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Bäcklund transformations according to Bishop
frame in E3

1

Murat Kemal Karacan and Yilmaz Tunçer

Abstract. In this study we have defined Bäcklund transformations of
curves according to Bishop frame preserving the natural curvatures un-
der certain assumptions in Minkowski 3-space.

1. Introduction

By the work of Bianchi and Lie it is possible to compute the Gaussian cur-
vature of the focal surfaces of a line congruence in terms of the coefficients of
the first fundamental form for the spherical representation and the distance
between the corresponding limit points of these surfaces. Bäcklund proved
that for pseudospherical congruences satisfying the two additional conditions
that the distance r between corresponding limit points is constant and that
the normals of the focal surfaces at these points form a constant angle θ, the

curvatures must be equal to the same negative constant - sin2 θ
r2

(see [11, 14]).
In the classical differential geometry, a Bäcklund transformation takes a

given pseudospherical (i.e., constant negative Gauss curvature) surface to a
new pseudospherical surface. As explained by Chern and Terng [5], the new
surface is connected to the old surface by line segments that are tangent
to both surfaces, of a fixed length, and such that the angle between the
surface normals at corresponding points is also constant. Moreover, the
Bäcklund transformation takes asymptotic lines to asymptotic lines. Since
the asymptotic lines on a pseudospherical surface have constant torsion, it
is not surprising that we can restrict the Bäcklund transformation to get
a transformation that carries constant torsion curves to constant torsion
curves (see [11]).
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In 1998, Calini and Ivey [3] proposed a geometric realization of the
Bäcklund transformation for the sine-Gordon equation in the context of
curves of constant torsion. Since the asymptotic lines on a pseudospherical
surface have constant torsion, the Bäcklund transformation can be restricted
to get a transformation that carries constant torsion curves to constant tor-
sion curves. Later the converse of the idea was proved and generalized for
the n-dimensional case by Nemeth [11]. In [12], Nemeth studied a similar
concept for constant torsion curves in the 3-dimensional constant curvature
spaces (see [4]).

In recent years, Gürbüz [7] studied Bäcklund transformations inRn1 . Using

the same method, Özdemir and Cöken [13] have studied Bäcklund transfor-
mations of non-lightlike constant torsion curves in Minkowski 3-space. Kara-
can and Tunçer [10] study Bäcklund transformations according to Bishop
frame in Euclidean 3-space.

In this paper, we show that a restriction of Bäcklund theorem on space
curves satisfying the given three conditions preserves the first and second
curvatures (natural curvatures) of the curves according to the Bishop frame
in Minkowski 3-space.

2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the

standard flat metric given by

〈 , 〉L = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since 〈 , 〉L is an

indefinite metric, recall that a vector v ∈ E3
1 can have one of three Lorentzian

causal characters: it can be spacelike if 〈v, v〉L > 0 or v = 0, timelike
if 〈v, v〉L < 0, and null (lightlike) if 〈v, v〉L = 0 and v 6= 0 . Similarly,
an arbitrary curve α = α(s) in E3

1 can locally be spacelike, timelike or
null (lightlike), if all of its velocity vectors α′(s) are respectively spacelike,
timelike or null (lightlike).The norm of the vector v is defined by ‖v‖L =√
|〈v, v〉L|. Associated to that inner product, for any u = (u1, u2, u3), v =

(v1, v2, v3) in E3
1 , the Lorentzian vector product u∧L v of u and v is defined

as follows:

u ∧L v = (−u2v3 + u3v2, u3v1 − u1v3, u1v2 − u2v1) .

Minkowski space is originally from the relativity in physics. In fact, a
timelike curve corresponds to the path of an observer moving at less than
the speed of light. Denote by {T,N,B} the moving Frenet–Serret frame
along the curve α(s) in the space E3

1 . For an arbitrary curve α(s) in the
space E3

1 , the following Frenet–Serret formulae are given. If α is timelike
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curve, then the Frenet–Serret formulae read T ′

N ′

B′

 =

 0 κ 0
κ 0 τ
0 −τ 0

 T
N
B

 , (2.1)

where

〈T, T 〉L = −1, 〈N,N〉L = 〈B,B〉L = 1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.

If α is a spacelike curve with a spacelike principal normal, then the Frenet–
Serret formulae read T ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 τ 0

 T
N
B

 ,
where

〈T, T 〉L = 〈N,N〉L = 1, 〈B,B〉L = −1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.

If α is a spacelike curve with a spacelike binormal, then the Frenet–Serret
formulae read (see [14]) T ′

N ′

B′

 =

 0 κ 0
κ 0 τ
0 τ 0

 T
N
B

 ,
where

〈T, T 〉L = 〈B,B〉L = 1, 〈N,N〉L = −1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.

The ability to “ride” along a three-dimensional space curve and illustrate
the properties of the curve, such as curvature and torsion, would be a great
asset to mathematicians. The classic Frenet–Serret frame provides such
ability, however the Frenet–Serret frame is not defined for all points along
every curve. A new frame is needed for the kind of mathematical analysis
that is typically done with computer graphics.

The relatively parallel adapted frame or Bishop frame could provide the
desired means to ride along any given space curve. The Bishop frame has
many properties that make it ideal for mathematical research. Another area
of interest about the Bishop frame is so-called normal developement, or the
graph of the twisting motion of Bishop frame. This information along with
the initial position and orientation of the Bishop frame provide all of the
information necessary to define the curve.

The Bishop frame may have applications in the area of biology and com-
puter graphics. For example, it may be possible to compute information
about the shape of sequences of DNA using a curve defined by the Bishop
frame. The Bishop frame may also provide a new way to control virtual
cameras in computer animations.

4
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The Bishop frame or parallel transport frame is an alternative approach
to defining a moving frame that is well defined even when the curve has van-
ishing second derivative. We can parallelly transport an orthonormal frame
along a curve simply by parallel transporting each component of the frame.
The parallel transport frame is based on the observation that, while T (s) for
a given curve model is unique, we may choose any convenient arbitrary basis
(U(s), V (s)) for the remainder of the frame, so long as it is in the normal
plane perpendicular to T (s) at each point. If the derivatives of (U(s), V (s))
depend only on T (s) and not each other we can make U(s) and V (s) vary
smoothly throughout the path regardless of the curvature.

In addition, suppose the curve α is an arclength-parametrized C2 curve.
Suppose we have C1 unit vector fields U and V = T∧ U along the curve α
so that

〈T,U〉L = 〈T, V 〉L = 〈U, V 〉L = 0,

i.e., T , U , V will be a smoothly varying right-handed orthonormal frame as
we move along the curve. (To this point, the Frenet frame would work just
fine if the curve were C3 with κ 6= 0.) But now we want to impose the extra
condition that 〈U ′, V 〉L = 0. We say the unit first normal vector field U is
parallel along the curve α. This means that the only change of U is in the
direction of T . A Bishop frame can be defined even when a Frenet frame
cannot (e.g., when there are points with κ = 0) (see [8]). Therefore, we have
the alternative frame equations T ′

U ′

V ′

 =

 0 k1 k2

−k1 0 0
−k2 0 0

 T
U
V

 .

One can show that

κ(s) =
√
k2

1 + k2
2, θ(s) = arctan

(
k2

k1

)
, k1 6= 0, τ(s) = −dθ(s)

ds
,

so that k1 and k2 effectively correspond to a Cartesian coordinate system for
the polar coordinates κ, θ with θ = −

∫
τ(s)ds. The orientation of the par-

allel transport frame includes the arbitrary choice of integration constant θ0,
which disappears from τ (and hence from the Frenet–Serret–Bartels frame)
due to the differentiation (see [5]). Thus the relation matrix may be ex-
pressed as

T = T,

N = U cos θ(s)− V sin θ(s),

B = U sin θ(s) + V cos θ(s).

Bishop curvatures are defined by

k1 = κ(s) cos θ(s), k2 = κ(s) sin θ(s).
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If α is a timelike curve, then the Bishop frame is given by (see [9]) T ′

U ′

V ′

 =

 0 k1 k2

k1 0 0
k2 0 0

 T
U
V

 , (2.2)

where

κ(s) =
√
k2

1 + k2
2, θ(s) = arctan

(
k2

k1

)
, τ(s) =

dθ(s)

ds
,

〈T, T 〉L = −1, 〈U,U〉L = 1, 〈V, V 〉L = 1, and the metric is (−,+,+).
If α is a spacelike curve with timelike principal normal, then the Bishop

frame is given by (see [2]) T ′

U ′

V ′

 =

 0 k1 −k2

k1 0 0
k2 0 0

 T
U
V

 ,
where

κ(s) =
√∣∣k2

2 − k2
1

∣∣, θ(s) = arg tanh

(
k2

k1

)
, τ(s) =

dθ(s)

ds

〈T, T 〉L = 1, 〈U,U〉L = −1, 〈V, V 〉L = 1, and the metric is (+,−,+).
If α is a spacelike curve with timelike binormal, then the Bishop frame is

given by (see [1])  T ′

U ′

V ′

 0 k1 −k2

−k1 0 0
−k2 0 0

 T
U
V

 ,
where

κ(s) =
√∣∣k2

1 − k2
2

∣∣, θ(s) = arg tanh(
k2

k1
), τ(s) = −dθ(s)

ds
,

〈T, T 〉L = 1, 〈U,U〉L = 1, 〈V, V 〉L = −1, and the metric is (+,+,−).

3. Bäcklund transformation according to Bishop frame in
Minkowski 3-space

In this chapter, we prove the Bäcklund theorem for timelike and spacelike
curves in terms of Bishop frame. In [13, Theorems 2 and 3], the Bäcklund
theorem is given via the torsion of timelike curve. In this study, it is given
in terms of natural curvatures of Bishop frame. They are not the same. Be-
cause the geometrical meaning of the curvatures of curve and the geometrical
meaning of natural curvatures of Bishop frame are different. There is no ge-
ometrical meaning of natural curvatures alone, because natural curvatures
of Bishop frame depend on the curvatures of Frenet–Serret frame.



80 MURAT KEMAL KARACAN AND YILMAZ TUNÇER

Theorem 1. Let α be a timelike curve with spacelike first and second
normals Uα and Vα. Suppose that ψ is a transformation between two curves
α and β in Minkowski 3-space with β = ψ(α) such that in the corresponding
points:

(1) the line segment [β(s)α(s)] at the intersection of the osculating planes
of the curves has constant length r;

(2) the distance vector β(s) − α(s) has the same angle γ 6= π
2 with the

tangent vectors of the curves;
(3) the second normals Vα and Vβ of the curves have the same constant

angle φ 6= 0.

Then these curves are congruent with natural curvatures

kβ1 = kα1 = −dγ
ds
,

kβ2 = kα2 =
tanh γ sinφ

r
,

and the transformation of the curves is given by

β = α+
2C tanh γ

(kα2 )2 + C2
(Tα cosh γ + Uα sinh γ) , (3.1)

where C = kα2 tan φ
2 and γ is a solution of the differential equation

dγ

ds
= kβ2 cosh γ tan

φ

2
− kα1 .

Proof. Denote by (Tα, Uα, Vα) and (Tβ, Uβ, Vβ) the Bishop frames of the
curves α and β in the Minkowski 3-space E3

1 . Let Vβ be a unit second prin-
cipal normal of β. If we denote by Wα

1 the unit vector of β−α, then we can
complete Wα

1 ,Vα and Wα
1 ,Vβ to the positively oriented orthonormal frames

(Wα
1 ,W

α
2 ,W

α
3 ) and (W β

1 ,W
β
2 ,W

β
3 ), where Wα

3 = Vα, W β
3 = Vβ and γ is the

angle between Wα
1 and Tα. The frames (Wα

1 ,W
α
2 ,W

α
3 ) and (W β

1 ,W
β
2 ,W

β
3 )

can be obtained by rotating the frames (Tα, Uα, Vα) and (Tβ, Uβ, Vβ) around
Vα and Vβ with an angle γ respectively. So we can write Wα

1

Wα
2

Wα
3

 =

 cosh γ sinh γ 0
sinh γ cosh γ 0

0 0 1

 Tα
Uα
Vα


and  Wα

1

W β
2

W β
3

 =

 cosh γ sinh γ 0
sinh γ cosh γ 0

0 0 1

 Tβ
Uβ
Vβ

 .
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Similarly, for a rotation around Wα
1 by the angle φ,

W β
2 = Wα

2 cosφ−Wα
3 sinφ,

W β
3 = Wα

2 sinφ+Wα
3 cosφ.

From the above equations we write

Tβ =
(
cosh2 γ − sin2 γ cosφ

)
Tα

+ (cosh γ sinh γ) (1− cosφ)Uα + (sinh γ sinφ)Vα,
(3.2)

Uβ = (cosh γ sinh γ) (cosφ− 1)Tα

+
(
cosh2 γ cosφ− sinh2 γ

)
Uα − (cosh γ sinφ)Vα,

(3.3)

Vβ = (sinh γ sinφ)Tα + (cosh γ sinφ)Uα + (cosφ)Vα. (3.4)

Using (2.2) and (3.2), (3.3), (3.4) for Tβ, Uβ and Vβ, we get

dTβ
ds

= kβ1Uβ + kβ2Vβ

=
[
kβ1 cosh γ sinh γ(cosφ− 1) + kβ2 sinh γ sinφ

]
Tα

+
[(

cosh2 γ cosφ− sinh2 γ
)
kβ1 + kβ2 cosh γ sinφ

]
Uα

+
[(
kβ2 cosφ− kβ1 cosh γ sinφ

)]
Vα,

dUβ
ds

= kβ1Tβ

= kβ1
(
cosh2 γ − sinh2 γ cosφ

)
Tα

+ kβ1 (1− cosφ) (cosh γ sinh γ)Uα + kβ1 (sinh γ sinφ)Vα,

dVβ
ds

= kβ2Tβ

= kβ2
(
cosh2 γ − sinh2 γ cosφ

)
Tα

+ kβ2 (1− cosφ) (cosh γ sinh γ)Uα + kβ2 (sinh γ sinφ)Vα.

Now, taking derivative of Tβ, Uβ and Vβ in (3.2), (3.3), (3.4) with respect to
s, we have that

dTβ
ds

=

[
(1− cosφ)

(
2
dγ

ds
+ kα1

)
cosh γ sinh γ + kα2 sinh γ sinφ

]
Tα

+

[
sinh2 γ

(
(1− cosφ)

dγ

ds
− kα1 cosφ

)
+ cosh2 γ

(
kα1 + (1− cosφ)

dγ

ds

)]
Uα

+

[
cosh γ

(
kα2 cosh γ +

dγ

ds
sinφ

)
−
(
kα2 sinh2 γ cosφ

)]
Vα,

(3.5)

5
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dUβ
ds

=

[
(cosφ− 1)

(
sinh2 γ + cosh2 γ

) dγ
ds

+kα1
(
cosh2 γ cosφ− sinh2 γ

)
− (kα2 cosh γ sinφ)

]
Tα

+

[
2(cosφ− 1) (cosh γ sinh γ)

dγ

ds

+kα1 (cosφ− 1) (cosh γ sinh γ)]Uα

+

[
kα1 (cosφ− 1) (cosh γ sinh γ)− (sinh γ sinφ)

dγ

ds

]
Vα,

(3.6)

and
dVβ
ds

=

[
(cosh γ sinφ) (

dγ

ds
+ kα1 ) + (kα2 cosφ)

]
Tα

+

[
kα1 (sinh γ sinφ) + (sinh γ sinφ)

dγ

ds

]
Uα

+ [kα2 (sinh γ sinφ)]Vα.

(3.7)

Then, equating the two statements above, we obtain

kβ2 = kα2 ,

dγ

ds
= kβ2 cosh γ tan

φ

2
− kα1 .

Similarly, using (2.2) and (3.5), (3.6), (3.7), we have

kα1 + kβ1 = −2
dγ

ds

and

kα1 = kβ1 = −dγ
ds
.

Now α is a unit speed curve. Differentiating

(β − α)2 = r2

and substituting the distance vector

β − α = r (Tα cosh γ + Uα sinh γ) , (3.8)

we find that β is also a unit speed curve. Next, taking the derivative of (3.8),
we obtain

Tβ =

[
(r sinh γ)

(
kα1 +

dγ

ds

)]
Tα +

[
(r cosh γ)

(
kα1 +

dγ

ds

)]
Uα

+ [(rkα2 cosh γ)]Vα.

From this equation and the Bishop frames (3.2), (3.3) and (3.4) we get

kβ2 = kα2 =
tanh γ sinφ

r
.
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Then, rearranging this equality, we get

r =
tanh γ sinφ

kα2
.

Finally, with the aid of (3.8), the Bäcklund transformation of the timelike
curves according to Bishop frame is determined by (3.1). �

Theorem 2. Let α be a spacelike curve with spacelike principal normal.
Suppose that ψ is a transformation between two curves α and β in Minkowski
3-space with β = ψ(α) such that in the corresponding points:

(1) the line segment [β(s)α(s)] at the intersection of the osculating planes
of the curves has constant length r;

(2) the distance vector β(s) − α(s) has the same angle γ 6= π
2 with the

tangent vectors of the curves;
(3) the binormals of the curves have the same constant angle φ 6= 0.

If the first normal U of the curve α is spacelike, then these curves are
congruent with natural curvatures

kβ1 + kα1 = −2
dγ

ds
,

kβ2 = kα2 =
tan γ sinhφ

r
,

(3.9)

and the transformation of the curves is given by

β = α+
2C tanh γ

(kα2 )2 − C2
(Tα cos γ + Uα sin γ) , (3.10)

where C = kα2 tan φ
2 and γ is a solution of the differential equation

dγ

ds
= −kα2 cos γ tanh

φ

2
− kβ1 .

If the second normal V of the curve α is spacelike, then these curves are
congruent with natural curvatures

kβ1 + kα1 = −2
dγ

ds
,

kβ2 = kα2 =
tanh γ sinhφ

r
,

(3.11)

and the transformation of the curves is given by

β = α+
2C sinh γ

(kα2 )2 − C2
(Tα cosh γ + Uα sinh γ) , (3.12)

where C = kα2 tanh φ
2 and γ is a solution of the differential equation

dγ

ds
= −kα2 cosh γ tanh

φ

2
− kβ1 .
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Proof. If the first normal U of the curve α is spacelike, then, using the
arguments of Theorem 1 and equations

Wα
1 = Tα cos γ + Uα sin γ,

Wα
2 = −Tα sin γ + Uα cos γ,

W β
1 = Tβ cos γ + Uα sin γ,

W β
2 = −Tβ sin γ + Uβ cos γ

and
W β

2 = Wα
2 coshφ+Wα

3 sinhφ,

W β
3 = Wα

2 sinhφ+Wα
3 coshφ,

the natural curvatures of the curves and transformation can be found, re-
spectively, as (3.9) and (3.10), where C = kα2 tan φ

2 .
If the second normal V of the curve α is spacelike, then, using the equa-

tions
Wα

1 = Tα cosh γ + Uα sinh γ,

Wα
2 = Tα sinh γ + Uα cosh γ,

W β
1 = Tβ cosh γ + Uβ sinh γ,

W β
2 = Tβ sinh γ + Uβ cosh γ

and

W β
2 = Wα

2 coshφ+Wα
3 sinhφ,

W β
3 = Wα

2 sinhφ+Wα
3 coshφ,

the natural curvatures of the curves and transformation can be found, re-
spectively, as (3.11) and (3.12), where C = kα2 tanh φ

2 . �

Acknowledgements

The authors would like to thank the referees for their valuable suggestions.

References

[1] B. Bukcu and M. K. Karacan, Bishop frame of the spacelike curve with a spacelike
principal normal in Minkowski 3-space, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math.
Stat. 57(1) (2008), 13–22.

[2] B. Bukcu and M. K. Karacan, Bishop frame of the spacelike curve with a spacelike
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