4.2 4.5 4.6 4.7 4.7 4.6

Ccr 5.1 5.1 5.5 5.4 5.3 5.6 5.6

Ctg 4.8 5.0 5.2 5.1 5.3 5.4 5.2

(15, 10)

LR 4.4 4.7 4.8 5.1 5.2 5.1 5.0

Cml 4.4 4.5 4.5 4.7 4.7 4.8 4.8

Ccr 5.5 5.7 5.7 5.4 5.5 5.6 5.4

Ctg 5.2 5.2 5.5 5.4 5.5 5.4 5.0

6
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Table 3. Empirical power (%) of test statistics LR, Cml,
Ccr, and Ctg for α2 = α1 + α; based on 5000 iterations,
n1 = n2 = 5, and nominal level = 0.05.

2*Statistics 2*(α1, β1, β2) α

(5, 3, 4) 0.00 0.50 1.00 1.50 2.00 2.50 3.00 4.00 5.00

LR 3.1 3.8 6.0 10.6 16.7 24.8 36.8 57.6 81.9

Cml 2.7 3.3 5.4 9.7 15.3 22.7 34.4 54.8 78.5

Ccr 4.0 4.8 7.0 11.9 17.5 26.1 38.5 59.4 83.7

Ctg 3.6 4.2 6.4 10.8 17.0 24.9 37.6 58.3 82.6

(5, 5, 8)

LR 3.2 3.8 6.0 11.2 17.1 25.3 37.1 58.2 82.8

Cml 2.8 3.4 5.5 10.3 15.9 23.1 35.0 55.3 78.8

Ccr 4.0 4.7 7.1 12.4 18.3 27.5 39.7 61.0 84.1

Ctg 3.7 4.5 6.7 11.7 17.7 26.0 37.9 58.8 83.1

(10, 3, 4)

LR 3.1 3.7 5.6 10.3 16.5 24.7 36.3 57.4 81.4

Cml 2.8 3.3 5.3 9.8 15.3 22.3 34.5 54.1 76.2

Ccr 4.1 4.7 6.7 11.5 18.0 27.1 38.9 60.6 83.6

Ctg 3.5 4.0 6.0 10.7 17.2 25.6 37.2 58.3 82.3

(10, 5, 8)

LR 3.1 3.6 5.9 10.8 17.1 25.1 37.1 57.7 83.1

Cml 2.9 3.4 5.5 10.2 15.8 23.0 35.3 55.2 77.5

Ccr 4.3 4.9 7.1 12.0 18.6 27.9 39.8 60.9 84.7

Ctg 3.6 4.2 6.3 11.1 17.6 26.3 38.7 59.4 83.9

(15, 3, 4)

LR 3.2 3.9 5.7 10.5 16.8 24.3 35.9 56.8 82.5

Cml 3.1 3.6 5.4 10.0 15.3 22.4 35.0 54.6 76.4

Ccr 4.5 5.1 6.9 11.8 17.8 27.1 38.4 59.3 83.5

Ctg 3.6 4.2 6.1 11.0 17.0 25.8 37.8 58.0 82.6

(15, 5, 8)

LR 3.5 4.2 6.1 11.2 17.1 24.9 36.7 57.3 82.9

Cml 3.3 3.9 5.7 10.5 15.8 23.7 35.4 55.3 77.1

Ccr 4.7 5.2 7.1 12.7 18.3 27.6 39.0 60.1 83.9

Ctg 3.6 4.4 6.2 11.9 17.6 26.4 38.3 58.8 83.1
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Table 4. Empirical power (%) of test statistics LR, Cml,
Ccr, and Ctg for α2 = α1 + α; based on 5000 iterations,
n1 = n2 = 50, and nominal level = 0.05.

2*Statistics 2*(α1, β1, β2) α

(5, 3, 4) 0.00 0.50 1.00 1.50 2.00 2.50 3.00 4.00 5.00

LR 4.6 5.9 8.0 13.4 23.2 35.0 48.9 75.4 100

Cml 4.1 5.5 7.5 12.7 22.0 33.7 47.1 73.2 100

Ccr 5.5 6.7 8.7 14.2 24.7 36.9 52.0 78.4 100

Ctg 4.9 6.2 8.1 13.8 23.9 35.8 50.3 77.0 100

(5, 5, 8)

LR 4.7 6.1 8.1 13.7 24.5 36.4 50.3 77.2 100

Cml 4.1 5.6 7.5 13.1 23.4 34.3 48.4 75.1 100

Ccr 5.4 7.0 9.0 14.6 26.3 38.1 53.4 79.6 100

Ctg 5.1 6.5 8.6 14.5 25.8 37.3 52.1 78.6 100

(10, 3, 4)

LR 4.6 5.9 7.9 14.7 25.9 38.0 52.6 79.8 100

Cml 4.5 5.8 7.6 13.9 24.1 34.9 49.1 76.4 100

Ccr 5.5 6.9 8.7 15.8 29.4 41.1 57.9 84.2 100

Ctg 5.1 6.4 8.4 15.3 27.9 39.8 55.5 81.6 100

(10, 5, 8)

LR 4.7 6.2 8.1 15.6 26.3 38.6 53.2 80.3 100

Cml 4.5 5.9 7.9 14.3 24.7 35.5 49.7 77.3 100

Ccr 5.4 6.9 8.9 17.1 32.7 44.0 61.4 86.3 100

Ctg 5.1 6.5 8.4 16.4 29.1 41.4 57.5 83.1 100

(15, 3, 4)

LR 4.6 6.1 8.0 14.1 23.6 35.3 48.7 74.8 99.7

Cml 4.4 5.7 7.5 13.6 22.9 33.2 46.4 71.7 98.8

Ccr 5.6 7.0 8.8 15.7 26.0 37.7 53.1 78.9 100

Ctg 5.2 6.5 8.3 15.0 24.9 36.1 51.7 78.2 100

(15, 5, 8)

LR 4.9 6.2 8.0 15.3 25.8 37.9 52.6 79.4 100

Cml 4.8 6.0 7.8 14.0 24.5 35.2 49.0 76.8 100

Ccr 5.3 6.6 8.8 17.0 32.4 43.4 60.7 85.6 100

Ctg 5.1 6.5 8.5 16.3 28.6 41.0 56.8 82.4 100
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Table 5. Estimates of parameters obtained by different
methods for compound combinations of bearing specimens
data in Table 7

2*Estimates Compound type combinations

(I, II) (I, III) (I, IV ) (I, V ) (II, III)

α̂0 9.0056 10.4848 11.7213 14.7887 8.5093

β̂10 1.8385 2.2491 2.5351 2.4628 2.3276

β̂20 2.2376 3.2077 1.9758 3.1844 2.6780

α̂1a 12.0607 12.0607 12.0607 12.0607 6.8596

α̂2a 6.8596 9.6847 7.5107 16.3507 9.6847

β̂1a 2.5881 2.5881 2.5881 2.5881 2.3202

β̂2a 2.3202 3.1324 4.0912 3.6518 3.1324

α̂cr 7.9472 10.4246 11.4968 13.1814 7.8480

β̂1cr 2.4941 2.4941 2.4941 2.4941 2.6956

β̂2cr 2.6956 3.0152 2.5244 3.5348 3.0152

α̂tg 7.9686 10.4688 11.5176 14.2777 7.9218

β̂1tg 2.0733 2.0733 2.0733 2.0733 2.2457

β̂2tg 2.2457 2.5192 2.0992 2.9636 2.5192

(II, IV ) (II, V ) (III, IV ) (III, V ) (IV, V )

α̂0 7.1645 9.5075 8.6567 13.8549 15.0676

β̂10 2.3718 2.1549 2.3160 2.2909 1.9228

β̂20 1.5713 1.4804 1.3236 2.8340 3.2844

α̂1a 6.8596 6.8596 9.6847 9.6847 7.5107

α̂2a 7.5107 16.3507 7.5107 16.3507 16.3507

β̂1a 2.3202 2.3202 3.1324 3.1324 4.0912

β̂2a 4.0912 3.6518 4.0912 3.6518 3.6518

α̂cr 7.8763 8.8612 10.1640 11.7659 13.4134

β̂1cr 2.6956 2.6956 3.0152 3.0152 2.5244

β̂2cr 2.5244 3.5348 2.5244 3.5348 3.5348

α̂tg 7.8992 8.9299 10.2093 11.8609 13.5077

β̂1tg 2.2457 2.2457 2.5192 2.5192 2.0992

β̂2tg 2.0992 2.9636 2.0992 2.9636 2.9636
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Table 6. Test statistics along with p-values for compound
combinations of bearing specimens data in Table 7

2*Statistics Compound type combinations

(I, II) (I, III) (I, IV ) (I, V ) (II, III)
2*LR 7.0443 1.6233 0.5067 3.4073 3.4310

(0.0080) (0.2026) (0.4766) (0.0649) (0.0640)

2*Cml 5.4028 1.4351 0.1191 2.6298 2.7254
(0.0201) (0.2309) (0.7300) (0.1049) (0.0988)

2*Ccr 13.1311 1.9438 0.8346 4.0383 4.5123
(0.0003) (0.1633) (0.3609) (0.0445) (0.0337)

2*Ctg 11.8042 1.1957 0.0147 2.5652 3.3701
(0.0006) (0.2742) (0.9034) (0.1092) (0.0664)

(II, IV ) (II, V ) (III, IV ) (III, V ) (IV, V )
2*LR 7.4859 18.8333 1.0934 10.1554 2.9559

(0.0062) (0.0000) (0.2957) (0.0014) (0.0856)

2*Cml 3.6041 8.5357 0.8114 5.8944 2.6429
(0.0576) (0.0035) (0.3677) (0.0152) (0.1040)

2*Ccr 12.0014 21.4434 2.3691 16.8222 4.3819
(0.0005) (0.0000) (0.1238) (0.0000) (0.0363)

2*Ctg 10.6301 98.0519 0.9900 15.7253 3.8369
(0.0011) (0.0000) (0.3198) (0.0001) (0.0501)

Table 7. Failure times of different bearing specimens

Type of compound
I II III IV V

3.03 3.19 3.46 5.88 6.43
5.53 4.26 5.22 6.74 9.97
5.60 4.47 5.69 6.90 10.39
9.30 4.53 6.54 6.98 13.55
9.92 4.67 9.16 7.21 14.45
12.51 4.69 9.40 8.14 14.72
12.95 5.78 10.19 8.59 16.81
15.21 6.79 10.71 9.80 18.39
16.04 9.37 12.58 12.28 20.84
16.84 12.75 13.41 25.46 21.51
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