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A test for the slope
in the functional measurement error model

Kai Bruchlos

Abstract. There are two measurement error models in linear regres-
sion, the structural and the functional. Theoretical investigations and
applications are concentrated on the structural model with jointly nor-
mally and identically distributed observations because there is no test
for the slope in the functional model so far. This gap will be closed
here for the model with one independent variable. Furthermore it is
stated that the functional model is a natural extension of the classical
linear regression model with one independent variable if there are er-
rors of measurement in both variables. Moreover it is not postulated in
the functional model that the expectations are equal. So the functional
model is more realistic than the structural.

1. Introduction

In the classical linear regression model

Ỹi = α+ βx̃i + εi

it is assumed that the explanatory variables x̃i have fixed values in repeated
sampling ([6], p. 19; [10], p. 194). This assumption is valid e.g. for time
series but it does not apply to a variety of other cases, especially if one
considers the linear relationship of two economic variables like consumption
and income. In the latter one uses the measurement error model which
regards the explained variable and the explanatory variable as measured
with errors i.e. stochastic.
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The theory of measurement error models features two types of models,
the functional model

Yi = α+ βxi + εi, Vi = xi + δi, i = 1, . . . , n,

x1, . . . , xn are fixed values,

ε1, . . . , εn, δ1, . . . , δn are independent random variables,

εi ∼ N(0, σ2ε), δi ∼ N(0, σ2δ ),

and the structural model

Y̆i = α+ βX̆i + εi, V̆i = X̆i + δi, i = 1, . . . , n,

X̆1, . . . , X̆n, ε1, . . . , εn, δ1, . . . , δn are independent random variables,

X̆i ∼ N(µ, σ2), εi ∼ N(0, σ2ε), δi ∼ N(0, σ2δ ) ,

where Yi, Y̆i correspond with Ỹi, and Vi, V̆i with x̃i added to the error.
The crucial difference between the functional and the structural model

is that in the structural model the random variables V̆i are i.i.d. which is
not the case in the functional model. In the functional model, each random
variable Vi has its own expected value, namely xi. This corresponds to the
classical linear regression model.

One aim of this proposal is to formulate a model in which the classical
regression model is a special case of the functional model. Why not of the
structural model? In the structural model all explained variables Y̆i have
the same expected value E(Y̆i) = α + βµ while in the classical model the

explained variables Ỹi have different expected values E(Ỹi) = α + βx̃i. So
because of pure mathematical reasons the classical regression model cannot
be a special case of the structural model! Additionally the stuctural model
condition of V̆i being i.i.d. is not that close to reality. Examples for which
this model can be used are rather specific (cp. [7], p. 34; [9], p. 198).

In the structural model there is a test for the slope β ([7], p. 45), in the
functional model we only have asymptotic tests ([8], p. 412 et sqq.). This
paper proposes a test for the slope in the functional model. This test is the
counterpart to the test in the structural model.

The test for the slope cannot be transferred exactly from the structural to
the functional model due to a special correlation – which is calculated for the
test – being zero in the functional model and therefore is not an appropriate
test statistic.

The model will work if the following conditions are satisfied.

(1) The classical linear regression model is designed with conditional
expectations, whereas a two-dimensional random variable (X,Y ) is
implied (a standard mathematical view, cp. [5]).

(2) The functional measurement error model is defined as an extension
of the classical linear model.
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(3) The random variables for the correlation are constructed at the level
of (X,Y ).

The values x1, . . . , xn are realisations of X because otherwise the regres-
sion model cannot be formulated with conditional expectations. This ap-
proach presumes the special feature of the functional model, the xi being
non-random.

In the following we have two levels: the level of the regression model
and the level of (X,Y ). After defining the functional model we construct a
similar model for (X,Y ). In order to distinguish between the two levels we
introduce the notation |xi for the regression model which is only a special
kind to number serially.

The aim of the test is to construct two random variables L,M so that

the null hypothesis H
(1)
0 : β = β0 is equivalent to the null hypothesis

H
(2)
0 : %L,M = 0 where %L,M is the correlation coefficient of L and M . The

null hypothesis H
(2)
0 is checked with a t-test for zero correlation. For the

calculation of the test statistic it is necessary that the ratio of error variances
is known.

A link between the correlation analysis and the regression analysis in the
context of random variables (Theorem 1) is essential for the test of the slope
β. Consequently a sample can be used for the test statistic as well as for the
estimator of β.

It is necessary that (X,Y ) is normally distributed. This property follows
from the symmetry of the functional model (Proposition 2): if the conditional
distribution of Yi given X = xi is a normal distribution it is necessary that
the conditional distribution of Vi given Y = yi is a normal distribution as
well so that one can change the variables:

Vi = α′ + β′yi + δi, Yi = yi + εi.

The test for the slope in the functional model can be applied to average
claim in non-life insurance ([2]).

2. Regression model

We begin with the environment of the classical linear regression model
(cp. [5]).

Let (X,Y ) be a two-dimensional real random variable with continuous
density f(x, y), marginal densities fX , fY , expectations E(X),E(Y ), vari-
ances σ2X := Var(X), σ2Y := Var(Y ) > 0, with the correlation coefficient
%X,Y of X and Y , and the conditional expectation E(Y |X = x).

Let the conditional distribution of Y given X = x be a normal dis-
tribution, more precisely, the distribution N(α + βx, σ2ε) with α, β ∈ R,
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β 6= 0, σ2ε > 0. In particular,

E(Y |X = x) = α+ βx .

Let x1, . . . , xn be realisations of X, and Y|x1 , . . . , Y|xn statistically indepen-
dent random variables, which have as distribution the conditional distribu-
tion of Y given X = xi, thus Y|xi ∼ N(α+ βxi, σ

2
ε). These are the explained

variables. Still missing for the functional model are the measurement errors:
first of all let E|xi := Y|xi − (α+ βxi) for i = 1, . . . , n.

Lemma 1. (i) There holds E|xi ∼ N(0, σ2ε) for i = 1, . . . , n.

(ii) E|x1 , . . . , E|xn are statistically independent.
(iii) Let ε1 := E|x1 , . . . , εn := E|xn. If the xi have fixed values in repeated

sampling then Ỹi = α+βxi+εi is the classical linear regression model
(cp. [6], p. 93; [10], p. 194).

Remark 1. Y|xi takes the place of the explained variable.

Next let D|x1 , . . . , D|xn be statistically independent random variables with
the properties that D|x1 , . . . , D|xn , E|x1 , . . . , E|xn are statistically independ-

ent and D|xi ∼ N(0, σ2δ ) with σ2δ := (1− %2X,Y )σ2X for i = 1, . . . , n.

Remark 2. The definition σ2δ := (1− %2X,Y )σ2X guarantees the symmetry
of the functional model – take notice of Lemma 3. The symmetric form is

Vi = α′ + β′yi + δi, Yi = yi + εi

with y1, . . . , yn fixed values, α′ := −α/β, β′ := 1/β and δ1 := D|x1 , . . . , δn :=
D|xn . The pairs of true values are (x1, y1), . . . , (xn, yn) which are not ob-
served directly. The observed sample is

(v1, w1), . . . , (vn, wn) :=(x1+δ1(x1), y1+ε1(y1)), . . . ,(xn+δn(xn), yn+εn(yn)).

The particular value for σ2δ is not necessary for the following.

Proposition 1. The random variable (D|xi , E|xi) is normally distributed
for i = 1, . . . , n.

The measurement errors for the explained variable and the explanatory
variable have the same properties as in the classical model: they are normally
distributed with expected value zero, and the measurement error of one
special measuring has no influence on any other.

To complete the functional model we still need the random variables for
the explanatory variable.

Lemma 2. Let Vi := V|xi := D|xi + xi and Yi := α + βxi + εi for
i = 1, . . . , n.

(i) There holds V|xi ∼ N(xi, σ
2
δ ) and

E(Yi) = E(Y|xi) = α+ βE(V|xi) = α+ βE(Vi), i = 1, . . . , n.



A TEST FOR THE SLOPE IN THE MEASUREMENT ERROR MODEL 91

(ii) With xi, δi, εi, Vi, and Yi we have the functional measurement error
model ([8], p. 407; [3], p. 25).

(iii) If we set δi ≡ 0 for i = 1, . . . , n and the xi have fixed values in
repeated sampling, then we get again the classical linear regression
model.

Remark 3. (i) vi is a realisation of Vi = V|xi , wi is a realisation of Yi and
Y|xi respectively.

(ii) The x1, . . . , xn are only realisations of X. The x1, . . . , xn have nothing

to do with X̆1, . . . , X̆n. And the random variable X has nothing to do with
the random variables X̆1, . . . , X̆n. This is a consequence of the attribute
E(Y̆i) = α+ βµ of the structural model.

Now a crucial step follows. Theorem 1 carries the linearity of the expec-
tations from the level Y|xi , V|xi to the level X,Y .

Theorem 1. There holds E(Y ) = α+ βE(X).

Proof. From the equation ([5], p. 84, (3.6.23’))

E(Y ) =

∞∫
−∞

fX(x)E(Y |X = x)dx

we have

E(Y ) =

∞∫
−∞

fX(x) · (α+ β · x) dx

=

∞∫
−∞

fX(x) · α+ fX(x) · β · x dx

= α ·
∞∫
−∞

fX(x) dx+ β ·
∞∫
−∞

fX(x) · x dx

= α+ β · E(X) .

�

Now let (X,Y ) be normally distributed, which is a consequence of the
symmetry of the functional model ([1], p. 401, (III)).

Proposition 2. If the conditional distribution of X given Y = y is a
normal distribution, then (X,Y ) is normally distributed.

With the normality assumption we can calculate the expectation and the
variance of Y|xi , which have the usual form (cp. [5]).
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Lemma 3. There hold

E(Y|xi) = E(Y ) +
σ2Y
σ2X

%X,Y (xi − E(X))

and
Var(Y|xi) = (1− %2X,Y )σ2Y .

In the same way as the measurement errors have been set on the level
xi, Y|xi , they now will be introduced on the level (X,Y ).

Let E be a random variable with the property E ∼ N(0, σ2ε) and W :=
E(Y ) + E, thus we have by Theorem 1

W ∼ N(α+ βE(X), σ2ε) .

LetD be a random variable with the properties thatD and E are statistically
independent and D ∼ N(0, σ2δ ). Let V := E(X)+D, thus V ∼ N(E(X), σ2δ ).
So we have

E(W) = α+ βE(V) .

3. Test for the slope

Our aim now is to test the slope in the functional model, namely

H
(1)
0 : β = β0 versus H

(1)
1 : β 6= β0 .

There is no test yet for these hypotheses, so we consult a t-test for zero
correlation: supposed the random variables L and M are bivariate normally
distributed the corresponding hypotheses are

H
(2)
0 : %L,M = 0 versus H

(2)
1 : %L,M 6= 0 .

In the following we will prove that the null hypothesis H
(1)
0 is equivalent

to the null hypothesis H
(2)
0 if one defines L and M suitably. For that purpose

we pull up Y|xi , V|xi to the level (X,Y ).
Let D1, . . . , Dn be statistically independent sample random variables of

D, E1, . . . , En statistically independent sample random variables of E, Vi :=
E(X) + Di and Wi := E(Y ) + Ei for i = 1, . . . , n. Let L := E − β0D,
M := a1W + a2V with a1, a2 ∈ R\{0}.

A normal distribution of (D,E) and the validity of the equation

Cov(L,M) = E
[
a1E

2 − a2β0D2
]

lead to the following result.

Proposition 3. Let λ := σ2ε/σ
2
δ .

(i) Cov(L,M) = (a1λ− a2β0)σ2δ .
(ii) Let f : R× R→ R, (a1, β0) 7→ a1λ− β0, be a map. If (ζ−1η, η) is a

zero of f , then (−η−1,−ζη−1) is also a zero of f .
(iii) (L,M) is normally distributed.
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Proposition 3 (iii) supplies the assumption for the t-test for zero correla-
tion.

Now we formulate the basic statement.

Theorem 2. For β ≥ 0, a1 := λ−1β0, and a2 := 1 the statement “β = β0”

is equivalent to “%L,M = 0”, so H
(1)
0 ⇐⇒ H

(2)
0 .

Proof. By Proposition 3 (i) %L,M = 0 follows from β = β0.
Cov(L,M) = 0 follows from %L,M = 0 because of σ2δ , σ

2
ε > 0. This leads

to the following two possible conclusions.
1. β = β0 by Proposition 3 (i).
2. β = −λβ−10 follows from Proposition 3 (ii) with a1 = λ−1(−λβ−10 ), which
is impossible because of the assumption β ≥ 0 (cp. [7], p. 45). �

Theorem 2 is also valid with β ≤ 0. So for the test we only need to know
the sign of β.

To reject H
(2)
0 with ∣∣∣∣∣R (n− 2)1/2

(1−R2)1/2

∣∣∣∣∣ > tn−2;1−α/2

for a level of significance α we finally have to calculate the sample correlation
coefficient R.

Proposition 4. Suppose that λ is known. Let a1 := λ−1β0 and a2 := 1.
Then

R =

(
n∑
i=1

AiBi

)(
n∑
i=1

A2
i

n∑
i=1

B2i

)−1/2
with

Ai :=Wi −

 1

n

n∑
j=1

Wj

− β0
Vi − 1

n

n∑
j=1

Vj


and

Bi := λ−1β0Wi + Vi −
1

n

n∑
j=1

(λ−1β0Wj + Vj).

8
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Proof. The result follows from

Li − L̄ = α+ β0E(X) + Ei −
1

n

n∑
j=1

(α+ β0E(X) + Ej)

−β0(E(X) +Di) +
β0
n

n∑
j=1

(E(X) +Dj)

= Wi −

 1

n

n∑
j=1

Wj)− β0(Vi −
1

n

n∑
j=1

Vj

 .

�

Remark 4. Because of Vi ∼ N(E(X), σ2δ ) and Wi ∼ N(E(Y ), σ2ε) we
consider the observed value vi as a realisation of Vi and the observed value
wi as a realisation of Wi.

4. Example

Let us consider mean income and mean consumption of German private
households in Euro ([4], table 6.6.1):

Year 2004 2005 2006 2007 2009 2010 2011 2012
Income 3368 3496 3489 3584 3711 3758 3871 3989
Consumption 1989 1996 2089 2067 2156 2168 2252 2310

We have the observed sample

(v1, w1) = (3368, 1989), . . . , (v8, w8) = (3989, 2310) .

Figure 1 shows the linearity of the data:
We can assume that the measurement error of income is the same as the

measurement error of consumption. So we have λ = 1. Let α = 0.01, r :=
R((v1, w1), . . . , (v8, w8)) and

t :=

∣∣∣∣∣
√

6r√
1− r2

∣∣∣∣∣ .
We get the following results:

β0 t t8;0.995
2 10.83 3.71
1 6.36 3.71
0.5 0.65 3.71

So the mean consumption grows less than the mean income of German
private households.
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Figure 1. Dataset of private household income and consumption
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