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The number of zeros of a polynomial in a disk as a
consequence of restrictions on the coefficients

Robert Gardner and Brett Shields

Abstract. We put restrictions on the coefficients of polynomials and
give bounds concerning the number of zeros in a specific region. The
restrictions involve a monotonicity-type condition on the coefficients of
the even powers of the variable and on the coefficients of the odd powers
of the variable (treated separately). We present results by imposing the
restrictions on the moduli of the coefficients, the real and imaginary
parts of the coefficients, and the real parts (only) of the coefficients.

1. Introduction

The classical Eneström–Kakeya Theorem restricts the location of the zeros
of a polynomial based on a condition imposed on the coefficients of the
polynomial.

Eneström–Kakeya Theorem. Let P (z) =
∑n

j=0 ajz
j be such that 0 <

a0 ≤ a1 ≤ a2 ≤ · · · ≤ an−1 ≤ an. Then all the zeros of P lie in |z| ≤ 1.

There exists a huge body of literature on these types of results. For a brief
survey, see Section 3.3.3 of [8]. A more detailed and contemporary survey is
in [5].

In 1996, Aziz and Zargar [2] introduced the idea of imposing a monotonic-
ity condition on the coefficients of the even powers of z and on the coefficients
of the odd powers of z separately in order to get a restriction on the location
of the zeros of a polynomial with positive real coefficients (see their Theorem
3). These types of hypotheses apply to more polynomials than a simple re-
striction of monotonicity on the coefficients as used in the Eneström–Kakeya
Theorem. Of course, if the hypotheses of the Eneström–Kakeya Theorem
are satisfied by a polynomial P (z) =

∑n
j=0 ajz

j , say 0 < a0 ≤ a1 ≤ a2 ≤
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· · · ≤ an−1 ≤ an, then P also satisfies the hypotheses of Aziz and Zargar:
0 < a0 ≤ a2 ≤ a4 ≤ · · · ≤ a2bn/2c and 0 < a1 ≤ a3 ≤ · · · ≤ a2b(n+1)/2c−1.
Notice that 2bn/2c is the largest even subscript and 2b(n+ 1)/2c − 1 is the
largest odd subscript, regardless of the parity of n. However, a polynomial
such as p(z) = 2 + z + 3z2 + 2z3 + 4z4 + 3z5 + 5z6 + 4z7 does not satisfy
the monotonicity condition of Eneström–Kakeya, but does satisfy the Aziz
and Zargar hypotheses. Therefore Aziz and Zargar’s hypotheses are less
restrictive and are satisfied by a larger class of polynomials.

Cao and Gardner [3] generalized this idea of imposing a monotonicity
condition on even and odd indexed coefficients separately and imposed the
following conditions on the coefficients of a polynomial P (z) =

∑n
j=0 ajz

j

where Re(aj) = αj and Im(aj) = βj :

α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c,

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c,

β0 ≤ β2t2 ≤ β4t4 ≤ · · · ≤ β2st2s ≥ β2s+2t
2s+2 ≥ · · · ≥ β2bn/2ct2bn/2c,

β1 ≤ β3t2 ≤ β5t4 ≤ · · · ≤ β2q−1t2q−2 ≥ β2q+1t
2q ≥ · · · ≥ β2b(n+1)/2c−1t

2bn/2c,

for some k, `, s, q. Again, Cao and Gardner presented results restricting the
location of the zeros of P .

In this paper, we impose these monotonicity-type conditions on the coef-
ficients of a polynomial and then give a restriction on the number of zeros of
the polynomial in a disk of a specific radius which is centered at zero. The
first result relevant to this study which involves counting zeros appears in
[11] as follows.

Theorem 1.1. Let F (z) be analytic in |z| ≤ R. Let |F (z)| ≤ M in the
disk |z| ≤ R and suppose F (0) 6= 0. Then, for 0 < δ < 1, the number of
zeros of F in the disk |z| ≤ δR does not exceed

1

log 1/δ
log

M

|F (0)|
.

Notice that in order to apply Theorem 1.1, we must find max|z|≤R |F (z)|.
Since this can be, in general, very complicated, it is desirable to present
results which give bounds on the number of zeros in terms of something
more tangible, such as the coefficients in the series expansion of F . With
the same hypotheses as the Eneström–Kakeya Theorem, Mohammad [9] used
a special case of Theorem 1.1 to prove the following result.

Theorem 1.2. Let P (z) =
∑n

j=0 ajz
j be such that 0 < a0 ≤ a1 ≤ a2 ≤

· · · ≤ an−1 ≤ an. Then the number of zeros in |z| ≤ 1/2 does not exceed

1 +
1

log 2
log

(
an
a0

)
.
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Theorem 1.2 was extended from polynomials with real coefficients to polyno-
mials with complex coefficients by Dewan [4, 8]. Using hypotheses related to
those of Theorem 1.2, Dewan imposed a monotonicity condition on the mod-
uli and then on the real parts of the coefficients. Her results were recently
generalized by Pukhta [10] who proved the following two theorems.

Theorem 1.3. Let P (z) =
∑n

j=0 ajz
j be such that |arg(aj)−β| ≤ α ≤ π/2

for 0 ≤ j ≤ n and for some real α and β, and let 0 < |a0| ≤ |a1| ≤ |a2| ≤
· · · ≤ |an−1| ≤ |an|. Then, for 0 < δ < 1, the number of zeros of P in |z| ≤ δ
does not exceed

1

log 1/δ
log
|an|(cosα+ sinα+ 1) + 2 sinα

∑n−1
j=0 |aj |

|a0|
.

Theorem 1.4. Let P (z) =
∑n

j=0 ajz
j be such that |arg(aj)−β| ≤ α ≤ π/2

for 0 ≤ j ≤ n and for some real α and β, and let 0 < α0 ≤ α1 ≤ α2 ≤ · · · ≤
αn−1 ≤ αn. Then, for 0 < δ < 1, the number of zeros of P in |z| ≤ δ does
not exceed

1

log 1/δ
log

2(αn +
∑n

k=0 |βk|)
|a0|

.

In a result similar to the Eneström–Kakeya Theorem, but for analytic
functions as opposed to polynomials, Aziz and Mohammad [1] imposed the
condition 0 < α0 ≤ tα1 ≤ · · · ≤ tkαk ≥ tk+1αk+1 ≥ · · · on the real parts
(and a similar condition on the imaginary parts) of the coefficients of ana-
lytic function F (z) =

∑∞
j=0 ajz

j . Gardner and Shields [6] used this type of
hypothesis to prove the following three results.

Theorem 1.5. Let P (z) =
∑n

j=0 ajz
j where, for some t > 0 and some

0 ≤ k ≤ n, we have 0 < |a0| ≤ t|a1| ≤ t2|a2| ≤ · · · ≤ tk−1|ak−1| ≤ tk|ak| ≥
tk+1|ak+1| ≥ · · · ≥ tn−1|an−1| ≥ tn|an| and |arg(aj) − β| ≤ α ≤ π/2 for
1 ≤ j ≤ n and for some real α and β. Then, for 0 < δ < 1, the number of
zeros of P in the disk |z| ≤ δt does not exceed

C :=
1

log 1/δ
log

M

|a0|
,

where

M = (|a0|t+ |an|tn+1)(1− cosα− sinα)

+ 2|ak|tk+1 cosα+ 2 sinα

n∑
j=0

|aj |tj+1.

Theorem 1.6. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that, for some t > 0 and some 0 ≤ k ≤ n, we have
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0 6= α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥
tn−1αn−1 ≥ tnαn. Then, for 0 < δ < 1, the number of zeros of P in the
disk |z| ≤ δt does not exceed C, where M = (|α0| −α0)t+ 2αkt

k+1 + (|αn| −
αn)tn+1 + 2

∑n
j=0 |βj |tj+1.

Theorem 1.7. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that, for some t > 0 and some 0 ≤ k ≤ n, we
have 0 6= α0 ≤ tα1 ≤ t2α2 ≤ · · · ≤ tk−1αk−1 ≤ tkαk ≥ tk+1αk+1 ≥ · · · ≥
tn−1αn−1 ≥ tnαn, and, for some 0 ≤ ` ≤ n, we have β0 ≤ tβ1 ≤ t2β2 ≤ · · · ≤
t`−1β`−1 ≤ t`β` ≥ t`+1β`+1 ≥ · · · ≥ tn−1βn−1 ≥ tnβn. Then, for 0 < δ < 1,
the number of zeros of P in the disk |z| ≤ δt does not exceed C, where M =
(|α0|−α0)t+2αkt

k+1+(|αn|−αn)tn+1+(|β0|−β0)t+2β`t
`+1+(|βn|−βn)tn+1.

The purpose of this paper is to put the monotonicity-type condition of
Cao and Gardner on (1) the moduli, (2) the real and imaginary parts, and
(3) the real parts only of the coefficients of polynomials. In this way, we
give results related to Theorems 1.5, 1.6, and 1.7, but with more flexible
hypotheses and hence applicable to a larger class of polynomials.

2. Results

We now present three major theorems, as described above, and several
corollaries. First, we put the monotonicity-type condition on the moduli of
the coefficients.

Theorem 2.1. Let P (z) =
∑n

j=0 ajz
j. Suppose that, for some t > 0,

for some nonnegative integer k, and some positive integer s, we have 0 6=
|a0| ≤ |a2|t2 ≤ |a4|t4 ≤ · · · ≤ |a2k|t2k ≥ |a2k+2|t2k+2 ≥ · · · ≥ |a2bn/2c|t2bn/2c
and |a1| ≤ |a3|t2 ≤ |a5|t4 ≤ · · · ≤ |a2s−1|t2s−2 ≥ |a2s+1|t2s ≥ · · · ≥
|a2b(n+1)/2c−1|t2bn/2c. Then for, 0 < δ < 1, the number of zeros of P in the

disk |z| ≤ δt does not exceed C, where M = (|a0|t2 + |a1|t3+
|an−1|tn+1 + |an|tn+2)(1− cosα− sinα) + 2 cosα(|a2k|t2k+2 + |a2s−1|t2s+1)+
2 sinα

∑n
j=0 |aj |tj+2.

When t = 1, Theorem 2.1 yields the following corollary.

Corollary 2.2. Let P (z) =
∑n

j=0 ajz
j. Suppose that, for some nonnega-

tive integer k and some positive integer s, we have 0 6= |a0| ≤ |a2| ≤ |a4| ≤
· · · ≤ |a2k| ≥ |a2k+2| ≥ · · · ≥ |a2bn/2c| and |a1| ≤ |a3| ≤ |a5| ≤ · · · ≤
|a2s−1| ≥ |a2s+1| ≥ · · · ≥ |a2b(n+1)/2c−1|. Then, for 0 < δ < 1, the number of
zeros of P in the disk |z| ≤ δ does not exceed C, where M = (|a0| + |a1| +
|an−1|+ |an|)(1− cosα− sinα) + 2 cosα(|a2k|+ |a2s−1|) + 2 sinα

∑n
j=0 |aj |.

Next, we put the monotonicity-type condition on the real and imaginary
parts of the coefficients.
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Theorem 2.3. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that, for some t > 0, for some nonnegative integers
k and s, and some positive integers ` and q, we have

0 6= α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c,

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c,

β0 ≤ β2t2 ≤ β4t4 ≤ · · · ≤ β2st2s ≥ β2s+2t
2s+2 ≥ · · · ≥ β2bn/2ct2bn/2c,

β1 ≤ β3t2 ≤ β5t4 ≤ · · · ≤ β2q−1t2q−2 ≥ β2q+1t
2q ≥ · · · ≥ β2b(n+1)/2c−1t

2bn/2c.

Then, for 0 < δ < 1, the number of zeros of P in the disk |z| ≤ δt does not
exceed C, where M = (|α0| − α0 + |β0| − β0)t2 + (|α1| − α1 + |β1| − β1)t3 +
2(α2kt

2k+2 +α2`−1t
2`+1 +β2st

2s+2 +β2q−1t
2q+1) + (|αn−1| −αn−1 + |βn−1| −

βn−1)t
n+1 + (|αn| − αn + |βn| − βn)tn+2.

With t = 1 in Theorem 2.3, we have

Corollary 2.4. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that, for some nonnegative integers k and s, and
some positive integers ` and q, we have

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2k ≥ α2k+2 ≥ · · · ≥ α2bn/2c,

α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2`−1 ≥ α2`+1 ≥ · · · ≥ α2b(n+1)/2c−1,

β0 ≤ β2 ≤ β4 ≤ · · · ≤ β2s ≥ β2s+2 ≥ · · · ≥ β2bn/2c,
β1 ≤ β3 ≤ β5 ≤ · · · ≤ β2q−1 ≥ β2q+1 ≥ · · · ≥ β2b(n+1)/2c−1.

Then, for 0 < δ < 1, the number of zeros of P in the disk |z| ≤ δ does not
exceed C, where M = (|α0|−α0 + |β0|−β0)+(|α1|−α1 + |β1|−β1)+2(α2k +
α2`−1+β2s+β2q−1)+(|αn−1|−αn−1+ |βn−1|−βn−1)+(|αn|−αn+ |βn|−βn).

By manipulating the parameters k, `, s, and q we easily get eight corol-
laries from Corollary 2.4. For example, with k = s = bn/2c and ` = q =
b(n+ 1)/2c, we have

Corollary 2.5. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2bn/2c, α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2b(n+1)/2c−1,

β0 ≤ β2 ≤ β4 ≤ · · · ≤ β2bn/2c, β1 ≤ β3 ≤ β5 ≤ · · · ≤ β2b(n+1)/2c−1.

Then, for 0 < δ < 1, the number of zeros of P in the disk |z| ≤ δ does not
exceed C, where M = (|α0| − α0 + |β0| − β0) + (|α1| − α1 + |β1| − β1) +
(|αn−1|+ αn−1 + |βn−1|+ βn−1) + (|αn|+ αn + |βn|+ βn).

With k = bn/2c, ` = 1, and each aj real in Corollary 2.4, we have the
following result.

13
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Corollary 2.6. Let P (z) =
∑n

j=0 ajz
j where aj ∈ R for 0 ≤ j ≤ n.

Suppose that

0 6= a0 ≤ a2 ≤ a4 ≤ · · · ≤ a2bn/2c, a1 ≥ a3 ≥ a5 ≥ · · · ≥ a2b(n+1)/2c−1.

Then, for 0 < δ < 1, the number of zeros of P in the disk |z| ≤ δ does not
exceed C, where

M = |a0| − a0 + |a1|+ a1 + 2a2bn/2c + |an−1| − an−1 + |an| − an.

Example 2.7. Consider the polynomial P (z) = 1 + 10z + 2z2 + 0z3 +
3z4 + 0z5 + 4z6 + 0z7 + 8z8. The zeros of P are approximately −0.102119,
−0.872831, −0.629384 ± 0.855444i, 0.22895 ± 1.05362i, and 0.887908±
0.530244i. Applying Corollary 2.6 with δ = 0.15 we see that it predicts
no more than 1.888926 zeros in |z| ≤ 0.15. In other words, Corollary 2.6
predicts at most one zero in |z| ≤ 0.15. In fact, P does have exactly one
zero in |z| ≤ 0.15, and Corollary 2.6 is sharp for this example.

Theorem 2.8. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that, for some t > 0, for some nonnegative integer k,
and some positive integer `, we have

0 6= α0 ≤ α2t
2 ≤ α4t

4 ≤ · · · ≤ α2kt
2k ≥ α2k+2t

2k+2 ≥ · · · ≥ α2bn/2ct
2bn/2c,

α1 ≤ α3t
2 ≤ α5t

4 ≤ · · · ≤ α2`−1t
2`−2 ≥ α2`+1t

2` ≥ · · · ≥ α2b(n+1)/2c−1t
2bn/2c.

Then, for 0 < δ < 1, the number of zeros of P in the disk |z| ≤ δt does not
exceed C, where M = (|α0|−α0)t

2 +(|α1|−α1)t
3 +2α2kt

2k+2 +α2`−1t
2`+1 +

(|αn−1| − αn−1)t
n+1 + (|αn| − αn)tn+2 + 2

∑n
j=0 |βj |tj+2.

With t = 1 in Theorem 2.8, we get the following corollary.

Corollary 2.9. Let P (z) =
∑n

j=0 ajz
j where Re(aj) = αj and Im(aj) = βj

for 0 ≤ j ≤ n. Suppose that, for some nonnegative integer k and some posi-
tive integer `, we have

0 6= α0 ≤ α2 ≤ α4 ≤ · · · ≤ α2k ≥ α2k+2 ≥ · · · ≥ α2bn/2c,

α1 ≤ α3 ≤ α5 ≤ · · · ≤ α2`−1 ≥ α2`+1 ≥ · · · ≥ α2b(n+1)/2c−1.

Then, for 0 < δ < 1, the number of zeros of P in the disk |z| ≤ δ does not
exceed C, where M = (|α0| − α0) + (|α1| − α1) + 2α2k + α2`−1 + (|αn−1| −
αn−1) + (|αn| − αn) + 2

∑n
j=0 |βj |.

3. Proofs of the results

The following lemma is due to Govil and Rahman [7].

Lemma 3.1. Let z, z′ ∈ C with |z| ≥ |z′|. Suppose that |arg z∗ − β| ≤
α ≤ π/2 for z∗ ∈ {z, z′} and for some real α and β. Then

|z − z′| ≤ (|z| − |z′|) cosα+ (|z|+ |z′|) sinα.
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We now give proofs of our results.

Proof of Theorem 2.1. Define

G(z) = (t2−z2)P (z) = t2a0+a1t
2z+

n∑
j=2

(ajt
2−aj−2)zj−an−1zn+1−anzn+2.

For |z| = t, by Lemma 3.1, we have

|G(z)| ≤ |a0|t2 + |a1|t3 +

n∑
j=2

|ajt2 − aj−2|tj + |an−1|tn+1 + |an|tn+2

= |a0|t2 + |a1|t3 +
2k∑
j=2

j even

|ajt2 − aj−2|tj +

2bn/2c∑
j=2k+2
j even

|ajt2 − aj−2|tj

+
2s−1∑
j=3

j odd

|ajt2 − aj−2|tj +

2b(n+1)/2c−1∑
j=2s+1

j odd

|ajt2 − aj−2|tj

+|an−1|tn+1 + |an|tn+2

≤ |a0|t2 + |a1|t3

+

2k∑
j=2

j even

{(|aj |t2 − |aj−2|) cosα+ (|aj−2|+ |aj |t2) sinα}tj

+

2bn/2c∑
j=2k+2
j even

{(|aj−2| − |aj |t2) cosα+ (|aj−2|+ |aj |t2) sinα}tj

+

2s−1∑
j=3

j odd

{(|aj |t2 − |aj−2|) cosα+ (|aj−2|+ |aj |t2) sinα}tj

+

2b(n+1)/2c−1∑
j=2s+1

j odd

{(|aj−2| − |aj |t2) cosα+ (|aj−2|+ |aj |t2) sinα}tj

+|an−1|tn+1 + |an|tn+2

= |a0|t2 + |a1|t3 − |a0|t2 cosα+ |a2k|t2k+2 cosα+ |a0|t2 sinα

+|a2k|t2k+2 sinα+ 2 sinα

2k−2∑
j=2

j even

|aj |tj+2 + |a2k|t2k+2 cosα

−|a2bn/2c|t2bn/2c+2 cosα+|a2k|t2k+2 sinα+|a2bn/2c|t2bn/2c+2 sinα
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+2 sinα

2bn/2c−2∑
j=2k+2
j even

|aj |tj+2 − |a1|t3 cosα+ |a2s−1|t2s+1 cosα

+|a1|t3 sinα+ |a2s−1|t2s+1 sinα+ 2 sinα
2s−3∑
j=3

j odd

|aj |tj+2

+|a2s−1|t2s+1 cosα− |a2b(n+1)/2c−1|t2b(n+1)/2c+1 cosα

+|a2s−1|t2s+1 sinα+ |a2b(n+1)/2c−1|t2b(n+1)/2c+1 sinα

+2 sinα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj |tj+2 + |an−1|tn+1 + |an|tn+2

= |a0|t2(1− cosα+ sinα) + |a1|t3(1− cosα+ sinα)

+2|a2k|t2k+2(cosα+ sinα) + 2|a2s−1|t2s+1(cosα+ sinα)

+2 sinα

2k−2∑
j=2

j even

|aj |tj+2 + 2 sinα

2bn/2c−2∑
j=2k+2
j even

|aj |tj+2

+2 sinα

2s−3∑
j=3

j odd

|aj |tj+2 + 2 sinα

2b(n+1)/2c−3∑
j=2s+1

j odd

|aj |tj+2

+|an−1|tn+1(1− cosα+ sinα) + |an|tn+2(1− cosα+ sinα)

= (|a0|t2 + |a1|t3 + |an−1|tn+1 + |an|tn+2)(1− cosα− sinα)

+2 cosα(|a2k|t2k+2 + |a2s−1|t2s−1) + 2 sinα
n∑

j=0

|aj |tj+2

= M.

Now G(z) is analytic in |z| ≤ t, and |G(z)| ≤M for |z| = t. So by Theorem
1.1 and the Maximum Modulus Theorem, the number of zeros of G (and
hence of P ) in |z| ≤ δt does not exceed C. The theorem follows. �

Proof of Theorem 2.3. Define G(z) = (t2 − z2)P (z). For |z| = t we have

|G(z)| ≤ (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 +

n∑
j=2

|αjt
2 − αj−2|tj

+

n∑
j=2

|βjt2 − βj−2|tj + (|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2
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= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 +

2bn/2c∑
j=2

j even

|αjt
2 − αj−2|tj

+

2b(n+1)/2c−1∑
j=3

j odd

|αjt
2 − αj−2|tj +

2bn/2c∑
j=2

j even

|βjt2 − βj−2|tj

+

2b(n+1)/2c−1∑
j=3

j odd

|βjt2 − βj−2|tj+(|αn−1|+|βn−1|)tn+1+(|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3

+
2k∑
j=2

j even

(αjt
2 − αj−2)t

j +

2bn/2c∑
j=2k+2
j even

(αj−2 − αjt
2)tj

+

2`−1∑
j=3

j odd

(αjt
2 − αj−2)t

j +

2b(n+1)/2c−1∑
j=2`+1

j odd

(αj−2 − αjt
2)tj

+

2s∑
j=2

j even

(βjt
2 − βj−2)tj +

2bn/2c∑
j=2s+2
j even

(βj−2 − βjt2)tj

+

2q−1∑
j=3

j odd

(βjt
2 − βj−2)tj +

2b(n+1)/2c−1∑
j=2q+1

j odd

(βj−2 − βjt2)tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3

+

 2k∑
j=2

j even

αjt
j+2 −

2k∑
j=2

j even

αj−2t
j

+

2bn/2c∑
j=2k+2
j even

αj−2t
j −

2bn/2c∑
j=2k+2
j even

αjt
j+2



+

 2`−1∑
j=3

j odd

αjt
j+2 −

2`−1∑
j=3

j odd

αj−2t
j



14
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+

2b(n+1)/2c−1∑
j=2`+1

j odd

αj−2t
j −

2b(n+1)/2c−1∑
j=2`+1

j odd

αjt
j+2



+

 2s∑
j=2

j even

βjt
j+2 −

2s∑
j=2

j even

βj−2t
j

+

2bn/2c∑
j=2s+2
j even

βj−2t
j −

2bn/2c∑
j=2s+2
j even

βjt
j+2



+

 2q−1∑
j=3

j odd

βjt
j+2 −

2q−1∑
j=3

j odd

βj−2t
j



+

2b(n+1)/2c−1∑
j=2q+1

j odd

βj−2t
j −

2b(n+1)/2c−1∑
j=2q+1

j odd

βjt
j+2


+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0| − α0 + |β0| − β0)t2 + (|α1| − α1 + |β1| − β1)t3

+2(α2kt
2k+2 + α2`−1t

2`+1 + β2st
2s+2 + β2q−1t

2q+1)

+(|αn−1| − αn−1 + |βn−1| − βn−1)tn+1 + (|αn| − αn + |βn| − βn)tn+2

= M.

The result now follows as in the proof of Theorem 2.1. �

Proof of Theorem 2.8. Define G(z) = (t2 − z2)P (z). For |z| = t we have

|G(z)| ≤ (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 +
n∑

j=2

|αjt
2 − αj−2|tj

+
n∑

j=2

(|βj |t2+|βj−2|)tj+(|αn−1|+|βn−1|)tn+1+(|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 +

2bn/2c∑
j=2

j even

|αjt
2 − αj−2|tj

+

2b(n+1)/2c−1∑
j=3

j odd

|αjt
2 − αj−2|tj +

n∑
j=2

(|βj |t2 + |βj−2|)tj
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+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3 +
2k∑
j=2

j even

(αjt
2 − αj−2)t

j

+

2bn/2c∑
j=2k+2
j even

(αj−2 − αjt
2)tj +

2`−1∑
j=3

j odd

(αjt
2 − αj−2)t

j

+

2b(n+1)/2c−1∑
j=2`+1

j odd

(αj−2 − αjt
2)tj +

n∑
j=2

|βj |tj+2 +
n∑

j=2

|βj−2|tj

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0|+ |β0|)t2 + (|α1|+ |β1|)t3

+

 2k∑
j=2

j even

αjt
j+2 −

2k∑
j=2

j even

αj−2t
j

+

2bn/2c∑
j=2k+2
j even

αj−2t
j −

2bn/2c∑
j=2k+2
j even

αjt
j+2



+

 2`−1∑
j=3

j odd

αjt
j+2 −

2`−1∑
j=3

j odd

αj−2t
j



+

2b(n+1)/2c−1∑
j=2`+1

j odd

αj−2t
j−

2b(n+1)/2c−1∑
j=2`+1

j odd

αjt
j+2

+

n∑
j=2

|βj |tj+2+

n−2∑
j=0

|βj |tj+2

+(|αn−1|+ |βn−1|)tn+1 + (|αn|+ |βn|)tn+2

= (|α0| − α0)t
2 + (|α1| − α1)t

3 + 2α2kt
2k+2 + α2`−1t

2`+1

+(|αn−1| − αn−1)t
n+1 + (|αn| − αn)tn+2 + 2

n∑
j=0

|βj |tj+2

= M.

The result now follows as in the proof of Theorem 2.1. �
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