Some generalizations of the Eneström-Kakeya theorem

Eze R. Nwaeze

Abstract

Let $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$ be a polynomial of degree n, where the coefficients $a_{j}, j=0,1,2, \ldots, n$, are real numbers. We impose some restriction on the coefficients and then prove some extensions and generalizations of the Eneström-Kakeya theorem.

1. Introduction

A classical result due to Eneström [5] and Kakeya [7] concerning the bounds for the moduli of zeros of polynomials having positive coefficients is often stated as follows.

Theorem A. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial with real coefficients satisfying

$$
0<a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}
$$

Then all the zeros of $p(z)$ lie in $|z| \leq 1$.
In the literature there exist several extensions and generalizations of this result (see [1], [2], [6] and [8]). Joyal et al. [6] extended Theorem A to the polynomials whose coefficients are monotonic but not necessarily nonnegative. In fact, they proved the following result.

Theorem B. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n, with real coefficients satisfying

$$
a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}
$$

Received January 8, 2015.
2010 Mathematics Subject Classification. 30C10, 30C15.
Key words and phrases. Real polynomials, location of zeros, MATLAB.
http://dx.doi.org/10.12697/ACUTM.2016.20.02

Then all the zeros of $p(z)$ lie in the disk

$$
|z| \leq \frac{1}{\left|a_{n}\right|}\left(a_{n}-a_{0}+\left|a_{0}\right|\right) .
$$

Aziz and Zargar [3] relaxed the hypothesis in several ways and among other things proved the following result.

Theorem C. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $k \geq 1$,

$$
0<a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq k a_{n}
$$

Then all the zeros of $p(z)$ lie in the disk

$$
|z+k-1| \leq k
$$

In 2012, they further generalized Theorem C which is an interesting extension of Theorem A. In particular, the following theorems are proved in [4].

Theorem D. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some positive numbers k and ρ with $k \geq 1,0<\rho \leq 1$,

$$
0 \leq \rho a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq k a_{n}
$$

then all the zeros of $p(z)$ lie in the disk

$$
|z+k-1| \leq k+\frac{2 a_{0}}{a_{n}}(1-\rho)
$$

Theorem E. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some positive number $\rho, 0<\rho \leq 1$, and for some nonnegative integer λ, $0 \leq \lambda<n$,

$$
\rho a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{\lambda-1} \leq a_{\lambda} \geq a_{\lambda+1} \geq \cdots \geq a_{n-1} \geq a_{n}
$$

then all the zeros of $p(z)$ lie in the disk

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{1}{\left|a_{n}\right|}\left[2 a_{\lambda}-a_{n-1}+(2-\rho)\left|a_{0}\right|-\rho a_{0}\right]
$$

Looking at Theorem D , one might want to know what happens if ρa_{0} is NOT nonnegative. In this paper we prove some extensions and generalizations of Theorems D and E which in turn give an answer to our enquiry.

2. Main results

Theorem 1. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real numbers α and β,

$$
a_{0}-\beta \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}+\alpha
$$

then all the zeros of $p(z)$ lie in the disk

$$
\left|z+\frac{\alpha}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right] .
$$

If $\alpha=(k-1) a_{n}$ and $\beta=(1-\rho) a_{0}$ with $k \geq 1,0<\rho \leq 1$, then we get the following corollary.

Corollary 1. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some postive numbers $k \geq 1$ and ρ with $0<\rho \leq 1$,

$$
\rho a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq k a_{n}
$$

then all the zeros of $p(z)$ lie in the disk

$$
|z+k-1| \leq \frac{1}{\left|a_{n}\right|}\left[\left(k a_{n}-\rho a_{0}\right)+\left|a_{0}\right|(2-\rho)\right]
$$

If $a_{0}>0$, then Corollary 1 amounts to Theorem D.
Theorem 2. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real number s and for some integer $\lambda, 0<\lambda<n$,

$$
a_{0}-s \leq a_{1} \leq a_{2} \leq \cdots \leq a_{\lambda-1} \leq a_{\lambda} \geq a_{\lambda+1} \geq \cdots \geq a_{n-1} \geq a_{n}
$$

then all the zeros of $p(z)$ lie in the disk

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{1}{\left|a_{n}\right|}\left[2 a_{\lambda}-a_{n-1}+s-a_{0}+|s|+\left|a_{0}\right|\right] .
$$

If we take $s=(1-\rho) a_{0}$, with $0<\rho \leq 1$, then Theorem 2 becomes Theorem E. Instead of proving Theorem 2, we shall prove a more general case. In fact, we prove the following result.

Theorem 3. Let $p(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some real numbers t, s and for some integer $\lambda, 0<\lambda<n$,

$$
a_{0}-s \leq a_{1} \leq a_{2} \leq \cdots \leq a_{\lambda-1} \leq a_{\lambda} \geq a_{\lambda+1} \geq \cdots \geq a_{n-1} \geq a_{n}+t
$$

then all the zeros of $p(z)$ lie in the disk

$$
\left|z+\frac{a_{n-1}}{a_{n}}-\left(1+\frac{t}{a_{n}}\right)\right| \leq \frac{1}{\left|a_{n}\right|}\left[2 a_{\lambda}-a_{n-1}+s-a_{0}+|s|+\left|a_{0}\right|+|t|\right] .
$$

3. Proofs of the theorems

Proof of Theorem 1. Consider the polynomial

$$
\begin{aligned}
g(z)= & (1-z) p(z) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}-\alpha z^{n}+\left(a_{n}+\alpha-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots \\
& +\left(a_{1}-a_{0}+\beta\right) z-\beta z+a_{0} \\
= & -z^{n}\left(a_{n} z+\alpha\right)+\left(a_{n}+\alpha-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots \\
& +\left(a_{1}-a_{0}+\beta\right) z-\beta z+a_{0} \\
= & -z^{n}\left(a_{n} z+\alpha\right)+\phi(z)
\end{aligned}
$$

where

$$
\phi(z)=\left(a_{n}+\alpha-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}+\beta\right) z-\beta z+a_{0}
$$

Now for $|z|=1$, we have

$$
\begin{aligned}
|\phi(z)| & \leq\left|a_{n}+\alpha-a_{n-1}\right|+\left|a_{n-1}-a_{n-2}\right|+\cdots+\left|a_{1}-a_{0}+\beta\right|+|\beta|+\left|a_{0}\right| \\
& =a_{n}+\alpha-a_{n-1}+a_{n-1}-a_{n-2}+\cdots+a_{1}-a_{0}+\beta+|\beta|+\left|a_{0}\right| \\
& =a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right| .
\end{aligned}
$$

Since this is true for all complex numbers with a unit modulus, it must also be true for $1 / z$. With this in mind, we have, for all z with $|z|=1$,

$$
\begin{equation*}
\left|z^{n} \phi(1 / z)\right| \leq a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right| . \tag{1}
\end{equation*}
$$

Also, the function $\Phi(z)=z^{n} \phi(1 / z)$ is analytic in $|z| \leq 1$, hence, inequality (1) holds inside the unit circle by the maximum modulus theorem. That is, for all z with $|z| \leq 1$,

$$
|\phi(1 / z)| \leq \frac{a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|}{|z|^{n}}
$$

Replacing z by $1 / z$, we get

$$
|\phi(z)| \leq\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right]|z|^{n}
$$

if $|z| \geq 1$. Now, for $|z| \geq 1$, we obtain that

$$
\begin{aligned}
|g(z)| & =\left|-z^{n}\left(a_{n} z+\alpha\right)+\phi(z)\right| \\
& \geq\left|z^{n}\right|\left|a_{n} z+\alpha\right|-|\phi(z)| \\
& \geq\left|z^{n}\right|\left|a_{n} z+\alpha\right|-\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right]|z|^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|z^{n}\right|\left(\left|a_{n} z+\alpha\right|-\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right]\right) \\
& >0
\end{aligned}
$$

if and only if

$$
\left|a_{n} z+\alpha\right|>\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right]
$$

or, equivalently, if and only if

$$
\left|z+\frac{\alpha}{a_{n}}\right|>\frac{1}{\left|a_{n}\right|}\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right] .
$$

Thus, all the zeros of $g(z)$ whose modulus is greater than or equal to 1 lie in

$$
\begin{equation*}
\left|z+\frac{\alpha}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|\right] . \tag{2}
\end{equation*}
$$

But those zeros of $p(z)$ whose modulus is less than 1 already satisfy (2), because $|\phi(z)| \leq a_{n}+\alpha-a_{0}+\beta+|\beta|+\left|a_{0}\right|$ for $|z|=1$ and $\phi(z)=g(z)+$ $z^{n}\left(a_{n} z+\alpha\right)$. Also, all the zeros of $p(z)$ are zeros of $g(z)$. That completes the proof of Theorem 1.

Proof of Theorem 3. Consider the polynomial

$$
\begin{aligned}
g(z)= & (1-z) p(z) \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots \\
& +\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1}+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda}+\cdots+\left(a_{1}-a_{0}\right) z+a_{0} \\
= & -z^{n}\left[a_{n} z-a_{n}+a_{n-1}-t\right]-t z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\ldots \\
& +\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1}+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda}+\cdots+\left(a_{1}-a_{0}+s\right) z-s z+a_{0} \\
= & -z^{n}\left[a_{n} z-a_{n}+a_{n-1}-t\right]+\psi(z),
\end{aligned}
$$

where

$$
\begin{aligned}
\psi(z)= & -t z^{n}+\left(a_{n-1}-a_{n-2}\right) z^{n-1}+\cdots+\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1} \\
& +\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda}+\cdots+\left(a_{1}-a_{0}+s\right) z-s z+a_{0}
\end{aligned}
$$

For $|z|=1$ we get

$$
\begin{aligned}
|\psi(z)| \leq & |t|+\left|a_{n-1}-a_{n-2}\right|+\cdots+\left|a_{\lambda+1}-a_{\lambda}\right|+\left|a_{\lambda}-a_{\lambda-1}\right|+\ldots \\
& +\left|a_{1}-a_{0}+s\right|+|s|+\left|a_{0}\right| \\
= & |t|+a_{n-2}-a_{n-1}+\cdots+a_{\lambda}-a_{\lambda+1}+a_{\lambda}-a_{\lambda-1}+\ldots \\
& +a_{1}-a_{0}+s+|s|+\left|a_{0}\right| \\
= & |t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right| .
\end{aligned}
$$

It is clear that

$$
\begin{equation*}
\left|z^{n} \psi(1 / z)\right| \leq|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right| \tag{3}
\end{equation*}
$$

on the unit circle. Since the function $\Psi(z)=z^{n} \psi(1 / z)$ is analytic in $|z| \leq 1$, inequality (3) holds inside the unit circle by the maximum modulus theorem. That is,

$$
|\psi(1 / z)| \leq \frac{|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|}{|z|^{n}}
$$

for $|z| \leq 1$. Replacing z by $1 / z$ we get

$$
|\psi(z)| \leq\left[|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|\right]|z|^{n}
$$

for $|z| \geq 1$. Now for $|z| \geq 1$, we have

$$
\begin{aligned}
|g(z)| & \geq\left|z^{n}\right|\left|a_{n} z-a_{n}+a_{n-1}-t\right|-|\psi(z)| \\
\geq & \left|z^{n}\right|\left|a_{n} z-a_{n}+a_{n-1}-t\right| \\
& -\left[|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|\right]|z|^{n} \\
& =\left|z^{n}\right|\left(\left|a_{n} z-a_{n}+a_{n-1}-t\right|-\left[|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|\right]\right) \\
> & 0
\end{aligned}
$$

if and only if

$$
\left|a_{n} z-a_{n}+a_{n-1}-t\right|>\left[|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|\right]
$$

But this holds if and only if

$$
\left|z+\frac{a_{n-1}}{a_{n}}-\left(1+\frac{t}{a_{n}}\right)\right|>\frac{1}{\left|a_{n}\right|}\left[|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|\right] .
$$

Hence, the zeros of $p(z)$ with modulus greater or equal to 1 are in the closed disk

$$
\left|z+\frac{a_{n-1}}{a_{n}}-\left(1+\frac{t}{a_{n}}\right)\right| \leq \frac{1}{\left|a_{n}\right|}\left[|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|\right] .
$$

Also, those zeros of $p(z)$ whose modulus is less than 1 already satisfy the above inequality since $\psi(z)=g(z)+z^{n}\left[a_{n} z-a_{n}+a_{n-1}-t\right]$ and, for $|z|=1$, $|\psi(z)| \leq|t|-a_{n-1}+2 a_{\lambda}-a_{0}+s+|s|+\left|a_{0}\right|$. That completes the proof.

4. Demonstrating examples

Example 1. Let us consider the polynomial

$$
p(z)=3 z^{5}+4 z^{4}+3 z^{3}+2 z^{2}+z-1
$$

The coefficients here are $a_{5}=3, a_{4}=4, a_{3}=3, a_{2}=2, a_{1}=1$ and $a_{0}=-1$. We cannot apply Theorems A, B, C and D. But we can apply Theorem 1 to determine where all the zeros of the polynomial lie. Using MATLAB, we obtain the following zeros : $-0.9154+0.4962 i,-0.9154-0.4962 i, 0.0530+$
$0.8845 i, 0.0530-0.8845 i, 0.3916$. Taking $\alpha=2$ and $\beta=0$, Theorem 1 gives that all the zeros of the polynomial lie in the closed disk $|3 z+2| \leq 7$.

Example 2. Next, consider

$$
q(z)=-z^{6}+2 z^{5}+2 z^{4}+3 z^{3}+z^{2}-2 .
$$

The coefficients of $q(z)$ are $a_{6}=-1, a_{5}=2, a_{4}=2, a_{3}=3, a_{2}=1$, $a_{1}=0$ and $a_{0}=-2$. Using MATLAB, we obtain the following zeros: $3.0197,-0.7682+0.5814 i,-0.7682-0.5814 i,-0.0803+1.0233 i,-0.0803-$ $1.0233 i$, 0.6773 . Taking $\lambda=3, t=1$ and $s=0$, Theorem 3 gives that the zeros lie in $|z-2| \leq 9$.

5. Acknowledgement

The author is greatly indebted to the referee for his/her several useful suggestions and valuable comments.

References

[1] N. Anderson, E. B. Saff, and R. S. Varga, On the Eneström-Kakeya theorem and its sharpness, Linear Algebra Appl. 28 (1979), 5-16.
[2] N. Anderson, E. B. Saff, and R. S. Varga, An extension of the Eneström-Kakeya theorem and its sharpness, SIAM J. Math. Anal. 12 (1981), 10-22.
[3] A. Aziz and B. A. Zargar, Some extensions of Eneström-Kakeya theorem, Glas. Mat. Ser. III 31 (51) (1996), 239-244.
[4] A. Aziz and B. A. Zargar, Bounds for the zeros of a polynomial with restricted coefficients, Appl. Math. (Irvine) 3 (2012), 30-33.
[5] G. Eneström, Härledning af en allmän formel för antalet pensionärer, som vid en godtycklig tidpunkt förefinnas inom en sluten pensionskassa, Stockh. Öfv. L. 6 (1893), 405-415. (Swedish)
[6] A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of a polynomial, Canad. Math. Bull. 10 (1967), 55-63.
[7] S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tôhoku Math. J. 2 (1912), 140-142.
[8] M. Kovac̆ević and I. Milovanović, On a generalization of the Eneström-Kakeya theorem, Pure Math. Appl. Ser. A 3 (1992), 43-47.

Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA

E-mail address: ern0002@auburn.edu

