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A resampling test for principal component analysis

of genotype-by-environment interaction

Johannes Forkman

Abstract. In crop science, genotype-by-environment interaction is of-
ten explored using the “genotype main effects and genotype-by-environ-
ment interaction effects” (GGE) model. Using this model, a singular
value decomposition is performed on the matrix of residuals from a fit of
a linear model with main effects of environments. Provided that errors
are independent, normally distributed and homoscedastic, the signifi-
cance of the multiplicative terms of the GGE model can be tested using
resampling methods. The GGE method is closely related to principal
component analysis (PCA). The present paper describes i) the GGE
model, ii) the simple parametric bootstrap method for testing multi-
plicative genotype-by-environment interaction terms, and iii) how this
resampling method can also be used for testing principal components in
PCA.

1. Introduction

Forkman and Piepho [3] proposed a resampling method for testing in-
teraction terms in models for analysis of genotype-by-environment data.
The “genotype main effects and genotype-by-environment interaction ef-
fects”(GGE) analysis (Yan et al. [9]; Yan and Kang [10]) is closely related
to principal component analysis (PCA). For this reason, the method pro-
posed by Forkman and Piepho [3], which is called the “simple parametric
bootstrap method”, can be used for testing principal components in PCA
as well. The proposed resampling method is parametric in the sense that it
assumes homoscedastic and normally distributed observations. The method
is “simple”, because it only involves repeated sampling of standard normal
distributed values. Specifically, no parameters need to be estimated. The
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present paper describes how the simple parametric bootstrap method can
be used for testing principal components in PCA.

The GGE model is used for analysis of complete series of crop variety
trials, that is, for series such that all trials include all varieties. Analysis of
incomplete series of crop variety trials has its own difficulties (Forkman [2]).
Researchers want to explore genotype-by-environment interaction in order to
define groups of genotypes that perform similar in varying environments, and
to define clusters, so called mega-environments (Gauch [5]), of environments
in which genotypes give similar results.

Section 2 describes the GGE analysis through an example. In this exam-
ple, an international series of maize variety trials is analyzed with specific
focus on the interaction between varieties (i.e., genotypes) and locations (i.e.,
environments). Section 3 presents the simple parametric bootstrap method
and illustrates this method using the same maize variety trials example. In
Section 4, it is clarified that the GGE analysis is indeed a PCA, which im-
plies that the simple parametric bootstrap method can be used for other
applications than analysis of genotype-by-environment interaction.

Forkman and Piepho [3] mainly focused on an analysis using the additive
main effects and multiplicative interaction (AMMI) model, which was intro-
duced by Mandel [8] and advocated by Kemtpon [7] and Gauch [4]. The
AMMI analysis is is not a PCA, although closely related. The objective of
the present paper is to show, through an explicit example, that the method
proposed by Forkman and Piepho [3] can also be used for the problem of
dimensionality reduction in PCA.

2. GGE analysis

The dataset of Table 1 is an example of a complete series of crop variety
trials. This dataset, which was also analyzed by Cornelius et al. [1], includes
yields from maize trials carried out by the international maize and wheat
improvement center (CIMMYT). The study includes nine maize varieties
(G1–G9) that were investigated in 20 environments (E1–E20). Varieties are
genotypes, because differences between varieties are due to differences in
genetic content. Similarly, trials represent varying environments.

In GGE analysis, effects of genotypes and effects of genotype-by-environ-
ment interaction are explored simultaneously. In the first step of the GGE
analysis, the overall mean and the estimates of main effects of the environ-
ments are removed from the data. Since the series is complete, this is simply
done by subtracting row means. The result is a matrix, Ê , of residuals from
a fit of linear model with main effects of environments. Table 2 shows the
matrix Ê as computed from the dataset matrix of Table 1. Note that in
Table 2, all rows sum to zero.



TEST FOR COMPONENTS OF GENOTYPE-BY-ENVIRONMENT INTERACTION 29

Table 1. Mean yields (kg/ha) of nine maize genotypes (G1–G9)
investigated in 20 environments (E1–E20)

G1 G2 G3 G4 G6 G6 G7 G8 G9
E1 3622 3426 3446 3720 3165 4116 3354 4529 3136
E2 3728 3919 4082 4539 4079 4878 4767 3393 4500
E3 5554 4937 5117 4542 6173 5205 5389 5248 3780
E4 4566 4963 5136 6030 5831 5980 4342 4442 5781
E5 4380 5201 4178 5672 5414 5591 4277 4476 5407
E6 6437 6036 6459 6678 6882 6916 6745 4986 5610
E7 2832 2515 3529 2998 3556 3949 3537 3088 3061
E8 6011 5278 4731 2516 2732 2983 4206 4484 3309
E9 4647 4714 5448 4864 5588 5603 4318 4001 5553
E10 3100 2972 2785 2843 2688 3024 2889 3353 2774
E11 4433 4349 4526 7117 5995 6150 5052 3713 6430
E12 6873 7571 7727 8385 8106 7637 7444 5816 8091
E13 6721 5627 6294 7332 7174 7262 5544 4117 6920
E14 5849 5932 5886 6439 6359 6380 5820 5522 6282
E15 4601 4126 4537 6331 6328 5961 4346 4321 4889
E16 5010 5196 5455 6351 6070 5730 5013 4551 5278
E17 4415 4211 4749 5161 5454 5807 3862 5243 4989
E18 3344 4415 4295 5618 4498 5333 5276 2940 5244
E19 1632 2282 3059 2233 3073 3011 3211 2634 2735
E20 4587 4396 5018 4988 5776 5088 4056 4806 4822

Let I and J denote the number of environments and genotypes, respec-
tively, and let M = min(I, J − 1). Through singular value decomposition, Ê

can be written as Ê = Γ̂Λ̂∆̂
T
, where Γ̂ = (γ̂1, γ̂2, . . . , γ̂M ) is an I ×M ma-

trix of estimated left-singular vectors, Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂M ) is an M×M
diagonal matrix of estimated singular values sorted from largest to smallest,
and ∆̂ = (δ̂1, δ̂2, . . . , δ̂M ) is a J × M matrix of estimated right-singular
vectors. Environment and genotype principal components can be defined as

γ̂1λ̂
c

1, γ̂2λ̂
c

2, . . . , γ̂M λ̂c

M ,

and

δ̂1λ̂
1−c

1 , δ̂2λ̂
1−c

2 , . . . , δ̂M λ̂1−c

M
,

respectively, where 0 ≤ c ≤ 1. For a discussion on how to choose c, see
Jolliffe [6].

It is common to display the first two principal components in a biplot, as
in Figure 1. In this figure, principal component axis 1 (PC1) displays the

values of γ̂1

√

λ̂1 and δ̂1

√

λ̂1, whereas axis 2 (PC2) displays the values of

γ̂2

√

λ̂2 and δ̂2

√

λ̂2. Yan and Tinker [11] explains how GGE biplots should
be interpreted. Basically, genotypes that are close to each other in the biplot
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perform similar in varying environments. In Figure 1, it appears that geno-
types G1, G2, G3 and G7 are similar to each other. Also, genotypes G4, G5,
G6 and G9 are similar to each other. In performance, genotype G8 deviates
from the other genotypes. One might wonder if these observed patterns are
random or systematic. The simple parametric bootstrap method, described
below, was developed for this question. The simple parametric bootstrap
method can be used to test the significance of the principal components.

Table 2. The matrix Ê of residuals (kg/ha) from a fit of a linear
model with main effects of environments

9.3 -186.7 -166.7 107.3 -447.7 503.3 -258.7 916.3 -476.7
-481.4 -290.4 -127.4 329.6 -130.4 668.6 557.6 -816.4 290.6

449 -168 12 -563 1068 100 284 143 -1325
-664.1 -267.1 -94.1 799.9 600.9 749.9 -888.1 -788.1 550.9
-575.1 245.9 -777.1 716.9 458.9 635.9 -678.1 -479.1 451.9
131.6 -269.4 153.6 372.6 576.6 610.6 439.6 -1319.4 -695.4
-397.4 -714.4 299.6 -231.4 326.6 719.6 307.6 -141.4 -168.4
1983.2 1250.2 703.2 -1511.8 -1295.8 -1044.8 178.2 456.2 -718.8
-323.7 -256.7 477.3 -106.7 617.3 632.3 -652.7 -969.7 582.3
163.6 35.6 -151.4 -93.4 -248.4 87.6 -47.4 416.6 -162.4
-874.2 -958.2 -781.2 1809.8 687.8 842.8 -255.2 -1594.2 1122.8
-643.7 54.3 210.3 868.3 589.3 120.3 -72.7 -1700.7 574.3
388.7 -705.3 -38.3 999.7 841.7 929.7 -788.3 -2215.3 587.7
-203.1 -120.1 -166.1 386.9 306.9 327.9 -232.1 -530.1 229.9
-447.9 -922.9 -511.9 1282.1 1279.1 912.1 -702.9 -727.9 -159.9
-396 -210 49 945 664 324 -393 -855 -128

-461.8 -665.8 -127.8 284.2 577.2 930.2 -1014.8 366.2 112.2
-1207.4 -136.4 -256.4 1066.6 -53.4 781.6 724.6 -1611.4 692.6
-1020.2 -370.2 406.8 -419.2 420.8 358.8 558.8 -18.2 82.8
-250.4 -441.4 180.6 150.6 938.6 250.6 -781.4 -31.4 -15.4

3. The simple parametric bootstrap method

Forkman and Piepho [3] introduced the simple parametric bootstrap
method for the GGE model. For hypothesis testing it is assumed that

E = Θ(κ) +R, (1)

where E is the matrix of true residuals. These are the residuals after sub-
traction of the actual intercept and the actual main effects of environments.
In practice, E cannot be computed, because the true values of these param-
eters are not known; only Ê can be computed (Table 2). Equation (1) is the
null model, that is, the model under the null hypothesis. In (1), the fixed
part of the null model is Θ(κ), and the random part is R. The rank of Θ(κ)
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Figure 1. GGE biplot of the maize dataset (using c = 0.5)

is κ. Thus, κ is the actual number of principal components. The matrix R

is a matrix of independent N(0, σ2) distributed errors.
The null hypothesis is H0 : κ = K, and the alternative hypothesis is

H1 : κ > K. Hypotheses are tested sequentially: K = 0, 1, 2, . . . until a
non-significant result is obtained. In order to test the significance of the
(K + 1)th component, the test statistic

T =
λ̂2
K+1

∑

M

k=K+1 λ̂
2
k

(2)

is used. For computation of the p-value, Forkman and Piepho [3] proposed
the “simple parametric bootstrap method”:

1. Do the following a large number of times:
i. Sample an (I − K) × (J − 1 − K) matrix of random standard

normal values.
ii. For this matrix, compute Tb = λ̂2

1/
∑

L

k=1 λ̂
2
k
.

2. Estimate the p-value as the frequency of Tb larger than T .

Note that this method is simple in the sense that no parameters need to be
estimated. Still it is parametric, because it assumes the normal distribution.
Forkman and Piepho [3] called it a bootstrap method since they developed
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it as a simplified version of a full parametric bootstrap method that includes
parameter estimation.

Table 3 presents the result of the simple parametric bootstrap method
when applied to the maize example. First, the null hypothesis of no principal
components is tested. This null hypothesis is strongly rejected (T = 0.640, p-
value = 0.000). Second, the null hypothesis of a model with a single principal
component is tested. This null hypothesis cannot be rejected (T = 0.319,
p-value = 0.296). In other words, it could not be inferred from the data that
the actual model includes more than a single principal component. Since
a non-significant result was obtained, significance testing is stopped at this
stage.

The result of Table 3 sheds new light on the biplot of Figure 1. Since the
second principal component is not significant, differences should be looked
for mainly along the first principal component. It then appears that geno-
type G8 belongs to the same group as genotypes G1, G2, G3 and G7, because
these genotypes are grouped on the left hand side of the first principal com-
ponent axis.

Table 3. Sequential tests of the multiplicative terms of the maize dataset

K + 1 T p-value
Start → 1 0.640 0.000

2 0.319 0.296 ← Stop

4. The GGE analysis is a PCA

From Section 2 it might be obvious that the GGE analysis is nothing but
a PCA. However, since in textbooks the PCA is usually presented slightly
different, a few remarks might be helpful.

Let X be a column-wise mean-centered matrix. The singular values of X,
and then also of XT, can be denoted λ̂1, λ̂2,. . ., λ̂M . In the GGE analysis, as
presented in the example of the present paper, the matrix Ê was instead row-
wise mean-centered. This causes no difficulty, because the singular values
of Ê are the same as the singular values of the column-wise mean-centered

matrix Ê
T
.

PCA uses the covariance matrix cov(X) = X
T
X/(J − 1), where J is

the number of observations. The eigenvalues of cov(X) are (λ̂2
1, λ̂2

2, . . .,

λ̂2
M
)/(J − 1), and the (K + 1)th principal component accounts for T =

λ̂2
K+1/

∑

M

k=K+1 λ̂
2
k
per cent of the residual sum of squares. This is exactly

the test statistic (2) that is used in the GGE analysis. Thus, large values of T
indicate important principal components. The simple parametric bootstrap
method, as presented in the present paper, can consequently be used for
testing the significance of these components.
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5. Conclusion

The GGE analysis is a PCA with environments as variables and genotypes
as observations. PCA is a widely used method, with applications in all sorts
of different fields of research. Since the GGE analysis is a PCA, the simple
parametric bootstrap method, which was developed for the GGE analysis,
can be used also for other applications. Through this method, p-values can
be computed for tests of principal components. However, it should be noted
that the method assumes that random errors are independent, normally
distributed and homoscedastic. When these requirements are fulfilled, the
method performs well with regard to type I error and power (Forkman and
Piepho [3]), but this may not be the case otherwise. More research is needed
to answer this question.
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