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More on explicit estimators for a banded
covariance matrix

Emil Karlsson and Martin Singull

Abstract. The problem of estimating mean and covariances of a mul-
tivariate normally distributed random vector has been studied in many
forms. This paper focuses on the estimators proposed by Ohlson et
al. (2011) for a banded covariance structure with m-dependence. We
rewrite the estimator when m = 1, which makes it easier to analyze.
This leads to an adjustment, and an unbiased estimator can be pro-
posed. A new and easier proof of consistency is then presented.

This theory is also generalized to a general linear model where the
corresponding theorems and propositions are stated to establish unbi-
asedness and consistency.

1. Introduction

There exist many estimates, tests, confidence intervals and types of re-
gression models in the multivariate statistical literature that are based on
the assumption that the underlying distribution is normal [1, 9, 15]. The pri-
mary reason is that often multivariate datasets are, at least approximately,
normally distributed. The multivariate normal distribution is also simpler
to analyze than many other distributions. For example all the information
in a multivariate normal distribution can be found in its mean and covari-
ances. Because of this, estimating the mean and covariances are subjects of
importance in statistics.

This paper will study an estimating procedure of a patterned covariance
matrix. Patterned covariance matrices arise from a variety of different situa-
tions and applications and have been studied by many authors. In a seminal
paper in the 1940s, Wilks [17] considered patterned covariances when study-
ing psychological tests. Wilks [17] used the covariance matrix with equal
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diagonal and equal off-diagonal elements, called the intraclass covariance
structure. Two years later Votaw [16] extended the intraclass covariance
structure to a model with blocks which had a certain pattern, the so-called
compound symmetry of type I and type II.

Olkin and Press [14] considered three symmetries, namely circular, in-
traclass and spherical and derived likelihood ratio test and the asymptotic
distribution under the hypothesis and alternative. Olkin [13] generalized the
circular stationary model with a multivariate version in which each element
was a vector and the covariance matrix can be written as a block circular
matrix.

The covariance symmetries investigated, for example, in [17, 16] and [14]
are all special cases of invariant normal models considered by [2].

Permutation invariant covariance matrices were considered in [10] and it
was proven that permutation invariance implies a specific structure for the
covariance matrix. Nahtman and von Rosen [11] showed that shift invariance
implies Toeplitz covariance matrices and marginally shift invariance gives
block Toeplitz covariance matrices.

There exist many papers on Toeplitz covariance matrices, e.g., see [3],
[6], [7] and [5]. To have a Toeplitz structure means that certain invariance
conditions are fulfilled, e.g., equality of variances and covariances. A similar
structure as the Topelitz structure is the banded covariance matrix. Banded
covariance matrices are common in applications and arise often in association
with time series. For example in signal processing, covariances of Gauss–
Markov random processes or cyclostationary processes [18, 8, 4]. In this
paper we will study a special case of banded matrices with unequal elements
except that certain covariances are zero. These covariance matrices will have
a tridiagonal structure.

Originally, estimates of covariance matrices were obtained using non-
iterative methods such as analysis of variance and minimum norm quadratic
unbiased estimation. Modern computers have changed a lot of things and the
cheap processing power made it possible to use iterative methods which per-
form better. With this came the rise of the maximum likelihood method and
more general estimating equations. These methods have surely dominated
during the last years. But nowadays we see a shift back to non-iterative
methods since the datasets have grown tremendously. With huge datasets
estimating with iterative methods can be a slow and tedious job.

This paper will discuss some properties of an explicit non-iterative estima-
tor for a banded covariance matrix derived in [12] and present an improve-
ment to this estimator. The improvement gives an unbiased and consistent
estimator for the mean and the covariance matrix under the special case of
first order dependence.

The outline of the paper is as follows. Section 2 presents the explicit
estimator given by [12] and some results regarding it. From these results
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a new unbiased explicit estimator is suggested. In Section 3 the explicit
estimator is generalized for estimating the covariance matrix in a general
linear model. An unbiased estimator is proposed. We conclude with a small
simulation study in Section 4 which is based on the new unbiased explicit
estimator proposed in this paper and some conclusions in Section 5.

2. Explicit estimators of a banded covariance matrix

In [12] an explicit estimator for the covariance matrix for a multivari-
ate normal distribution when the covariance matrix have an m-dependence
structure is presented. Ohlson et al. [12] propose estimators for the general
case when m+ 1 < p < n and establish some properties of it. Furthermore,
they also consider the special case where m = 1 in detail and in this section
some of the results from the article will be presented. The banded covariance
structure of order one is given by

Σ
(1)
(p) =



σ11 σ12 0 . . . . . . 0
σ12 σ22 σ23 0 . . . 0
0 σ32 σ33 σ34 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 σp−2,p−1 σp−1,p−1 σp−1,p
0 . . . . . . 0 σp−1,p σpp


. (1)

Given the observation matrix

Y =
(
y1 . . . yp

)′ ∼ Np,n

(
µ1′n,Σ

(1)
(p), In

)
, (2)

where µ =
(
µ1 . . . µp

)′
and In is the identity matrix of order n, the esti-

mators σ̂ii and σ̂i,i+1 are constructed through conditioning on y1, . . . ,yi−1.

2.1. Previous results. Below follows the proposition given in [12].

Proposition 2.1. Let Y ∼ Np,n

(
µ1′n,Σ

(1)
(p), In

)
. Explicit estimators are

given by

µ̂i =
1

n
y′i1n,

σ̂ii =
1

n
y′iQ1n

yi, for i = 1, . . . , p,

σ̂i,i+1 =
1

n
r̂′iQ1n

yi+1, for i = 1, . . . , p− 1,
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where r̂1 = y1, r̂i = yi− ŝir̂i−1 for i = 2, . . . , p− 1, and ŝi =
r̂′i−1Q1n

yi
r̂′i−1Q1n

yi−1
,

where

Q1n
= In − 1n(1′n1n)−11′n (3)

and 1 =
(
1 . . . 1

)′
: n× 1.

Some properties of the estimators where given in [12], where it was shown

that the estimator Σ̂
(1)
(p) = (σ̂ij) given in Proposition 2.1 is consistent. But,

the estimator for the covariance matrix above lacks the property of unbi-
asedness. One of the main goals of this paper is to develop this desired
property.

2.2. Remodeling of explicit estimators. We will now rewrite the esti-
mators given in Proposition 2.1 which makes it clearer and more suitable for
interpretation and analyzes.

The estimators presented in Proposition 2.1 are partly composed from the
maximum likelihood estimators (MLEs). The estimator for µi, given by

µ̂i =
1

n
y′i1n,

is the MLE for the unstructured case by construction.
The proposed estimator and the MLEs for an unstructured covariance

matrix share a resemblance, which can be seen by looking at the estimators
of the diagonal elements, which are given as

σ̂ii =
1

n
y′iQ1n

yi, for i = 1, . . . , p,

where Q1n
is given in (3). These are the same for the two cases. Also the

first off-diagonal element is of course the same as the MLE for the unstructed
case, since this is how it is constructed. The estimator is given by

σ̂12 =
1

n
r̂′1Q1n

y2,

where

r̂1 = y1.

However, the estimators of the off-diagonal elements of the covariance matrix
except σ12 are not the same as the MLEs for the unstructured covariance
matrix and are therefore not so straightforward to analyze.
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Furthermore, when i > 1 we can write the estimators as

σ̂i,i+1 =
1

n
r̂′iQ1n

yi+1 =
1

n
(yi − ŝir̂i−1)′Q1n

yi+1

=
1

n

(
yi −

r̂′i−1Q1n
yi

r̂′i−1Q1n
r̂i−1

r̂i−1

)′
Q1n

yi+1

=
1

n

(
y′iQ1n

yi+1 −
r̂′i−1Q1n

yi
r̂′i−1Q1n

r̂i−1
r̂′i−1Q1n

yi+1

)
and since r̂′k−1Q1n

r̂k−1 is a scalar it is possible to write

σ̂i,i+1 =
1

n

(
y′iQ1n

yi+1 − y′iQ1n
r̂i−1(r̂

′
i−1Q1n

r̂i−1)
−1r̂′i−1Q1n

yi+1

)
=

1

n
y′i
(
Q1n

−Q1n
r̂i−1(r̂

′
i−1Q1n

r̂i−1)
−1r̂′i−1Q1n

)
yi+1

=
1

n
y′iPQ1n

r̂i
yi+1,

where

PQ1n
r̂i

= Q1n
−Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

.

For simplicity we will write

P 1
i = PQ1n

r̂i
. (4)

The main proposition of this paper follows, i.e., an alternative writing of
Proposition 2.1.

Proposition 2.2. Let Y ∼ Np,n

(
µ1′n,Σ

(1)
(p), In

)
. Explicit estimators of

the parameters are given by

µ̂i =
1

n
y′i1n,

σ̂ii =
1

n
y′iQ1n

yi, for i = 1, . . . , p,

σ̂i,i+1 =
1

n
y′iP

1
i−1yi+1, for i = 1, . . . , p− 1,

where P 1
i = Q1n

−Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

with r̂1 = 0 and

r̂i = yi −
r̂′i−1Q1n

yi
r̂′i−1Q1n

yi−1
r̂i−1, for i = 2, . . . , p− 1,

and Q1n
is given in (3).

The next theorem shows an important property of the matrix P 1
i .

Theorem 2.1. The matrix P 1
i , i = 2, . . . , p− 2, used in Proposition 2.2

is idempotent and symmetric of rank n− 2.

14
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Proof. Idempotency : We have

P 1
i
2

= (Q1n
−Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

)(Q1n
−Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

)

= Q2
1n
−Q1n

Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

−Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

Q1n

+Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

= Q1n
−Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

= P 1
i ,

since Q1n
, given in (3), is an idempotent matrix.

Symmetry : P i is symmetric since

P 1
i
′
= (Q1n

−Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

)′ = Q′1n
−Q′1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ

′
1n

= Q1n
−Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

= P 1
i .

Rank : Since P 1
i is idempotent, the rank(P 1

i ) = tr(P 1
i ). This implies the

following:

rank(P 1
i ) = tr(P 1

i ) = tr(Q1n
−Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

)

= tr(Q1n
)− tr(Q1n

r̂i(r̂
′
iQ1n

r̂i)
−1r̂′iQ1n

)

= n− 1− tr((r̂′iQ1n
r̂i)(r̂

′
iQ1n

r̂i)
−1) = n− 2.

�

2.3. Unbiasedness and consistency. The last section presented some
alteration to the original estimators which made it possible to rewrite them
as a quadratic and bilinear forms, centering with an idempotent matrix, i.e.,

σ̂ii =
1

n
y′iQ1n

yi, for i = 1, . . . , p,

and

σ̂i,i+1 =
1

n
y′iP

1
i−1yi+1, for i = 1, . . . , p− 1.

We can now propose an unbiased estimator for the covariance matrix. It is
also possible to present a new and much simpler proof of the consistency for
the sample covariance matrix compared to the proof given in [12].

First we propose an unbiased estimator for the covariance matrix.
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Theorem 2.2. Let Y ∼ Np,n

(
µ1′n,Σ

(1)
(p), In

)
. Explicit unbiased estima-

tors of the parameters are given by

µ̂i =
1

n
y′i1n,

σ̂ii =
1

n− 1
y′iQ1n

yi, for i = 1, . . . , p,

σ̂12 =
1

n− 1
y′1Q1n

y2,

σ̂i,i+1 =
1

n− 2
y′iP

1
i−1yi+1, for i = 2, . . . , p− 1,

where P 1
i = Q1n

−Q1n
r̂i(r̂

′
iQ1n

r̂i)
−1r̂′iQ1n

with r̂1 = y1 and

r̂i = yi −
r̂′i−1Q1n

yi
r̂′i−1Q1n

yi−1
r̂i−1, for i = 2, . . . , p− 1,

and Q1n
is given in (3).

Proof. The estimators µ̂i, σ̂ii for i = 1, . . . , p and σ̂12 coincide with the
corrected maximum likelihood estimators and are thus unbiased. Therefore
it remains to prove that σ̂i,i+1 are unbiased for i = 2, . . . , p− 1.

In the derivation of σ̂i,i+1 we assume y1, . . . ,yi−1 to be known, see [12] for

more details. Therefore, the matrix P 1
i , i = 2, . . . , p− 2, can be considered

as a non-random matrix. We consider σ̂i,i+1 as a bilinear form and calculate
its expected value as

E(σ̂i,i+1) = E

(
1

n− 2
y′iP

1
i−1yi+1

)
=

1

n− 2
E
[
E(y′iP

1
i−1yi+1|y1, . . . ,yi−1)

]
=

1

n− 2
E
[
tr(P 1

i−1)
]
σi,i+1 = σi,i+1,

since the matrix P 1
i−1 is idempotent we have tr(P 1

i−1) = rank(P 1
i−1) = n−2,

and the theorem has been proved.
�

Theorem 2.3. The estimators given in Theorem 2.2 are consistent.

The proof for consistency follows the same idea as the proof for unbiased-
ness.

Proof. The estimators µ̂i, σ̂ii for i = 1, . . . , p and σ̂12 coincide with the
corrected maximum likelihood estimators and are thus consistent. Therefore
it remains to prove that σ̂i,i+1 are consistent for i = 2, . . . , p− 1.
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We consider σ̂i,i+1 as a bilinear form and calculate its variance as

var(σ̂i,i+1) = var

(
1

n− 2
y′iP

1
i−1yi+1

)
=

1

(n− 2)2

(
E
[
var(y′iP

1
i−1yi+1|y1, . . . ,yi−1)

]
+ var

[
E(y′iP

1
i−1yi+1|y1, . . . ,yi−1)

]︸ ︷︷ ︸
=0

)
=

1

(n− 2)2
E
[
tr(P 1

i−1)
]
σ2i,i+1 + E

[
tr(P 1

i−1
2
)
]
σiiσi+1,i+1.

Since the matrix P 1
i−1 is idempotent, we have

var(σ̂i,i+1) =
1

(n− 2)2
rank(P 1

i−1)(σ
2
i,i+1 + σiiσi+1,i+1)

=
σ2i,i+1 + σiiσi+1,i+1

n− 2
,

since rank(P 1
i−1) = n − 2. Hence, var(σ̂i,i+1) → 0, when n → ∞. The

estimator is unbiased, hence the consistency follows. Thus the theorem has
been proved. �

3. Generalization to a general linear model

In this section the estimator presented earlier will be extended to a general
linear model. Two differences of concern are the effect of estimating the
regression parameters and the degrees of freedom, i.e., the rank of the design
matrix. The multivariate linear model takes the form

Y = BX +E : p× n,
where X : k × n is a known design matrix, and

B = (b1, . . . , bp)
′ : p× k

is an unknown matrix of regression parameters. We will assume throughout
this paper, without loss of generality, that X has full rank k, such that n ≥
p+ k, and the error matrix is normally distributed, i.e., E ∼ Np,n(0,Σ, In).

3.1. B̂ instead of µ̂. This section contains a motivation why B̂ will max-
imize the conditional likelihood function in the same way as µ̂ does.

In a general linear model the MLE for B is B̂ = Y X ′(XX ′)−1 for the
unstructured case. Since the general linear model is a fusion between differ-
ent response value, it is possible to determine the different rows b′i separately
with the following expression

b̂
′
i = y′iX

′(XX ′)−1, for i = 1, . . . , k.
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The explicit estimator in [12] is derived from a stepwise maximization of the
likelihood function. The same principle applies for the general linear model
in the following way

b̂
′
i = b̂

′
i|y′1, . . . ,y′i−1.

Since each individual b-vector can be determined independently and because
the estimator of b̂ above is the MLE for the unstructured case, it will maxi-
mize the conditional distribution and we have

B̂ = (b̂1, . . . , b̂p)
′.

Altogether this makes a good basis to propose explicit estimators for a gen-
eral linear model with banded structure of order one.

3.2. Proposed estimators. In this section we propose explicit estima-
tors for a general linear model. In the section above we motivated the
estimator B̂ = Y X ′(XX ′)−1 and here follows a proposition for the co-

variance matrix. In Section 2 we assumed Y ∼ Np,n(µ1′n,Σ
(1)
(p), In). We

now study the general linear model Y ∼ Np,n(BX,Σ
(1)
(p), In) and see that

the transformation Y −BX will yield the same model as in Section 2, i.e.,

Y −BX ∼ Np,n(0,Σ
(1)
(p), In). Hence, in Theorem 2.2 we will now replace y′i

with

y′i − b̂
′
iX = y′i(In −X ′(XX ′)−1X) = y′iQX ,

where

QX = In −X ′(XX ′)−1X. (5)

This leads us to the following proposition.

Proposition 3.1. Let Y ∼ Np,n

(
BX,Σ

(1)
(p), In

)
, with rank(X) = k.

Explicit estimators of the parameters are given by

B̂ = Y X ′(XX ′)−1,

σ̂ii =
1

n− 1
y′iQXyi, for i = 1, . . . , p,

σ̂12 =
1

n− 2
y′1QXy2,

σ̂i,i+1 =
1

n− 2
y′iP

X
i−1yi+1, for i = 2, . . . , p− 1,

where PX
i = QX −QX r̂i(r̂

′
iQX r̂i)

−1r̂′iQX with r̂1 = y1 and

r̂i = yi −
r̂′i−1QXyi
r̂′i−1QXyi−1

r̂i−1, for i = 2, . . . , p− 1

and QX is given in (5).

15
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In Section 2 we saw that the correction of unbiasedness depended on
matrix P 1

i which Q1n
is a part of, we need to study the properties of the

new matrix PX
i to determine what kind of estimator for a general linear

model will give us unbiasedness.
Here follows a theorem regarding the properties of the matrix PX

i above.

Theorem 3.1. The matrix PX
i given in Proposition 3.1 is idempotent

and symmetric with rank(PX
i ) = n− k − 1.

Proof. Idempotence:

PX
i

2
= (QX −QX r̂i(r̂

′
iQX r̂i)

−1r̂′iQX)(QX −QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQX)

= Q2
X −QXQX r̂i(r̂

′
iQX r̂i)

−1r̂′iQX −QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQXQX

+QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQXQX r̂i(r̂
′
iQX r̂i)

−1r̂′iQX

= QX −QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQX = PX
i ,

since QX is an idempotent matrix.
Symmetry :

PX
i
′
= (QX −QX r̂i(r̂

′
iQX r̂i)

−1r̂′iQX)′

= Q′X −Q′X r̂i(r̂′iQX r̂i)
−1r̂′iQ

′
X

= QX −QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQX = PX
i .

Rank : Since PX
i is idempotent, the rank(PX

i ) = tr(PX
i ). This implies

rank(PX
i ) = tr(PX

i ) = tr(QX −QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQX)

= tr(QX)− tr(QX r̂i(r̂
′
iQX r̂i)

−1r̂′iQX)

= n− k − tr((r̂′iQX r̂i)(r̂
′
iQX r̂i)

−1) = n− k − 1.

�

3.3. Unbiasedness and consistency. Given Theorem 3.1 we are now
again ready to propose an unbiased estimator. Since the structure of the
estimators is similar to the multivariate normal model discussed in Section
2, the proofs will be similar.
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Theorem 3.2. Let Y ∼ Np,n

(
BX,Σ

(1)
(p), In

)
, where rank(X) = k.

Explicit unbiased estimators of the parameters are given by

B̂ = Y X ′(XX ′)−1,

σ̂ii =
1

n− k
y′iQXyi, for i = 1, . . . , p,

σ̂12 =
1

n− k
y′1QXy2,

σ̂i,i+1 =
1

n− k − 1
y′iP

X
i−1yi+1, for i = 2, . . . , p− 1,

where PX
i = QX −QX r̂i(r̂

′
iQX r̂i)

−1r̂′iQX with r̂1 = y1 and

r̂i = yi −
r̂′i−1QXyi
r̂′i−1QXyi−1

r̂i−1, for i = 2, . . . , p− 1,

and QX is given in (5).

Proof. The estimators B̂, σ̂ii for i = 1, . . . , p and σ̂12 coincide with the
corrected maximum likelihood estimators and are thus unbiased. It remains
to prove that σ̂i,i+1 are unbiased for i = 2, . . . , p− 1.

When the estimators are derived, they are conditioned on the previous y:s.
That is the calculation of σ̂i,i+1 assumes y1, . . . ,yi−1 to be known constants.

Therefore, the matrix PX
i below can be considered as a non-random matrix.

We can consider σ̂i,i+1 as a bilinear form and calculate its expectation as

E(σ̂i,i+1) = E

(
1

n− k − 1
y′iP

X
i−1yi+1

)
=

1

n− k − 1
E
[
E
(
y′iP

X
i−1yi+1|y1, . . . ,yi−1

)]
=

1

n− k − 1
E
[
tr(PX

i−1)
]
σi,i+1 = σi,i+1,

since tr(PX
i−1) = rank(PX

i−1) = n − k − 1. Thus E(σ̂i,i+1) = σi,i+1 and the
theorem has been proved. �

The proof for consistency follows the same structure as the proof above
but instead uses that the estimators are unbiased and study the variance of
the estimators.

Theorem 3.3. The estimators given in Theorem 3.2 are consistent.

Proof. The estimators µ̂i, σ̂ii for i = 1, . . . , p and σ̂12 coincide with the
corrected maximum likelihood estimators and are thus consistent.

It remains to prove that σ̂i,i+1 are consistent for i = 2, . . . , p−1. When the
estimators are derived, they are conditioned on the previous y:s. That is the
calculation of σ̂i,i+1 assumes y1, . . . ,yi−1 to be known constants. Therefore,
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the matrix PX
i below can be considered as a non-random matrix. We can

then consider σ̂i,i+1 as a bilinear form and calculate its variance as

var(σ̂i,i+1) = var

(
1

n− k − 1
y′iP

X
i−1yi+1

)
=

1

(n− k − 1)2
E
[
var(y′iP

X
i−1yi+1|y1, . . . ,yi−1)

]
=

1

(n− k − 1)2

(
E
[
tr(PX

i−1)
]
σ2i,i+1 + E

[
tr(PX

i−1
2
)
]
σiiσi+1,i+1

)
=
σ2i,i+1 + σiiσi+1,i+1

n− k − 1
,

since the matrix PX
i−1 is idempotent and tr(PX

i−1) = rank(PX
i−1) = n−k−1.

One can see that, when n → ∞ the var(σ̂i,i+1) → 0, i.e., consistent. Thus
the theorem has been proved. �

4. Simulations

In this section we will give some simulations of the unbiased covariance
matrix estimate presented in Theorem 2.2 and 3.2.

4.1. Simulations of the regular normal distribution. In this section

we assume that x ∼ N4

(
0,Σ

(1)
(4)

)
, where

Σ
(1)
(4) =


5 2 0 0
2 5 1 0
0 1 5 3
0 0 3 5

 .

In the simulation a sample of size n = 20 observations was randomly gener-
ated. Then the unbiased explicit estimates were calculated in each simula-
tion. This was repeated 100000 times and the average values of the obtained
estimate were calculated.

Based on the average explicit unbiased estimate is given by

Σ̂ =


4.99501 1.99590 0 0
1.99590 4.99238 0.99678 0

0 0.99678 5.00026 3.00265
0 0 3.00265 5.00368

 .

In this simulation experiment the unbiased estimates seems to perform good.
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4.2. Simulations of the estimators for a general linear model. In

this section we assume the model Y = E ∼ Nn,5

(
BX,Σ

(1)
(5), In

)
, where

Σ
(1)
(5) =


4 1 0 0 0
1 3 2 0 0
0 2 5 3 0
0 0 3 5 3
0 0 0 3 5

 .

For each simulation the matricesB andX were randomly generated to avoid
any effect on the estimation process.

In this simulation a sample of size n = 80 observations was randomly
generated. Then the unbiased explicit estimates were calculated in each
simulation. This was repeated 100000 times and the average values of the
obtained estimate were calculated.

Based on the average explicit unbiased estimate is given by

Σ̂ =


3.99865 0.99971 0 0 0
0.99971 3.00511 2.00246 0 0

0 2.00246 4.99898 2.99769 0
0 0 2.99769 4.99412 2.99504
0 0 0 2.99504 4.99352

 .

In this simulation experiment the unbiased estimates seems to perform good.

5. Conclusion

This paper presents unbiased and consistent estimators for a covariance
matrix with a banded structure of order one. One can easily extend these
results into a banded covariance matrix of any order. Similar results, as for
the multivariate normal distribution, have also been shown for the general
linear model. This new explicit estimator is more suitable to use in a real
life situation since the property of unbiasedness is highly desired.
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