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Some properties of Choquet integral based

probability functions

Vicenç Torra

Abstract. The Choquet integral permits us to integrate a function
with respect to a non-additive measure. When the measure is addi-
tive it corresponds to the Lebesgue integral. This integral was used
recently to define families of probability-density functions. They are
the exponential family of Choquet integral (CI) based class-conditional
probability-density functions, and the exponential family of Choquet–
Mahalanobis integral (CMI) based class-conditional probability-density
functions. The latter being a generalization of the former, and also a
generalization of the normal distribution.

In this paper we study some properties of these distributions, and
study the application of a few normality tests.

1. Introduction

New families of probability distributions based on the Choquet integral
were recently introduced in [9], and further studied in [8].

The Choquet integral [1], introduced by Choquet in 1954, permits us to
integrate a function with respect to a non-additive measure. Non-additive
measures are also known by capacities and fuzzy measures. The Choquet
integral has been applied successfully in decision making and in artificial
intelligence. One of its advantages is that it permits to express interactions
between variables (e.g., criteria in decision making or information sources in
artificial intelligence) by means of the measure.

In short, the new probability distributions are defined replacing the
Mahalanobis distance by distances based on the Choquet integral. Both
the Mahalanobis distance and the Choquet integral based distance permit
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us to take into account some interactions between the variables. However,
the types of interactions expressed are different and expressed in a different
way. In the Mahalanobis distance the interactions are represented in terms
of a matrix (the covariance matrix) while in the Choquet integral distance
the interactions are represented by means of a non-additive measure.

Another distribution was defined to encompass both types of interactions.
That is, the one expressed in terms of the (covariance) matrix and the one
expressed in terms of the non-additive measure.

In this paper we review these definitions, we study some of their properties
and study whether data from these distributions pass some normality tests.

The structure of the paper is as follows. In Section 2, we review some
preliminaries needed in the rest of the paper. In Section 3, we discuss the
new distribitions, and in Section 4 we present our new results. The paper
finishes with some conclusions.

2. Preliminaries

In this section we review the Choquet integral we need later on in this
work. The section begins with the notation. From a formal point of view,
the Choquet integral integrates a function with respect to a non-additive
measure. Note that this is not the only integral for non-additive measures.
The Sugeno integral [7] is another example. All these integrals are known
as fuzzy integrals. See, e.g., [11] for details.

Let Y = {y1, . . . , yn} be a set and let 2Y represent the power set of Y . If
f : Y → R

+ is a function, then f(yi) ∈ R
+. Fuzzy integrals aggregate the

values f(yi) with respect to a fuzzy measure µ.

Definition 1. Let Y = {y1, . . . , yn} be a set. Then, a set function µ :
2Y → [0,∞) is a fuzzy measure (a non-additive measure) if it satisfies the
following axioms:

(i) µ(∅) = 0 (boundary conditions),
(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity).

Definition 2. Let µ be a fuzzy measure on Y . Then, the Choquet integral
of a function f : Y → R

+ with respect to the fuzzy measure µ is defined by

(C)

∫

fdµ =

n
∑

i=1

[f(ys(i))− f(ys(i−1))]µ(As(i)),

where f(ys(i)) indicates that the indices have been permuted so that 0 ≤

f(ys(1)) ≤ · · · ≤ f(ys(n)), f(ys(0)) = 0, and As(i) = {ys(i), . . . , ys(n)}.

We also use the notation CIµ(a1, . . . , an) to express the Choquet integral
of ai := f(yi).
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3. Choquet integral based distributions

We defined in [9] two distributions based on the Choquet integral. We
review below the first one. The other generalizes this one as well as the
normal distribution.

Definition 3. Let Y = {Y1, . . . , Yn} be a set of random variables describ-
ing data on a n-dimensional space. Let µ : 2Y → [0, 1] be a fuzzy measure
and m a vector in R

n.
Then, the exponential family of Choquet integral based class-conditional

probability-density functions is defined for x ∈ R
n by

P (x) =
1

K
e−

1

2
CIµ((x−m)◦(x−m)),

where K is a constant that is defined so that the function P (x) is a proba-
bility, and v ◦w denotes the Hadamard or Schur product of vectors v and w
(i.e., elementwise product (v ◦ w) = (v1w1 . . . vnwn)).

Although the definition of the density function needs the constant K, the
exact value of K is not relevant in classification problems, or for studying
the shape of the distribution function. In any case, the K is the value such
that

∫

x∈Rn

P (x)dx = 1.

So, K should be defined by

K =

∫

x∈Rn

e−
1

2
CIµ((x−m)◦(x−m))dx.

In the experiments reported below we will use approximations of K com-
puted through numerical integration.

Definition 4. Let Y = {Y1, . . . , Yn} be a set of random variables describ-
ing data on a n-dimensional space. Let µ : 2Y → [0, 1] be a fuzzy measure,
m be a vector in R

n, and Q n× n a positive-definite matrix.
Then, the exponential family of Choquet–Mahalanobis integral based class-

conditional probability-density functions is defined for x ∈ R
n by

P (x) =
1

K
e−

1

2
CIµ(v◦w),

where K is a constant that is defined so that the function is a probability,
LLT = Q is the Cholesky decomposition of the matrix Q, v = (x −m)TL,
w = LT (x−m), and v ◦ w denotes the Hadamard product of vectors v and
w.

The Choquet–Mahalanobis integral (see [9]) of (x−m), with respect to µ
and Q, corresponds to CIµ(v ◦ w) as used in this definition.

10
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This distribution generalizes the multivariate normal distribution. See [8]
for a proof; [8] also compares these distributions with spherical and elliptical
distributions.

4. Some basic properties of the Choquet integral based

probability distributions

In this section we study some properties of the probability distributions
based on the Choquet integral. Some of them generalize the ones presented
whithout proof in [10].

Lemma 5. Let P (x) with x ∈ R
n be a Choquet integral based distribution

according to Definition 3 defined in terms of a mean m = (m1, . . . ,mn) and
a fuzzy measure µ. Then, for all x ∈ R

n and all i ∈ {1, . . . , n},

P (x1, . . . , xi−1, xi+mi, xi+1, . . . , xn)=P (x1, . . . , xi−1,−xi+mi, xi+1, . . . , xn).

Proof. Without loss of generality, let us consider the case of i = 1. Then,
it is easy to see that

P (m1 + x1, y1, . . . , yn−1) =
1

K
e−

1

2
CIµ((m1+x−m1)2,y21 ,...,y

2
n−1

)

=
1

K
e−

1

2
CIµ((m1−x−m1)2,y21 ,...,y

2
n−1)

= P (m1 − x1, y1, . . . , yn−1).

�

Lemma 6. Let A be a positive-definite diagonal matrix with diagonal
elements (a1, . . . , an). Then, its Cholesky decomposition is a diagonal matrix
with diagonal elements (

√
a1, . . . ,

√
an).

This is easy to see from the definition of the Cholesky decomposition
(see, e.g., [6], p. 335). Recall that the Cholesky decomposition of a positive-
definite matrix A is the product LLT .

Lemma 7. Let P (x) with x ∈ R
n be a Choquet–Mahalanobis integral

based distribution according to Definition 4 defined in terms of a mean m =
(m1, . . . ,mn), a positive-definite diagonal matrix Q, and a fuzzy measure µ.
Then, for all x ∈ R

n and all i ∈ {1, . . . , n},

P (x1, . . . , xi−1, xi+mi, xi+1, . . . , xn)=P (x1, . . . , xi−1,−xi+mi, xi+1, . . . , xn).
(1)

Proof. Let Q = LLT be the Cholesky decomposition of Q. Then, given
x ∈ R

n, we define v = (x −m)TL and w = LT (x −m). From Lemma 6, L
is diagonal and, therefore, LT = L and v = wT . Thus, v ◦ w = (v21 , . . . , v

2
n).

Now, without loss of generality, we prove equation (1) for i = 1. Let
v′ = (x1 + m1, x2, . . . , xn) −m = (x1, x2 − m2, . . . , xn −mn), and let v′′ =
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(−x1+m1, x2, . . . , xn)−m = (−x1, x2−m2, . . . , xn−mn). As v
′◦v′ = v′′◦v′′,

CMIµ,Q(v
′ ◦ v′) = CMIµ,Q′(v′′ ◦ v′′), and the lemma is proved. �

Using these lemmas, we can prove the following propositions.

Proposition 8. Let P (x) with x ∈ R
n be an exponential Choquet integral

probability-density function with mean m = (m1, . . . ,mn). Then, for any
fuzzy measure µ, the mean vector X̄ = [E[X1], E[X2], . . . , E[Xn]] is m and
Σ = [Cov[Xi,Xj ]] for i = 1, . . . , n and j = 1, . . . , n is zero for all i 6= j and,
thus, diagonal.

Proof. This distribution is

X̄ =

∫

x∈Rn

xP (x)dx,

and for the ith component of the vector, we have

X̄i =

∫

x∈Rn

xiP (x)dx.

Without loss of generality, we consider the case of i = 1. Given any y =
(y1, . . . , yn−1) ∈ R

n−1 and x1 ∈ R, we denote the vector (x1, y1, . . . , yn−1)
by (x1|y). Let us apply Fubini’s theorem to the expression above for X̄1:

X̄1 =

∫

x1∈R

∫

y∈Rn−1

x1P ((x1|y))dydx1

=

∫

x1∈R
+

∫

y∈Rn−1

(x1 +m1)P ((x1 +m1|y))dydx1

+

∫

x1∈R
+

∫

y∈Rn−1

(−x1 +m1)P ((−x1 +m1|y))dydx1.

As Lemma 5 implies that P ((−x1 +m1|y)) = P ((x1 +m1|y)), we have

X̄1 =

∫

x1∈R
+

∫

y∈Rn−1

(x1 − x1)P ((m1 + x1|y))dydx1

+

∫

x1∈R

∫

y∈Rn−1

m1P ((m1 + x1|y))dydx1

= 0 +m1 · 1 = m1.

Without loss of generality, we consider the covariance of variables X1 and
X2. Their covariance is

Cov(X1,X2) =

∫

x1∈R

∫

x2∈R

P (x1, x2)(x1 −m1)(x2 −m2)dx2dx1.

Here

P (x1, x2) =

∫

x∈Rn−2

P ((x1, x2|x))dx,
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and then,

Cov(X1,X2) =

=

∫

x1∈R
+

∫

x2∈R
+

P (x1 +m1, x2 +m2)(x1 +m1 −m1)(x2 +m2 −m2)dx2dx1

+

∫

x1∈R
+

∫

x2∈R
+

P (−x1+m1,−x2+m2)(−x1+m1−m1)(−x2+m2−m2)dx2dx1

+

∫

x1∈R
+

∫

x2∈R
+

P (−x1+m1, x2+m2)(−x1+m1−m1)(x2+m2−m2)dx2dx1

+

∫

x1∈R
+

∫

x2∈R
+

P (x1+m1,−x2+m2)(x1+m1−m1)(−x2+m2−m2)dx2dx1.

Using Lemma 5, we have

P (x1 +m1, x2 +m2) = P (x1 +m1,−x2 +m2) = P (−x1 +m1, x2 +m2)
= P (−x1 +m1,−x2 +m2).

It follows that Cov(X1,X2) equals to

∫

x1∈R
+

∫

x2∈R
+

P (x1 +m1, x2 +m2) (x1x2 + (−x1)(−x2)

+(−x1)x2 + x1(−x2)) dx2dx1 = 0.

So, the proposition is proved. �

Proposition 9. Let P (x) with x ∈ R
n be an exponential Choquet–Mahala-

nobis integral probability-density function with mean m = (m1, . . . ,mn).
Then, for any fuzzy measure µ and any diagonal matrix Q, the mean vector

[E[X1], E[X2], . . . , E[Xn]]

is m (i.e., E[Xi] = mi) and Σ = [Cov[Xi,Xj ]] for i = 1, . . . , n and j =
1, . . . , n is zero for all i 6= j and thus, diagonal.

Proof. This proof is similar to the one of Proposition 8. The main changes
is that we need now Lemma 7 instead of Lemma 5 used in Proposition 8. �

In fact, the property given above of the mean of the distribution follows
also from the fact that odd-order moments of distributions symmetric with
respect to zero are zero.

In the case when Σ is not diagonal and, thus, Σ(Xi,Xj) 6= 0 for i 6= j,
we might have Cov[Xi,Xj ] 6= 0. It is important to note that it is not at all
required that Cov[Xi,Xj ] = Σ(Xi,Xj). The following example illustrates
this fact.
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Example 10. Let us consider the Choquet–Mahalanobis integral based
distribution with a fuzzy measure µ(∅) = 0, µ({x}) = 0.5, µ({y}) = 0.2,
µ({x, y}) = 1 and the matrix

Σ =

(

1 0.9
0.9 1

)

.

The covariance matrix of this distribution is

Σ =

(

0.9548251 0.9262923
0.9262923 1.0293333

)

.

The correlation coefficient between the two variables is 0.9343469.

4.1. Normality tests. There are several approaches [5] to check whether
a distribution follows a multivariate normal distribution. One approach is
to study the normality of its marginals. Another is to study directly the
multivariate distribution. Mardia’s test [4] is an example of the latter.

We have considered both approaches for bivariate Choquet integral based
distributions. In particular, we have considered distributions onX = {x1, x2}
based on the Choquet integral with measures defined so that µ({x1}) = i/10
and µ({x2}) = j/10 for i, j ∈ {1, 2, 3, . . . , 9}.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.973 0.987 0.969 0.990 0.989 0.987 0.988 0.996 0.987
0.2 0.985 0.975 0.985 0.982 0.994 0.987 0.995 0.994 0.994
0.3 0.990 0.977 0.992 0.984 0.980 0.988 0.983 0.986 0.981
0.4 0.968 0.988 0.988 0.991 0.993 0.991 0.985 0.987 0.985
0.5 0.988 0.991 0.978 0.979 0.961 0.980 0.994 0.980 0.982
0.6 0.979 0.992 0.992 0.991 0.988 0.985 0.993 0.994 0.988
0.7 0.988 0.989 0.987 0.995 0.995 0.990 0.986 0.988 0.984
0.8 0.984 0.996 0.948 0.990 0.986 0.986 0.989 0.990 0.982
0.9 0.990 0.976 0.978 0.988 0.985 0.988 0.993 0.982 0.978

Table 1. ValuesW of Shapiro–Wilk statistic for Choquet in-
tegral based distributions with µ({x}) = i/10 and µ({y}) =
j/10 for i, j = 1, 2, . . . , 9. Position (a, b) in the table corre-
sponds to the case µ({x}) = a and µ({y}) = b.

Without loss of generality we have considered the marginals of these dis-
tributions on the variable x2. For each of the marginals we have generated a
sample with n = 100 data, and studied its normality using the Shapiro–Wilk
test. The W value for each sample is included in Table 1. The p-values ob-
tained for these samples are given in Table 2. The null hypothesis is rejected
when the p-value is ≤ 0.05. That is, only for p-values lower than 0.05 we
conclude that the sample is not normal.

11



42 VICENÇ TORRA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.037 0.420 0.018 0.673 0.567 0.435 0.479 0.991 0.460
0.2 0.320 0.059 0.319 0.177 0.932 0.444 0.976 0.918 0.898
0.3 0.680 0.071 0.836 0.251 0.150 0.512 0.236 0.417 0.178
0.4 0.016 0.576 0.493 0.778 0.901 0.764 0.316 0.460 0.296
0.5 0.482 0.744 0.087 0.111 0.005 0.127 0.928 0.122 0.209
0.6 0.104 0.808 0.774 0.751 0.490 0.294 0.894 0.948 0.532
0.7 0.536 0.602 0.446 0.977 0.964 0.650 0.350 0.516 0.288
0.8 0.227 0.012 0.212 0.481 0.405 0.056 0.134 0.478 0.014
0.8 0.247 0.993 0.00061 0.694 0.360 0.358 0.595 0.655 0.181
0.9 0.653 0.064 0.082 0.496 0.329 0.483 0.877 0.186 0.091

Table 2. p-Values of Shapiro–Wilk statistic for Choquet in-
tegral based distributions with µ({x}) = i/10 and µ({y}) =
j/10 for i, j = 1, 2, . . . , 9. Position (a, b) in the table corre-
sponds to the case µ({x}) = a and µ({y}) = b.

In order to compute the test, we need (i) to determine the marginal and (ii)
to construct the sample from the marginal. All calculations have been done
using the statistical software R by means of numerical approximations. More
particularly, the marginal has been computed using the function integrate

integrating the density function for x1 in the interval [−20, 20]. We selected
this interval because results had enough accuracy. Then, given the marginal
f(x2) the sampling has been constructed using the inverse of the marginal.
That is, given the marginal density function f , we consider its cumulative
function F (x) =

∫

x

−∞

f(y)dy and its inverse, the quantile function, which

given a value r in [0, 1] returns xr such that r = F (xr). Note that given
a value r from a uniform distribution in [0, 1], xr follows the distribution
described by f . Function F was computed using integrate and the value
xr using the function uniroot (package stats). The construction of each
sample with n = 100 required 15–25 minutes in a standard PC.

Table 2 shows that for the most of the cases, the samples pass the Shapiro–
Wilk test with p-value larger than 0.05. In fact, it results that the sample
with the second lowest p-value is precisely the one with µ({x1}) = µ({x2}) =
0.5, and another that fails is µ({x1}) = 0.8 and µ({x2}) = 0.2, and pre-
cisely both correspond to normal distributions. Recall that all measures
with µ({x1}) + µ({x2}) = 1 lead to normal bivariate distributions.

For the case µ({x1}) = 0.8 we have computed two pairs of samples for
each µ({x2}). The p-values of the two samples are included in the table, and
results show that there is a large variation in the value.

The samples with a p-value lower than 0.05 are: (i) µ({x1}) = 0.1 and
µ({x2}) = 0.3, (ii) µ({x1}) = 0.4 and µ({x2}) = 0.1, (iii) µ({x1}) = 0.5 and
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µ({x2}) = 0.5, (iv) µ({x1}) = 0.8 and µ({x2}) = 0.2, (v) µ({x1}) = 0.8 and
µ({x2}) = 0.9, and (vi) µ({x1}) = 0.8 and µ({x2}) = 0.3.

The results show that this test in the most of the cases fail to detect that
the distribution is not normal.

To further illustrate the marginal distributions of the bivariate Choquet
integral based distributions, we display in Figure 1 some of these marginals
together with the normal distribution with the same variance. The marginal
is on the left hand side of the figure and the normal distribution on the
right hand side. We can see that the two distributions are slightly different
and the marginal is more peaked than the normal distribution. This is
because the distributions displayed use low values of µ. In the case of large
µ the reversal is true. Figure 2 illustrates this case with the marginal of the
distribution with µ({x1}) = µ({x2}) = 0.9 and the normal distribution with
the same variance. The variances of the distributions have been computed
numerically from the marginal (defined in terms of the numerical integration
of the bivariate distribution) using the integrate function in R.

We have also considered Mardia’s test for the bivariate distributions. Mar-
dia’s test is based on multivariate extensions of skewness and kurtosis. In
particular, for the multivariate skewness of a sample in a k-dimensional space
Mardia obtained the expression

b1,k =
1

n2

n
∑

i=1

n
∑

j=1

[(xi − x̄)′Σ̂(xj − x̄)]3.

In the case of the multivariate kurtosis, the expression obtained is

b2,k =
1

n

n
∑

i=1

[(xi − x̄)′Σ̂(xi − x̄)]2.

Here, x̄ is the sample mean vector and Σ̂ is the covariance matrix. They
correspond to

x̄ = (1/n)

n
∑

i=1

xi, Σ̂ =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)T .

Then, when the distribution is a multivariate normal distribution (i.e.,
when the null hypothesis holds), the expression

A = n · b1,k/6

follows a chi-squared distribution with k(k+1)(k+2)/6 degrees of freedom,
and the expression

B =

√

n

8k(k + 2)
(b2,k − k(k + 2))

follows a standard normal random variable N(0, 1).
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Figure 1. Marginals of the bivariate Choquet integral based
distributions, and the normal distribution with the same
variance. Cases (i) µ({x1}) = 0.1 and µ({x2}) = 0.1; (ii)
µ({x1}) = 0.1 and µ({x2}) = 0.2; and (iii) µ({x1}) = 0.2 and
µ({x2}) = 0.1.

Our experiments show that most of the distributions pass the normality
test. The statistic A based on b1,k (skewness) is about zero for all these
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Figure 2. Marginal of the bivariate Choquet integral based
distributions with µ({x1}) = 0.9 and µ({x2}) = 0.9 (left) and
the normal distribution with the same variance (right).

distributions and, thus, passes the skewness test. This is natural, as skewness
is a measure of asymmetry. Being all almost zero, we do not include the exact
values in this work. According to what has been stated above, the statistic
A follows a chi-squared distribution with k(k + 1)(k + 2)/6 = 4 degrees of
freedom which means that at a confidence level of 0.95 should be less than
9.487729.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 3.54 2.61 1.55 7.71e-01 2.44e-01 -8.23e-02 -0.26 -0.35 -0.37
0.2 2.61 1.86 1.14 6.44e-01 3.16e-01 1.20e-01 0.02 -0.01 0.02
0.3 1.55 1.14 0.65 3.27e-01 1.29e-01 2.82e-02 -0.00 0.03 0.09
0.4 0.77 0.64 0.33 1.31e-01 2.88e-02 -3.00e-07 0.03 0.09 0.20
0.5 0.24 0.32 0.13 2.88e-02 -3.45e-09 2.85e-02 0.10 0.21 0.34
0.6 -0.08 0.12 0.03 -3.00e-07 2.85e-02 1.03e-01 0.21 0.35 0.51
0.7 -0.26 0.02 -0.00 2.78e-02 1.02e-01 2.14e-01 0.36 0.52 0.71
0.8 -0.35 -0.01 0.03 9.83e-02 2.10e-01 3.53e-01 0.52 0.71 0.92
0.9 -0.37 0.02 0.09 2.00e-01 3.42e-01 5.13e-01 0.71 0.92 1.14

Table 3. Values of Mardia’s B test for Choquet-integral
based distributions with µ({x}) = i/10 and µ({y}) = i/10
for i = 1, 2, . . . , 9. Position (a, b) in the table corresponds to
the case µ({x}) = a and µ({y}) = b. The matrix is symmet-
ric.

The values obtained for the statistic B based on b2,k (kurtosis) are pre-
sented in Table 3. According to the results of Mardia, the statistic should
follow a N(0, 1), and with a confidence level of 0.95 values should be lower
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than 1.959964. The table is symmetric as the distribution is probability dis-
tribution is symmetric with respect to the axis x and y. From the data in
the table we can see that the test fails only on the pairs (i) µ({x}) = 0.1
and µ({y}) = 0.1, (ii) µ({x}) = 0.2 and µ({y}) = 0.1.

5. Conclusions

In this paper we have reviewed the probability distribution based on the
Choquet integral, and we have studied some of their properties. We have
presented some results about the means and covariances of these distribu-
tions. Then, we have studied some normality tests for bivariate distributions.
We have seen that the Shapiro–Wilt for samples from marginal distributions
does not permit us to detect that the distribution is not normal. We have
also considered Mardia’s test. In this case, only the most extreme Cho-
quet integral based distributions have been detected. In particular, two
distributions do not pass the normality test. They are the distribution
built with µ({x1}) = 0.1 and µ({x2}) = 0.1 and the distribution built with
µ({x1}) = 0.2 and µ({x2}) = 0.1.

As future work we plan to consider more exhaustive analysis of the appli-
cation of normality tests to these distributions. We need to consider other
tests and also the application of these tests to distributions of larger dimen-
sions.
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