Spaces of entire functions represented by vector valued Dirichlet series of two complex variables

Archna Sharma and G. S. Srivastava

Abstract

Let Y be the space of all entire functions $f: \mathbb{C}^{2} \rightarrow E$ defined by the vector valued Dirichlet series, where E is a complex Banach algebra with the unit element. We study various topologies defined on the space Y and characterize continuous linear transformations on Y.

1. Introduction

Let

$$
\begin{equation*}
f(s)=\sum_{n=1}^{\infty} a_{n} e^{s \lambda_{n}}, \quad s=\sigma+i t \quad(\sigma, t \text { are real variables }) \tag{1.1}
\end{equation*}
$$

where $a_{n}(n \in \mathbb{N})$ are complex numbers and the real sequence $\left\{\lambda_{n}\right\}$ satisfies the conditions: $0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots, \quad \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{\log \left|a_{n}\right|}{\lambda_{n}}=-\infty \\
& \limsup _{n \rightarrow \infty} \frac{\log \lambda_{n}}{n}<\infty
\end{aligned}
$$

Then the Dirichlet series (1.1) represents an entire function $f(s)$. Kamthan and Gautam ([3], [4]) defined various norms on this space. They obtained the properties of bases of the space using the growth parameters of entire Dirichlet series. In [1] and [2], S. Daoud studied properties of the space X of entire functions defined by Dirichlet series of two complex variables.

In [5], B. L. Srivastava considered the vector valued Dirichlet series where the coefficients $\left\{a_{n}\right\}$ belong to a complex Banach space. He also defined the growth parameters such as order, type, lower order and lower type of the

[^0]vector valued entire Dirichlet series. He also obtained coefficient characterizations of order and type.

Let the coefficients $a_{m, n}(m, n=0,1, \ldots)$ belong to a complex commutative Banach algebra $(E,\|\cdot\|)$ with the unit element ω, and the real sequences $\left\{\lambda_{m}\right\}$ and $\left\{\mu_{n}\right\}$ satisfy the following conditions: $0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{m}<$ $\cdots, \lambda_{m} \rightarrow \infty$ as $m \rightarrow \infty, 0=\mu_{0}<\mu_{1}<\cdots<\mu_{n}<\cdots, \mu_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
\begin{align*}
& \limsup _{m, n \rightarrow \infty} \frac{\ln (m+n)}{\lambda_{m}+\mu_{n}}=D<+\infty \tag{1.2}\\
& \limsup _{m, n \rightarrow \infty} \frac{\ln \left\|a_{m, n}\right\|}{\lambda_{m}+\mu_{n}}=-\infty \tag{1.3}
\end{align*}
$$

In the following we may assume, without loss of generality, that $\lambda_{1}, \mu_{1} \geqslant 1$.
Let us consider the mapping $f: \mathbb{C}^{2} \rightarrow E$ defined as

$$
\begin{equation*}
f\left(s_{1}, s_{2}\right)=\sum_{m, n=0}^{\infty} a_{m, n} \exp \left(\lambda_{m} s_{1}+\mu_{n} s_{2}\right) \quad\left(s_{j}=\sigma_{j}+i t_{j}, \quad j=1,2\right) \tag{1.4}
\end{equation*}
$$

Then $f\left(s_{1}, s_{2}\right)$ is an entire function (see [5]). In [6], the authors introduced two equivalent topologies on the space Y of entire functions (1.4) and obtained some properties of bases in Y. In this paper we prove some additional properties of the space Y. We also give a characterization of certain continuous linear transformations on the space Y.

2. Topologies on the space Y

Let us assume that $\left\{\sigma_{1}^{(k)}\right\}$ and $\left\{\sigma_{2}^{(k)}\right\}$ are two non-decreasing sequences of positive numbers such that $\sigma_{1}^{(k)} \rightarrow \infty$ and $\sigma_{2}^{(k)} \rightarrow \infty$ with $k \rightarrow \infty$. For each $f \in Y$ we put (see [6], p. 84)

$$
\left\|f ; \sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right\|=\sum_{m, n=0}^{\infty}\left\|a_{m, n}\right\| \exp \left(\lambda_{m} \sigma_{1}^{(k)}+\mu_{n} \sigma_{2}^{(k)}\right)
$$

where $f\left(s_{1}, s_{2}\right)$ is a vector valued entire function defined by (1.4), and define a metric topology on Y with the metric

$$
\rho(f, g)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \frac{\left\|f-g ; \sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right\|}{1+\left\|f-g ; \sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right\|}, \quad f, g \in Y
$$

Another metric topology on Y is determined by the metric (see [6], p. 84)

$$
T(f, g)=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{M\left(f-g, \sigma_{1}^{(j)}, \sigma_{2}^{(j)}\right)}{1+M\left(f-g, \sigma_{1}^{(j)}, \sigma_{2}^{(j)}\right)}, \quad f, g \in Y
$$

where, for $0<\sigma_{1}, \sigma_{2}<\infty$,

$$
M\left(f ; \sigma_{1}, \sigma_{2}\right)=\sup _{-\infty<t_{1}, t_{2}<\infty}\left\|f\left(\sigma_{1}+i t_{1}, \sigma_{2}+i t_{2}\right)\right\|
$$

For each $f \in Y$, let us define a function

$$
p(f)=\sup \left\{\left\|a_{0,0}\right\|,\left\|a_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)}: m, n \geqslant 0, m+n \neq 0\right\}
$$

which is well defined in view of (1.3). The function p satisfies the following properties:
(i) $p(f)=0 \Longleftrightarrow f=0$,
(ii) $p(-f)=p(f)$,
(iii) $p(f+g) \leq p(f)+p(g), \quad f, g \in Y$.

Indeed, (i) and (ii) are obvious. To prove (iii) let $f, g \in Y$, where f is defined by (1.4) and

$$
g\left(s_{1}, s_{2}\right)=\sum_{m, n=0}^{\infty} b_{m, n} \exp \left(\lambda_{m} s_{1}+\mu_{n} s_{2}\right)
$$

Then

$$
(f+g)\left(s_{1}, s_{2}\right)=\sum_{m, n=0}^{\infty}\left(a_{m, n}+b_{m, n}\right) \exp \left(\lambda_{m} s_{1}+\mu_{n} s_{2}\right)
$$

and so,
$p(f+g)=\sup \left\{\left\|a_{0,0}+b_{0,0}\right\|,\left\|a_{m, n}+b_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)}: m, n \geq 0, m+n \neq 0\right\}$.
Therefore, using the inequality

$$
\left\|a_{m, n}+b_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)} \leq\left\|a_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)}+\left\|b_{m, n}\right\|^{1\left(\lambda_{m}+\mu_{n}\right)}
$$

we get (iii).
Let us put $d(f, g)=p(f-g)$. Then from (i), $d(f, g)=0$ if and only if $f=g$. The symmetry of d is evident from (ii) and the triangle inequality follows from (iii). Hence $d(f, g)$ defines a metric on Y.

Now we prove our first two results.
Proposition 1. The three topologies on Y defined, respectively, by ρ, d and T are equivalent.

Proof. First we consider the topologies defined by the metrics ρ and d. For this we take a sequence $\left\{f_{\beta}\right\} \subset Y$,

$$
f_{\beta}\left(s_{1}, s_{2}\right)=\sum_{m, n=0}^{\infty} a_{m, n}^{(\beta)} \exp \left(\lambda_{m} s_{1}+\mu_{n} s_{2}\right), \quad \beta=1,2, \ldots,
$$

and assume that $f_{\beta} \rightarrow f$ in the metric d, where $f \in Y$ is definad by (1.4). For an arbitrary large number r we have

$$
\left\|a_{0,0}^{(\beta)}-a_{0,0}\right\|<1 / r, \quad \beta \geq \beta_{0}(r)
$$

and, for $m, n \geq 0, m+n \neq 0$,

$$
\left\|a_{m, n}^{(\beta)}-a_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)}<1 / r, \quad \beta \geq \beta_{0}(r)
$$

Hence, as in [1, p. 413], for each k we get

$$
\begin{aligned}
\left\|f_{\beta}-f ; \sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right\| & <1 / r+\sum_{m, n>0} \exp \left\{\left(\sigma_{1}^{(k)}-\log r\right) \lambda_{m}+\left(\sigma_{1}^{(k)}-\log r\right) \mu_{n}\right\} \\
& <1 / r+O(1) \exp \left\{-\left(\lambda_{1}+\mu_{1}\right) \log \sqrt{r}\right\}
\end{aligned}
$$

Therefore $f_{\beta} \rightarrow f$ with respect to each norm $\left\|f ; \sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right\|$. Hence $f_{\beta} \rightarrow f$ in the metric ρ.

Now, suppose that $f_{\beta} \rightarrow f$ in the metric ρ. Then $f_{\beta} \rightarrow f$ with respect to each norm $\left\|f ; \sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right\|$. Therefore, for a given $\varepsilon>0$ we can choose k large enough such that $\exp \left(-\sigma_{k}\right)<\varepsilon$, where $\sigma_{k}=\min \left(\sigma_{1}^{(k)}, \sigma_{2}^{(k)}\right)$, and there exists $\beta_{0}=\beta_{0}(\varepsilon)$ such that

$$
\left\|a_{0,0}^{(\beta)}-a_{0,0}\right\|<\varepsilon, \quad \beta \geq \beta_{0}
$$

and, for $m, n \geq 0, m+n \neq 0$,

$$
\left\|a_{m, n}^{(\beta)}-a_{m, n}\right\|<\varepsilon \exp \left[-\left(\lambda_{m} \sigma_{1}^{(k)}+\mu_{n} \sigma_{2}^{(k)}\right)\right], \quad \beta \geq \beta_{0}, k \geq 1
$$

Thus

$$
\begin{aligned}
\sup _{m, n}\left\|a_{m, n}^{(\beta)}-a_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)} & <\exp \left(-\sigma_{k}\right) \sup _{m, n} \varepsilon^{1 /\left(\lambda_{m}+\mu_{n}\right)} \\
& <\varepsilon, \quad \beta \geq \beta_{0}
\end{aligned}
$$

Hence $d\left(f_{\beta}, f\right)<\varepsilon$ for all $\beta \geq \beta_{0}$ and, consequently, $f_{\beta} \rightarrow f$ in the metric defined by p. Combining the two sides, we obtain the equivalence of ρ and d.

It has been shown earlier by the authors (see [6], p. 85) that the topologies defined by ρ and T are equivalent. This gives the result.

Proposition 2. The space Y endowed with any one of the topologies given by ρ, d or T is complete.

Proof. In view of Proposition 1, it is sufficient to prove the completeness of Y under one of the above topologies. We consider the topology generated by the metric d. Let $\left\{f_{\beta}\right\}$ be a Cauchy sequence in Y. Then for a given $\varepsilon, 0<\varepsilon<1$, there exists an integer $N=N(\varepsilon)$ such that

$$
\left\|a_{0,0}^{(\beta)}-a_{0,0}^{(\gamma)}\right\|<\varepsilon, \quad \beta, \gamma \geq N
$$

and

$$
\left\|a_{m, n}^{(\beta)}-a_{m, n}^{(\gamma)}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)}<\varepsilon, \quad \beta, \gamma \geq N, m, n \geq 0, m+n \neq 0
$$

Hence, the sequence $\left\{a_{m, n}^{(\beta)}\right\}$ is a Cauchy sequence in the Banach algebra E for each fixed m and n. Therefore, $\left\{a_{m, n}^{(\beta)}\right\} \rightarrow a_{m, n}$ as $\beta \rightarrow \infty$ for each $m, n \geq 0$.

Now

$$
\begin{aligned}
\left\|a_{m, n}\right\| & \leq\| \| a_{m, n}^{(\beta)}-a_{m, n}\|+\| a_{m, n}^{(\beta)} \| \\
& \leq \varepsilon+\exp \left\{-\left(\lambda_{m}+\mu_{n}\right) k\right\}, \quad \beta \geq N, m+n \geq n_{0}(k)
\end{aligned}
$$

in view of (1.3). This shows that

$$
\left\|a_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)} \leq \exp (-k), \quad m+n \geq n_{0}(k)
$$

Thus $f\left(s_{1}, s_{2}\right)=\sum_{m, n=0}^{\infty} a_{m, n} \exp \left(\lambda_{m} s_{1}+\mu_{n} s_{2}\right)$ is an entire function. For all $\beta \geq N$ we have

$$
\begin{aligned}
d\left(f_{\beta}, f\right) & =p\left(f_{\beta}-f\right) \\
& =\sup \left\{\left\|a_{0,0}^{(\beta)}-a_{0,0}\right\|,\left\|a_{m, n}^{(\beta)}-a_{m, n}\right\|^{1 /\left(\lambda_{m}+\mu_{n}\right)}: m, n \geq 0, m+n \neq 0\right\} \\
& \leq \varepsilon
\end{aligned}
$$

where $f \in Y$. The result is proved.

3. Linear transformations on the space Y

In this section, we characterize certain linear transformations on Y. In what follows, for each $f \in Y$, let $p(f)$ be defined as above and for $f, g \in Y$ we have $d(f, g)=p(f-g)$.

Theorem 1. Let $\left\{c_{m, n}\right\}_{m, n=0}^{\infty}$ be a sequence of complex numbers and $a_{m, n} \in E(m, n \geq 0)$. If sequence $\left\{a_{m, n}\right\}$ satisfies condition (1.3), then the series $\sum_{m, n=0}^{\infty} c_{m, n} a_{m, n}$ converges absolutely in E if and only if the sequence

$$
\begin{equation*}
\left\{\ln \left|c_{0,0}\right|, \ln \left|c_{m, n}\right|^{1 /\left(\lambda_{m}+\mu_{n}\right)}\right\}_{m, n \geq 0, m+n \neq 0} \tag{3.1}
\end{equation*}
$$

is bounded.
Proof. Let us assume that the series $\sum_{m, n=0}^{\infty} c_{m, n} a_{m, n}$ is absolutely convergent but the sequence (3.1) is not bounded. Then we have

$$
\left|c_{m_{k}, n_{k}}\right| \geq \exp \left\{k\left(\lambda_{m_{k}}+\mu_{n_{k}}\right)\right\}, \quad k \geq 1
$$

Now we define a sequence $\left\{a_{m, n}\right\} \subseteq E$ such that

$$
a_{m, n}= \begin{cases}\omega \exp \left\{-k\left(\lambda_{m_{k}}+\mu_{n_{k}}\right)\right\} & \text { if } m=m_{k}, n=n_{k} \\ 0 & \text { otherwise }\end{cases}
$$

where ω is the unit element of E. Then (1.4) holds but

$$
\left\|a_{m_{k}, n_{k}} c_{m_{k}, n_{k}}\right\| \geq 1, \quad k \geq 1
$$

Therefore, the sequence $\left\|c_{m, n} a_{m, n}\right\|$ does not tend to zero as $m+n \rightarrow \infty$ and so, the series $\sum_{m, n=0}^{\infty}\left\|c_{m, n} a_{m, n}\right\|$ does not converge. This is a contradiction and hence, the necessary part is proved.

To prove the sufficiency part let us suppose that the sequence (3.1) is bounded. Then there is a positive constant M such that

$$
\left|c_{0,0}\right|<e^{M} \quad \text { and } \quad\left|c_{m, n}\right|^{1 /\left(\lambda_{m}+\mu_{n}\right)} \leq e^{M}, \quad m, n \geq 0, m+n \neq 0
$$

and (see [1], Lemma 1) the series $\sum_{m+n>0} \exp \left\{-M\left(\lambda_{m}+\mu_{n}\right)\right\}$ is convergent. Now, using (1.3), we find a positive integer n_{0} such that

$$
\left\|a_{m, n}\right\|<\exp \left\{-2 M\left(\lambda_{m}+\mu_{n}\right)\right\}, \quad m+n \geq n_{0}
$$

or

$$
\left\|c_{m, n} a_{m, n}\right\|<\exp \left\{-M\left(\lambda_{m}+\mu_{n}\right)\right\}, \quad m+n \geq n_{0}
$$

Hence

$$
\begin{aligned}
\sum_{m, n=0}^{\infty}\left\|c_{m, n} a_{m, n}\right\| & \leq O(1)+\sum_{m+n \geq n_{0}}\left\|c_{m, n} a_{m, n}\right\| \\
& \leq O(1)+\sum_{m+n \geq n_{0}} \exp \left\{-M\left(\lambda_{m}+\mu_{n}\right)\right\}
\end{aligned}
$$

which shows that the series $\sum_{m, n=0}^{\infty}\left\|c_{m, n} a_{m, n}\right\|$ converges. The proof of Theorem 1 is complete.

Theorem 2. Let $\left\{c_{m, n}\right\}$ be a sequence of complex numbers. The transformation $\phi: Y \rightarrow E$ of the form

$$
\begin{equation*}
\phi(f)=\sum_{m, n=0}^{\infty} c_{m, n} a_{m, n} \tag{3.2}
\end{equation*}
$$

is linear and continuous if the sequence (3.1) is bounded and Y is endowed with any one of the topologies given by metrics ρ, d or T.

Proof. The transformation ϕ is correctly defined in view of Theorem 1. The linearity of ϕ is immediately clear.

To prove that ϕ is continuous it is sufficient to show that if $\left\{f_{q}\right\}_{q=1}^{\infty}$ is a sequence in Y and $f_{q} \rightarrow 0$ as $q \rightarrow \infty$, then $\phi\left(f_{q}\right) \rightarrow 0$. Since all three topologies on Y are equivalent by Proposition 1, we take the metric d on Y for our proof. Let

$$
f_{q}\left(s_{1}, s_{2}\right)=\sum_{m, n=0}^{\infty} a_{m, n}^{(q)} \exp \left(\lambda_{m} s_{1}+\mu_{n} s_{2}\right), \quad q \geq 1
$$

and suppose that

$$
M=\sup \left\{\ln \left|c_{0,0}\right|, \ln \left|c_{m, n}\right|^{1 /\left(\lambda_{m}+\mu_{n}\right)}: m, n \geq 0, m+n \neq 0\right\}
$$

Since (1.2) is satisfied, by [1, Lemma 1] there exists a number $\alpha, 0<\alpha<\infty$, such that the series $\sum_{m+n>0} \exp \left\{-\alpha\left(\lambda_{m}+\mu_{n}\right)\right\}$ is convergent. Now we choose $\varepsilon>0$ so that $M-1 / \varepsilon \leq-\alpha$. Since $f_{q} \rightarrow 0$ as $q \rightarrow \infty$, there exists a positive integer $Q=Q(\varepsilon)$ such that

$$
\left\|a_{0,0}^{(q)}\right\|<\exp (-1 / \varepsilon), \quad\left\|a_{m, n}^{(q)}\right\|<\exp \left\{-\left(\lambda_{m}+\mu_{n}\right) / \varepsilon\right\}, \quad q \geq Q
$$

Then, for $q \geq Q$,

$$
\begin{aligned}
\left\|\phi\left(f_{q}\right)\right\| & =\left\|\sum_{m, n=0}^{\infty} a_{m, n}^{(q)} c_{m, n}\right\| \leq \sum_{m, n=0}^{\infty}\left\|a_{m, n}^{(q)}\right\|\left|c_{m, n}\right| \\
& <\exp (M-1 / \varepsilon)+\sum_{m+n>0} \exp \left\{(M-1 / \varepsilon)\left(\lambda_{m}+\mu_{n}\right)\right\} \\
& \rightarrow 0 \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Hence ϕ is continuous and the proof of Theorem 2 is complete.

Acknowledgements

The authors are very much thankful to the referee and professor Enno Kolk for their valuable comments which helped very much in improving the paper.

References

[1] S. Daoud, Entire functions represented by Dirichlet series of two complex variables, Port. Math. 43(4) (1985-1986), 407-415.
[2] S. Daoud, On the space of integral Dirichlet functions of several complex variables, Port. Math. 44(3) (1987), 333-340.
[3] P. K. Kamthan and S. K. Singh Gautam, Bases in a certain space of Dirichlet entire transformations, Indian J. Pure. Appl. Math. 6(8) (1975), 856-863.
[4] P. K. Kamthan and S. K. Singh Gautam, On bases in the space of Dirichlet transformations of finite order, Port. Math. 38(3-4) (1979), 67-78.
[5] B. L. Srivastava, A Study of Spaces of Certain Classes of Vector Valued Dirichlet Series, Ph.D. Thesis, Indian Institute of Technology, Kanpur, 1983.
[6] G. S. Srivastava and Archna Sharma, On bases in the space of vector valued entire Dirichlet series of two complex variables, Bull. Math. Anal. Appl. 4(2) (2012), 83-90.

Department of Applied Sciences and Humanities, ABES College of Engineering, Ghaziabad, India

E-mail address: archnasharmaiitr@gmail.com
Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector-62, NOIDA-201307, India

E-mail address: gs91490@gmail.com

[^0]: Received March 13, 2012.
 2010 Mathematics Subject Classification. 32A15, 30H05.
 Key words and phrases. Dirichlet series, entire functions, linear transformations.
 http://dx.doi.org/10.12697/ACUTM.2015.19.06

