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Some generalizations of the Enestrom—Kakeya
theorem

EzE R. NWAEZE

ABSTRACT. Let p(z) = ao + a1z + a22® 4+ - - - 4+ an2™ be a polynomial of
degree n, where the coefficients a;, j = 0,1,2,...,n, are real numbers.
We impose some restriction on the coefficients and then prove some
extensions and generalizations of the Enestrom—Kakeya theorem.

1. Introduction

A classical result due to Enestrom [5] and Kakeya [7] concerning the
bounds for the moduli of zeros of polynomials having positive coefficients
is often stated as follows.

n
Theorem A. Let p(z) = Zajzj be a polynomial with real coefficients
=0
satisfying
O0<ap<ar<ax < - <ap.

Then all the zeros of p(z) lie in |z] < 1.

In the literature there exist several extensions and generalizations of this
result (see [1], [2], [6] and [8]). Joyal et al. [6] extended Theorem A to the
polynomials whose coefficients are monotonic but not necessarily nonnega-
tive. In fact, they proved the following result.

n
Theorem B. Let p(z) = Zajzj be a polynomial of degree n, with real
j=0
coefficients satisfying

apg < ap <ag < - < g
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Then all the zeros of p(z) lie in the disk
1
2] < —(an — ao + |aol)-

|an|

Aziz and Zargar [3] relaxed the hypothesis in several ways and among
other things proved the following result.

Theorem C. Let p(z Zajzj be a polynomial of degree n such that
7=0
for some k > 1,

0<ap<a; <az <--- < kay.
Then all the zeros of p(z) lie in the disk
|z +k—1] <k.

In 2012, they further generalized Theorem C which is an interesting ex-
tension of Theorem A. In particular, the following theorems are proved in

[4].

Theorem D. Let p(z Z a]zj be a polynomial of degree n. If for some
7=0
positive numbers k and p with k>1,0< p <1,

0<pay<a; <ag <--- < kap,

then all the zeros of p(z) lie in the disk

2
|z+k—1]§k+%(1—p).

n

Theorem E. Let p(z Za]zj be a polynomial of degree n. If for
7=0
some positive number p, 0 < p < 1, and for some nonnegative integer A,
0< A <n,

pag < a1 <ax < - <ax_1<a)>axyr = = Ap—1 = Ap,

then all the zeros ofp(z) lie in the disk

< [261,\ an—1+ (2 = p)lao| — pao]-

z
|an|

Looking at Theorem D, one might want to know what happens if pag is
NOT nonnegative. In this paper we prove some extensions and generaliza-
tions of Theorems D and E which in turn give an answer to our enquiry.
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2. Main results

Theorem 1. Let p(z Z anJ be a polynomial of degree n. If for some
7=0
real numbers o« and (3,

ap—BF<a<ay < <ap+a,

then all the zeros ofp(z) lie in the disk

Gn

[an + 0 — a0 + 8+ 18] + laol

= Jaul

If «a = (k—1)a, and g = (1 — p)ag with k > 1, 0 < p < 1, then we get
the following corollary.

Corollary 1. Let p(z Z a; 2 be a polynomial of degree n. If for some
7=0
postive numbers k > 1 and p with 0 < p <1,

pag < ay <ag < - < kag,
then all the zeros of p(z) lie in the disk

2 k= 1] < [ kan — pao) + laol(2— )]

|an]

If ag > 0, then Corollary 1 amounts to Theorem D.

Theorem 2. Let p(z Z a]z] be a polynomial of degree n. If for some
7=0
real number s and for some integer A\, 0 < A < n,

ap—s< a1 <ag < <ax-1 <A\ 2 Axp1 = 0 2 Ap—] 2 Ap,

then all the zeros of p(z) lie in the disk

< — {2a,\ an-1+s—ap+|s| + |a0\]

If we take s = (1 — p)ao, with 0 < p < 1, then Theorem 2 becomes
Theorem E. Instead of proving Theorem 2, we shall prove a more general
case. In fact, we prove the following result.

Theorem 3. Let p(z Z ajz] be a polynomial of degree n. If for some
7=0
real numbers t, s and for some integer X\, 0 < A < n,

ag—s<ap<ax<---<ax-1<a)>axy1 2> 2 Ap1 = A+
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then all the zeros of p(z) lie in the disk

Qp— t 1
‘z+ n—1 —(1—1——)‘g—[QaA—an_l+s—a0+]s]+\ao\+!t! .
an an |an|

3. Proofs of the theorems
Proof of Theorem 1. Consider the polynomial
9(z) = (1 = 2)p(2)
= —a, 2" (@ — an_1)2" + (Gn1— an_2)2" -+ (a1 —ag)z + ag
= —a, 2" — a2+ (an @ — 1) F (A1 — Ap2)Z" 4
+ (a1 —ap + B)z — Bz + ap
= —2"anz +a)+ (an +a —an_1)2" + (an_1 — Gp_2)2" 1+ ...
+ (a1 —ao+ B)z — Bz + ag
= —2"(anz + a) + ¢(2),
where
B(2) = (an+a—an_1)2"+(an-1—an—2)2"" '+ + (a1 —ap+B)z— Bz +aq.
Now for |z| = 1, we have
|0(2)| < lan + & = an—1] + |an—1 — an—o| + -+ + [a1r — ao + B + [B| + |ao|
=ap+a—ap1+an1—ap2+---+a—aog+ B+ |6+ |ao|
= an +a—ag+ B+ |B| + |aol.

Since this is true for all complex numbers with a unit modulus, it must also
be true for 1/z. With this in mind, we have, for all z with |z| = 1,

2" ¢(1/2)| < an + v —ag + B+ B[ + |aol. (1)

Also, the function ®(z) = 2"¢(1/2) is analytic in |z| < 1, hence, inequality
(1) holds inside the unit circle by the maximum modulus theorem. That is,
for all z with |z| < 1,

[¢(1/2)] <
Replacing z by 1/z, we get
6(2)] < [an +a = ag + B +18] + Jal|2]"
if |z| > 1. Now, for |z| > 1, we obtain that

9(2) = | = 2"(anz + @) + ¢(2))|
> |2"|anz + af = |¢(2)|

an +a—ag+ B+ |6+ |aol
|2[™ '

> |2"||anz + o — [an +a—ag+ B+ |8+ !ao\]\z\"
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= \z"[(\anz + al — {an +a—ao+ B+ |8+ |GO\D
>0
if and only if
lanz + of > [an+a—ao+5+!ﬁ\+\a0|}

or, equivalently, if and only if

1
> = lan+a—ao+ B+ 18] + laol]

=+
y
|an|

Gn

Thus, all the zeros of g(z) whose modulus is greater than or equal to 1 lie in

<L[an—|—a—ao+ﬁ+!5\+\ao!}- (2)

«
’z + — | <
|an|

an

But those zeros of p(z) whose modulus is less than 1 already satisfy (2),
because [¢p(z)| < an + a —ag + B+ |B] + |ao| for |z| =1 and ¢(z) = g(z) +
2"(anz + «). Also, all the zeros of p(z) are zeros of g(z). That completes
the proof of Theorem 1. O

Proof of Theorem 8. Consider the polynomial
9(z) = (1 = 2)p(2)
= —a, 2" (@ — an1)2"F (A1 — )2 4+ (a1— ag)z + ag
= —a,z"t + (an, — an-1)z" + (ap—1 — Un_2)2" ...
+ (axs1 —ax))2 M+ (ay —ax_1)2 + -+ + (a1 — ag)z + ag
= —z2"anz — ap + ap—1 — t] — 2" + (an—1 — an_2)z""1 + ...
+ (axs1 —ax)2M 4 (ay —ax_1)z 4+ -+ (a1 — ag + 5)z — 52 + ag
= —2"[apnz — ap + an—1 — t] + P(2),
where
P(2) = —t2" + (-1 — an_2)2" " 4+ (arg1 — apn)2M
+ (ax —ax_1)2 4+ -+ (a1 — ap + 8)z — sz + ag.
For |z| = 1 we get
()] < [t + lan—1 — an—2| + -+ + [ars1 — ax| + |ay —ar—1] + ...
+ |a1 — ap + s| + |s| + |ao]
=|t|+an—2—an-1+---+ax—axyr +ay—ax_1+...
+ a1 —ag + s+ [s| + |ao|
= |t| — an—1 + 2ax —ap + s+ |s| + |ao|-
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It is clear that
|2"(1)2)| < |t| — an—1 + 2ax — ap + s + |s| + |ao| (3)

on the unit circle. Since the function W(z) = 2" (1/2) is analytic in |z| < 1,
inequality (3) holds inside the unit circle by the maximum modulus theorem.
That is,

|t| — an—1 + 2ax — ag + s + [s| + |ao|

2|

[p(1/2)] <
for |z| < 1. Replacing z by 1/z we get
()| < [t = an-1 + 20 — ag + 5+ |s] + ao] ] |2I"
for |z| > 1. Now for |z| > 1, we have

9(2) = |2"|anz = an + an—1 — 1] = [9(2)]
> 2" |anz — an, + ap—1 — t|

— [1tl = an1 + 201 — ag + 5+ [s] + Jaol | 2"
= |"| (]anz— U + ap1—t| — [\t\ — an_1+ 2ay—ag + s+ |s| + ya0|])
>0
if and only if
|anz — ap + an—1 —t| > [\t\ — p—1+2ax —ap + s+ |s| + ]ao\].
But this holds if and only if

an-—1

t
’24- —(1+f)]> (1t = an 1+ 2ax — ag + s + |s| + Jaol
anp ‘ n’

an,

Hence, the zeros of p(z) with modulus greater or equal to 1 are in the
closed disk

o+t (14 )| <
)

|an
Also, those zeros of p(z) whose modulus is less than 1 already satisfy the
above inequality since 9(z) = g(z) + 2" [anz — an + an—1 —t] and, for |z| = 1,
|Y(2)] < |t] — an—1 4+ 2ax —ap+ s+ |s| + |ap|. That completes the proof. D

1
— []t] — a1+ 20y = ag + 5+ |s| + Jal|.

4. Demonstrating examples

Example 1. Let us consider the polynomial
p(2) =325 +420 + 323 + 222+ 2 — 1.

The coefficients here are as = 3, a4 = 4, a3 =3, a3 =2,a1 = 1 and ag = —1.
We cannot apply Theorems A, B, C and D. But we can apply Theorem 1
to determine where all the zeros of the polynomial lie. Using MATLAB, we
obtain the following zeros : —0.9154 + 0.4962¢, —0.9154 — 0.49624, 0.0530 +
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0.8845i, 0.0530 —0.8845¢, 0.3916. Taking a = 2 and 8 = 0, Theorem 1 gives
that all the zeros of the polynomial lie in the closed disk |3z + 2| < 7.

Example 2. Next, consider
q(z) = =25 +22° 4224 + 323 + 22 - 2.

The coefficients of ¢(z) are ag = —1, a5 = 2, a4 = 2, ag = 3, az = 1,
a1 = 0 and ag = —2. Using MATLAB, we obtain the following zeros:
3.0197, —0.7682+0.58144, —0.7682 —0.58144, —0.0803+1.02337, —0.0803 —
1.0233¢, 0.6773. Taking A = 3, ¢t = 1 and s = 0, Theorem 3 gives that the
zeros lie in |z — 2] < 9.
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