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Spaces of entire functions represented by vector
valued Dirichlet series of two complex variables

Archna Sharma and G. S. Srivastava

Abstract. Let Y be the space of all entire functions f : C2 → E de-
fined by the vector valued Dirichlet series, where E is a complex Banach
algebra with the unit element. We study various topologies defined on
the space Y and characterize continuous linear transformations on Y .

1. Introduction

Let

f(s) =
∞∑
n=1

ane
sλn , s = σ + it (σ, t are real variables), (1.1)

where an (n ∈ N) are complex numbers and the real sequence {λn} satisfies
the conditions: 0 < λ1 < λ2 < · · · < λn < · · · , λn →∞ as n→∞, and

lim sup
n→∞

log |an|
λn

= −∞ ,

lim sup
n→∞

log λn
n

<∞ .

Then the Dirichlet series (1.1) represents an entire function f(s). Kamthan
and Gautam ([3], [4]) defined various norms on this space. They obtained
the properties of bases of the space using the growth parameters of entire
Dirichlet series. In [1] and [2], S. Daoud studied properties of the space X
of entire functions defined by Dirichlet series of two complex variables.

In [5], B. L. Srivastava considered the vector valued Dirichlet series where
the coefficients {an} belong to a complex Banach space. He also defined the
growth parameters such as order, type, lower order and lower type of the
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vector valued entire Dirichlet series. He also obtained coefficient characteri-
zations of order and type.

Let the coefficients am,n (m,n = 0, 1, . . . ) belong to a complex commuta-
tive Banach algebra (E, ‖·‖) with the unit element ω, and the real sequences
{λm} and {µn} satisfy the following conditions: 0 = λ0 < λ1 < · · · < λm <
· · · , λm → ∞ as m → ∞, 0 = µ0 < µ1 < · · · < µn < · · · , µn → ∞ as
n→∞, and

lim sup
m,n→∞

ln (m+ n)

λm + µn
= D < +∞ , (1.2)

lim sup
m,n→∞

ln ‖am,n‖
λm + µn

= −∞ . (1.3)

In the following we may assume, without loss of generality, that λ1 , µ1 > 1.
Let us consider the mapping f : C2 → E defined as

f(s1, s2) =

∞∑
m,n=0

am,n exp(λms1 + µns2) (sj = σj + itj , j = 1, 2) . (1.4)

Then f(s1, s2) is an entire function (see [5]). In [6], the authors introduced
two equivalent topologies on the space Y of entire functions (1.4) and ob-
tained some properties of bases in Y . In this paper we prove some additional
properties of the space Y . We also give a characterization of certain contin-
uous linear transformations on the space Y .

2. Topologies on the space Y

Let us assume that {σ(k)1 } and {σ(k)2 } are two non-decreasing sequences of

positive numbers such that σ
(k)
1 →∞ and σ

(k)
2 →∞ with k →∞. For each

f ∈ Y we put (see [6], p. 84)

‖f ;σ
(k)
1 , σ

(k)
2 ‖ =

∞∑
m,n=0

‖am,n‖ exp(λmσ
(k)
1 + µnσ

(k)
2 ) ,

where f(s1, s2) is a vector valued entire function defined by (1.4), and define
a metric topology on Y with the metric

ρ(f, g) =
∞∑
k=1

1

2k
‖f − g;σ

(k)
1 , σ

(k)
2 ‖

1 + ‖f − g;σ
(k)
1 , σ

(k)
2 ‖

, f, g ∈ Y.

Another metric topology on Y is determined by the metric (see [6], p. 84)

T (f, g) =

∞∑
j=1

1

2j
M(f − g, σ(j)1 , σ

(j)
2 )

1 +M(f − g, σ(j)1 , σ
(j)
2 )

, f, g ∈ Y ,
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where, for 0 < σ1, σ2 <∞,

M(f ;σ1, σ2) = sup
−∞<t1,t2<∞

‖f(σ1 + it1, σ2 + it2)‖ .

For each f ∈ Y , let us define a function

p(f) = sup
{
‖a0,0‖ , ‖am,n‖1/(λm+µn) : m,n > 0, m+ n 6= 0

}
which is well defined in view of (1.3). The function p satisfies the following
properties:

(i) p(f) = 0 ⇐⇒ f = 0,
(ii) p(−f) = p(f),
(iii) p(f + g) ≤ p(f) + p(g), f, g ∈ Y .

Indeed, (i) and (ii) are obvious. To prove (iii) let f, g ∈ Y , where f is defined
by (1.4) and

g(s1, s2) =

∞∑
m,n=0

bm,n exp(λms1 + µns2).

Then

(f + g)(s1, s2) =
∞∑

m,n=0

(am,n + bm,n) exp(λms1 + µns2)

and so,

p(f+g)=sup
{
‖a0,0+b0,0‖, ‖am,n + bm,n‖1/(λm+µn) : m,n ≥ 0, m+ n 6= 0

}
.

Therefore, using the inequality

‖am,n + bm,n‖1/(λm+µn) ≤ ‖am,n‖1/(λm+µn) + ‖bm,n‖1(λm+µn),

we get (iii).
Let us put d(f, g) = p(f − g). Then from (i), d(f, g) = 0 if and only if

f = g. The symmetry of d is evident from (ii) and the triangle inequality
follows from (iii). Hence d(f, g) defines a metric on Y .

Now we prove our first two results.

Proposition 1. The three topologies on Y defined, respectively, by ρ, d
and T are equivalent.

Proof. First we consider the topologies defined by the metrics ρ and d.
For this we take a sequence {fβ} ⊂ Y ,

fβ(s1, s2) =
∞∑

m,n=0

a(β)
m,n

exp(λms1 + µns2), β = 1, 2, . . . ,

2
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and assume that fβ → f in the metric d, where f ∈ Y is definad by (1.4).
For an arbitrary large number r we have

‖a(β)0,0 − a0,0‖ < 1/r, β ≥ β0(r),

and, for m,n ≥ 0, m+ n 6= 0,

‖a(β)m,n − am,n‖1/(λm+µn) < 1/r, β ≥ β0(r) .

Hence, as in [1, p. 413], for each k we get

‖fβ − f ;σ
(k)
1 , σ

(k)
2 ‖ < 1/r +

∑
m,n>0

exp
{

(σ
(k)
1 − log r)λm + (σ

(k)
1 − log r)µn

}
< 1/r +O(1) exp{−(λ1 + µ1) log

√
r}.

Therefore fβ → f with respect to each norm ||f ;σ
(k)
1 , σ

(k)
2 ||. Hence fβ → f

in the metric ρ.
Now, suppose that fβ → f in the metric ρ. Then fβ → f with respect

to each norm ||f ;σ
(k)
1 , σ

(k)
2 ||. Therefore, for a given ε > 0 we can choose k

large enough such that exp(−σk) < ε, where σk = min(σ
(k)
1 , σ

(k)
2 ), and there

exists β0 = β0(ε) such that

‖a(β)0,0 − a0,0‖ < ε, β ≥ β0,

and, for m,n ≥ 0, m+ n 6= 0,

‖a(β)m,n − am,n‖ < ε exp[−(λmσ
(k)
1 + µnσ

(k)
2 )], β ≥ β0, k ≥ 1.

Thus

sup
m,n
‖a(β)m,n − am,n‖1/(λm+µn) < exp(−σk)supm,nε

1/(λm+µn)

< ε, β ≥ β0.

Hence d(fβ, f) < ε for all β ≥ β0 and, consequently, fβ → f in the metric
defined by p. Combining the two sides, we obtain the equivalence of ρ and
d.

It has been shown earlier by the authors (see [6], p. 85) that the topologies
defined by ρ and T are equivalent. This gives the result. �

Proposition 2. The space Y endowed with any one of the topologies given
by ρ, d or T is complete.

Proof. In view of Proposition 1, it is sufficient to prove the completeness
of Y under one of the above topologies. We consider the topology generated
by the metric d. Let {fβ} be a Cauchy sequence in Y . Then for a given
ε, 0 < ε < 1, there exists an integer N = N(ε) such that

‖a(β)0,0 − a
(γ)
0,0‖ < ε, β, γ ≥ N,
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and

‖a(β)m,n − a(γ)m,n‖1/(λm+µn) < ε, β, γ ≥ N, m, n ≥ 0,m+ n 6= 0.

Hence, the sequence
{
a
(β)
m,n

}
is a Cauchy sequence in the Banach algebra E

for each fixed m and n . Therefore,
{
a
(β)
m,n

}
→ am,n as β → ∞ for each

m,n ≥ 0.
Now

‖am,n‖ ≤ |‖a(β)m,n − am,n‖+ ‖a(β)m,n‖
≤ ε+ exp{−(λm + µn)k}, β ≥ N, m+ n ≥ n0(k),

in view of (1.3). This shows that

‖am,n‖1/(λm+µn) ≤ exp(−k) , m+ n ≥ n0(k).

Thus f(s1, s2) =
∑∞

m,n=0 am,n exp(λms1 + µns2) is an entire function. For
all β ≥ N we have

d(fβ, f) = p(fβ − f)

= sup
{
‖a(β)0,0−a0,0‖, ‖a

(β)
m,n−am,n‖1/(λm+µn) : m,n ≥ 0, m+ n 6=0

}
≤ ε,

where f ∈ Y . The result is proved. �

3. Linear transformations on the space Y

In this section, we characterize certain linear transformations on Y . In
what follows, for each f ∈ Y , let p(f) be defined as above and for f, g ∈ Y
we have d(f, g) = p(f − g).

Theorem 1. Let {cm,n}∞m,n=0 be a sequence of complex numbers and

am,n ∈ E (m,n ≥ 0). If sequence {am,n} satisfies condition (1.3), then the
series

∑∞
m,n=0 cm,nam,n converges absolutely in E if and only if the sequence{

ln |c0,0|, ln |cm,n|1/(λm+µn)
}
m,n≥0,m+n 6=0

(3.1)

is bounded.

Proof. Let us assume that the series
∞∑

m,n=0
cm,nam,n is absolutely conver-

gent but the sequence (3.1) is not bounded. Then we have

|cmk,nk
| ≥ exp{k(λmk

+ µnk
)}, k ≥ 1.

Now we define a sequence {am,n} ⊆ E such that

am,n =

{
ω exp{−k(λmk

+ µnk
)} if m = mk, n = nk,

0 otherwise,
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where ω is the unit element of E. Then (1.4) holds but

‖amk,nk
cmk,nk

‖ ≥ 1, k ≥ 1.

Therefore, the sequence ‖cm,n am,n‖ does not tend to zero as m+n→∞ and
so, the series

∑∞
m,n=0 ‖cm,n am,n‖ does not converge. This is a contradiction

and hence, the necessary part is proved.
To prove the sufficiency part let us suppose that the sequence (3.1) is

bounded. Then there is a positive constant M such that

|c0,0| < eM and |cm,n|1/(λm+µn) ≤ eM , m, n ≥ 0, m+ n 6= 0,

and (see [1], Lemma 1) the series
∑

m+n>0 exp{−M(λm+µn)} is convergent.
Now, using (1.3), we find a positive integer n0 such that

‖am,n‖ < exp{−2M(λm + µn)}, m+ n ≥ n0,
or

‖cm,n am,n‖ < exp{−M(λm + µn)}, m+ n ≥ n0.
Hence

∞∑
m,n=0

‖cm,n am,n‖ ≤ O(1) +
∑

m+n≥n0

‖cm,n am,n‖

≤ O(1) +
∑

m+n≥n0

exp{−M(λm + µn)}

which shows that the series
∑∞

m,n=0 ‖cm,n am,n‖ converges. The proof of
Theorem 1 is complete. �

Theorem 2. Let {cm,n} be a sequence of complex numbers. The trans-
formation φ : Y → E of the form

φ(f) =

∞∑
m,n=0

cm,n am,n (3.2)

is linear and continuous if the sequence (3.1) is bounded and Y is endowed
with any one of the topologies given by metrics ρ, d or T .

Proof. The transformation φ is correctly defined in view of Theorem 1.
The linearity of φ is immediately clear.

To prove that φ is continuous it is sufficient to show that if {fq}∞q=1 is a

sequence in Y and fq → 0 as q → ∞, then φ(fq) → 0. Since all three
topologies on Y are equivalent by Proposition 1, we take the metric d on Y
for our proof. Let

fq(s1, s2) =
∞∑

m,n=0

a(q)m,n exp(λms1 + µns2) , q ≥ 1,
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and suppose that

M = sup{ln |c0,0|, ln |cm,n|1/(λm+µn) : m,n ≥ 0, m+ n 6= 0}.
Since (1.2) is satisfied, by [1, Lemma 1] there exists a number α, 0 < α <∞,
such that the series

∑
m+n>0 exp{−α(λm + µn)} is convergent. Now we

choose ε > 0 so that M − 1/ε ≤ −α. Since fq → 0 as q →∞, there exists a
positive integer Q = Q(ε) such that

‖a(q)0,0‖ < exp(−1/ε), ‖a(q)m,n‖ < exp{−(λm + µn)/ε}, q ≥ Q.
Then, for q ≥ Q,

‖φ(fq)‖ =

∥∥∥∥∥∥
∞∑

m,n=0

a(q)m,n cm,n

∥∥∥∥∥∥ ≤
∞∑

m,n=0

∥∥∥a(q)m,n∥∥∥ |cm,n|
< exp(M − 1/ε) +

∑
m+n>0

exp{(M − 1/ε) (λm + µn)}

→ 0 as ε→ 0.

Hence φ is continuous and the proof of Theorem 2 is complete. �
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