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Some generalizations of the Eneström–Kakeya
theorem

Eze R. Nwaeze

Abstract. Let p(z) = a0 + a1z + a2z
2 + · · · + anz

n be a polynomial of
degree n, where the coefficients aj , j = 0, 1, 2, . . . , n, are real numbers.
We impose some restriction on the coefficients and then prove some
extensions and generalizations of the Eneström–Kakeya theorem.

1. Introduction

A classical result due to Eneström [5] and Kakeya [7] concerning the
bounds for the moduli of zeros of polynomials having positive coefficients
is often stated as follows.

Theorem A. Let p(z) =

n∑
j=0

ajz
j be a polynomial with real coefficients

satisfying

0 < a0 ≤ a1 ≤ a2 ≤ · · · ≤ an.
Then all the zeros of p(z) lie in |z| ≤ 1.

In the literature there exist several extensions and generalizations of this
result (see [1], [2], [6] and [8]). Joyal et al. [6] extended Theorem A to the
polynomials whose coefficients are monotonic but not necessarily nonnega-
tive. In fact, they proved the following result.

Theorem B. Let p(z) =
n∑
j=0

ajz
j be a polynomial of degree n, with real

coefficients satisfying

a0 ≤ a1 ≤ a2 ≤ · · · ≤ an.
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Then all the zeros of p(z) lie in the disk

|z| ≤ 1

|an|
(an − a0 + |a0|).

Aziz and Zargar [3] relaxed the hypothesis in several ways and among
other things proved the following result.

Theorem C. Let p(z) =

n∑
j=0

ajz
j be a polynomial of degree n such that

for some k ≥ 1,

0 < a0 ≤ a1 ≤ a2 ≤ · · · ≤ kan.
Then all the zeros of p(z) lie in the disk

|z + k − 1| ≤ k.

In 2012, they further generalized Theorem C which is an interesting ex-
tension of Theorem A. In particular, the following theorems are proved in
[4].

Theorem D. Let p(z) =
n∑
j=0

ajz
j be a polynomial of degree n. If for some

positive numbers k and ρ with k ≥ 1, 0 < ρ ≤ 1,

0 ≤ ρa0 ≤ a1 ≤ a2 ≤ · · · ≤ kan,

then all the zeros of p(z) lie in the disk

|z + k − 1| ≤ k +
2a0
an

(1− ρ).

Theorem E. Let p(z) =
n∑
j=0

ajz
j be a polynomial of degree n. If for

some positive number ρ, 0 < ρ ≤ 1, and for some nonnegative integer λ,
0 ≤ λ < n,

ρa0 ≤ a1 ≤ a2 ≤ · · · ≤ aλ−1 ≤ aλ ≥ aλ+1 ≥ · · · ≥ an−1 ≥ an,

then all the zeros of p(z) lie in the disk∣∣∣z +
an−1

an
− 1
∣∣∣ ≤ 1

|an|

[
2aλ − an−1 + (2− ρ)|a0| − ρa0

]
.

.

Looking at Theorem D, one might want to know what happens if ρa0 is
NOT nonnegative. In this paper we prove some extensions and generaliza-
tions of Theorems D and E which in turn give an answer to our enquiry.
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2. Main results

Theorem 1. Let p(z) =
n∑
j=0

ajz
j be a polynomial of degree n. If for some

real numbers α and β,

a0 − β ≤ a1 ≤ a2 ≤ · · · ≤ an + α,

then all the zeros of p(z) lie in the disk∣∣∣z +
α

an

∣∣∣ ≤ 1

|an|

[
an + α− a0 + β + |β|+ |a0|

]
.

If α = (k − 1)an and β = (1 − ρ)a0 with k ≥ 1, 0 < ρ ≤ 1, then we get
the following corollary.

Corollary 1. Let p(z) =
n∑
j=0

ajz
j be a polynomial of degree n. If for some

postive numbers k ≥ 1 and ρ with 0 < ρ ≤ 1,

ρa0 ≤ a1 ≤ a2 ≤ · · · ≤ kan,

then all the zeros of p(z) lie in the disk

|z + k − 1| ≤ 1

|an|

[
(kan − ρa0) + |a0|(2− ρ)

]
.

If a0 > 0, then Corollary 1 amounts to Theorem D.

Theorem 2. Let p(z) =

n∑
j=0

ajz
j be a polynomial of degree n. If for some

real number s and for some integer λ, 0 < λ < n,

a0 − s ≤ a1 ≤ a2 ≤ · · · ≤ aλ−1 ≤ aλ ≥ aλ+1 ≥ · · · ≥ an−1 ≥ an,

then all the zeros of p(z) lie in the disk∣∣∣z +
an−1

an
− 1
∣∣∣ ≤ 1

|an|

[
2aλ − an−1 + s− a0 + |s|+ |a0|

]
.

If we take s = (1 − ρ)a0, with 0 < ρ ≤ 1, then Theorem 2 becomes
Theorem E. Instead of proving Theorem 2, we shall prove a more general
case. In fact, we prove the following result.

Theorem 3. Let p(z) =

n∑
j=0

ajz
j be a polynomial of degree n. If for some

real numbers t, s and for some integer λ, 0 < λ < n,

a0 − s ≤ a1 ≤ a2 ≤ · · · ≤ aλ−1 ≤ aλ ≥ aλ+1 ≥ · · · ≥ an−1 ≥ an + t,
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then all the zeros of p(z) lie in the disk∣∣∣z +
an−1

an
−
(

1 +
t

an

)∣∣∣ ≤ 1

|an|

[
2aλ − an−1 + s− a0 + |s|+ |a0|+ |t|

]
.

3. Proofs of the theorems

Proof of Theorem 1. Consider the polynomial

g(z) = (1− z)p(z)
= −anzn+1+ (an− an−1)z

n + (an−1− an−2)z
n−1+ · · ·+ (a1−a0)z + a0

= −anzn+1 − αzn + (an + α− an−1)z
n + (an−1 − an−2)z

n−1 + . . .

+ (a1 − a0 + β)z − βz + a0

= −zn(anz + α) + (an + α− an−1)z
n + (an−1 − an−2)z

n−1+ . . .

+ (a1 − a0 + β)z − βz + a0

= −zn(anz + α) + φ(z),

where

φ(z) = (an+α−an−1)z
n+(an−1−an−2)z

n−1+ · · ·+(a1−a0+β)z−βz+a0.

Now for |z| = 1, we have

|φ(z)| ≤ |an + α− an−1|+ |an−1 − an−2|+ · · ·+ |a1 − a0 + β|+ |β|+ |a0|
= an + α− an−1 + an−1 − an−2 + · · ·+ a1 − a0 + β + |β|+ |a0|
= an + α− a0 + β + |β|+ |a0|.

Since this is true for all complex numbers with a unit modulus, it must also
be true for 1/z. With this in mind, we have, for all z with |z| = 1,

|znφ(1/z)| ≤ an + α− a0 + β + |β|+ |a0|. (1)

Also, the function Φ(z) = znφ(1/z) is analytic in |z| ≤ 1, hence, inequality
(1) holds inside the unit circle by the maximum modulus theorem. That is,
for all z with |z| ≤ 1,

|φ(1/z)| ≤ an + α− a0 + β + |β|+ |a0|
|z|n

.

Replacing z by 1/z, we get

|φ(z)| ≤
[
an + α− a0 + β + |β|+ |a0|

]
|z|n

if |z| ≥ 1. Now, for |z| ≥ 1, we obtain that

|g(z)| = | − zn(anz + α) + φ(z)|
≥ |zn||anz + α| − |φ(z)|

≥ |zn||anz + α| −
[
an + α− a0 + β + |β|+ |a0|

]
|z|n
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= |zn|
(
|anz + α| −

[
an + α− a0 + β + |β|+ |a0|

])
> 0

if and only if

|anz + α| >
[
an + α− a0 + β + |β|+ |a0|

]
or, equivalently, if and only if∣∣∣z +

α

an

∣∣∣ > 1

|an|

[
an + α− a0 + β + |β|+ |a0|

]
.

Thus, all the zeros of g(z) whose modulus is greater than or equal to 1 lie in∣∣∣z +
α

an

∣∣∣ ≤ 1

|an|

[
an + α− a0 + β + |β|+ |a0|

]
. (2)

But those zeros of p(z) whose modulus is less than 1 already satisfy (2),
because |φ(z)| ≤ an + α − a0 + β + |β| + |a0| for |z| = 1 and φ(z) = g(z) +
zn(anz + α). Also, all the zeros of p(z) are zeros of g(z). That completes
the proof of Theorem 1. �

Proof of Theorem 3. Consider the polynomial

g(z) = (1− z)p(z)
= −anzn+1+ (an− an−1)z

n+ (an−1− an−2)z
n−1+ · · ·+ (a1− a0)z + a0

= −anzn+1 + (an − an−1)z
n + (an−1 − an−2)z

n−1 + . . .

+ (aλ+1 − aλ)zλ+1 + (aλ − aλ−1)z
λ + · · ·+ (a1 − a0)z + a0

= −zn[anz − an + an−1 − t]− tzn + (an−1 − an−2)z
n−1 + . . .

+ (aλ+1 − aλ)zλ+1 + (aλ − aλ−1)z
λ + · · ·+ (a1 − a0 + s)z − sz + a0

= −zn[anz − an + an−1 − t] + ψ(z),

where

ψ(z) = −tzn + (an−1 − an−2)z
n−1 + · · ·+ (aλ+1 − aλ)zλ+1

+ (aλ − aλ−1)z
λ + · · ·+ (a1 − a0 + s)z − sz + a0.

For |z| = 1 we get

|ψ(z)| ≤ |t|+ |an−1 − an−2|+ · · ·+ |aλ+1 − aλ|+ |aλ − aλ−1|+ . . .

+ |a1 − a0 + s|+ |s|+ |a0|
= |t|+ an−2 − an−1 + · · ·+ aλ − aλ+1 + aλ − aλ−1 + . . .

+ a1 − a0 + s+ |s|+ |a0|
= |t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|.
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It is clear that

|znψ(1/z)| ≤ |t| − an−1 + 2aλ − a0 + s+ |s|+ |a0| (3)

on the unit circle. Since the function Ψ(z) = znψ(1/z) is analytic in |z| ≤ 1,
inequality (3) holds inside the unit circle by the maximum modulus theorem.
That is,

|ψ(1/z)| ≤ |t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|
|z|n

for |z| ≤ 1. Replacing z by 1/z we get

|ψ(z)| ≤
[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
|z|n

for |z| ≥ 1. Now for |z| ≥ 1, we have

|g(z)| ≥ |zn||anz − an + an−1 − t| − |ψ(z)|
≥ |zn||anz − an + an−1 − t|

−
[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
|z|n

= |zn|
(
|anz− an + an−1− t| −

[
|t| − an−1+ 2aλ− a0 + s+ |s|+ |a0|

])
> 0

if and only if

|anz − an + an−1 − t| >
[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
.

But this holds if and only if∣∣∣z +
an−1

an
−
(

1 +
t

an

)∣∣∣ > 1

|an|

[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
.

Hence, the zeros of p(z) with modulus greater or equal to 1 are in the
closed disk∣∣∣z +

an−1

an
−
(

1 +
t

an

)∣∣∣ ≤ 1

|an|

[
|t| − an−1 + 2aλ − a0 + s+ |s|+ |a0|

]
.

Also, those zeros of p(z) whose modulus is less than 1 already satisfy the
above inequality since ψ(z) = g(z) + zn[anz−an +an−1− t] and, for |z| = 1,
|ψ(z)| ≤ |t| − an−1 + 2aλ− a0 + s+ |s|+ |a0|. That completes the proof. �

4. Demonstrating examples

Example 1. Let us consider the polynomial

p(z) = 3z5 + 4z4 + 3z3 + 2z2 + z − 1.

The coefficients here are a5 = 3, a4 = 4, a3 = 3, a2 = 2, a1 = 1 and a0 = −1.
We cannot apply Theorems A, B, C and D. But we can apply Theorem 1
to determine where all the zeros of the polynomial lie. Using MATLAB, we
obtain the following zeros : −0.9154 + 0.4962i, −0.9154− 0.4962i, 0.0530 +
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0.8845i, 0.0530−0.8845i, 0.3916. Taking α = 2 and β = 0, Theorem 1 gives
that all the zeros of the polynomial lie in the closed disk |3z + 2| ≤ 7.

Example 2. Next, consider

q(z) = −z6 + 2z5 + 2z4 + 3z3 + z2 − 2.

The coefficients of q(z) are a6 = −1, a5 = 2, a4 = 2, a3 = 3, a2 = 1,
a1 = 0 and a0 = −2. Using MATLAB, we obtain the following zeros:
3.0197, −0.7682+0.5814i, −0.7682−0.5814i, −0.0803+1.0233i, −0.0803−
1.0233i, 0.6773. Taking λ = 3, t = 1 and s = 0, Theorem 3 gives that the
zeros lie in |z − 2| ≤ 9.
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