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Approximation of periodic integrable functions
in terms of modulus of continuity

Uaday Singh and Soshal

Abstract. We estimate the pointwise approximation of periodic func-
tions belonging to Lp(ω)β-class, where ω is an integral modulus of conti-
nuity type function associated with f , using product means of the Fourier
series of f generated by the product of two general linear operators. We
also discuss the case p = 1 separately. This case has not been mentioned
in the earlier results given by various authors. The deviations obtained
in our theorems are free from p and more sharper than the earlier results.

1. Introduction

Let f be a 2π periodic function belonging to the space Lp : = Lp[0, 2π]
(p ≥ 1). The trigonometric Fourier series of f is defined as

f(x) ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx). (1)

The (k + 1)th partial sum of the Fourier series (1),

s0(f ;x) : =
a0
2
, sk(f ;x) : =

a0
2

+

k∑
ν=1

(aν cos νx+ bν sin νx), k ∈ N,

is called the trigonometric polynomial of degree or order k (see [7]).
Let T ≡ (an,k) be a lower triangular matrix. Then the sequence to se-

quence transformation

tn(f ;x) =

n∑
k=0

an,ksk(f ;x), n ∈ N0 : = N ∪ {0},

Received February 13, 2015.
2010 Mathematics Subject Classification. 42A10.
Key words and phrases. Degree of approximation, product means, Lp(ω)β-class.
http://dx.doi.org/10.12697/ACUTM.2016.20.03

23
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defines the matrix means of {sn(f ;x)}. The Fourier series (1) is said to be
summable to s by T -means, if lim

n→∞
tn(f ;x) = s, where s is a finite number.

Let A ≡ (an,m) and B ≡ (bn,m) be infinite lower triangular matrices of
real numbers such that

A(or B) =

{
an,m(or bn,m) ≥ 0, m = 0, 1, 2, . . . , n,
an,m(or bn,m) = 0, m > n,

n∑
m=0

an,m = 1 and

n∑
m=0

bn,m = 1, where n = 0, 1, 2, . . . ,

and let

An,r =

r∑
m=0

an,m and Ān,r =

n∑
m=r

an,m,

Bn,r =

r∑
m=0

bn,m and B̄n,r =

n∑
m=r

bn,m,

so that An,n = Bn,n = 1 = Ān,0 = B̄n,0.
When we superimpose the B-summability on A-summability, we get B ·A

means of {sk(f ;x)} defined by (see [1, 4])

tB·An (f ;x) =

n∑
m=0

bn,m

(
m∑
k=0

am,ksk(f ;x)

)

=

n∑
m=0

m∑
k=0

bn,mam,ksk(f ;x), n = 0, 1, 2, . . . . (2)

We write (B ·A)n(t) as

(B ·A)n(t) =
1

2π

n∑
m=0

m∑
k=0

bn,mam,k
sin (k + 1/2)t

sin (t/2)
,

and we also write

φ(t) ≡ φ(x, t) := f(x+ t) + f(x− t)− 2f(x), x ∈ [0, 2π], t ∈ [0, π].

The Lp norm of f ∈ Lp[0, 2π] is defined by

‖f‖p =

{ (
1
2π

∫ 2π
0 |f(x)|pdx

)1/p
, 1 ≤ p <∞,

ess supx∈[0,2π]|f(x)|, p =∞.

The degree of approximation En(f) of a function f ∈ Lp by a trigonometric
polynomial Tn(x) of degree n is given by

En(f) = min
Tn
‖ f(x)− Tn(x) ‖p .

This method of approximation is called the trigonometric Fourier approxi-
mation.
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Lenski and Szal [3] defined the generalized modulus of continuity of f in
Lp by

ωβf(δ)Lp = sup
0≤|t|≤δ

{∣∣∣∣sin t

2

∣∣∣∣βp ∫ 2π

0
|φ(t)|pdx

}1/p

, β ≥ 0,

and a subclass Lp(ω)β of Lp-class as

Lp(ω)β = {f ∈ Lp : ωβf(δ)Lp ≤ ω(δ)},
where ω is a function of modulus of continuity type on [0, 2π], i.e., ω is a
nondecreasing continuous function having the properties

ω(0) = 0, ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2), 0 ≤ δ1 ≤ δ2 ≤ δ1 + δ2 ≤ 2π.

We write K1 � K2 if there exists a positive constant C (it may depend
on some parameters) such that K1 ≤ CK2.

2. Known results

The product summability means of Fourier series have been considered
in various directions, for example, Mittal [5, Theorem 1] has estimated the
deviation tB·An (f ; .)− f(.) pointwise with lower triangular infinite matrix B
defined by

bn,m =

{
1

n+1 , 0 ≤ m ≤ n,
0, m > n.

This matrix corresponds to the Cesàro summability of order 1 and is denoted
by C1. He also discussed the (F1)-effectiveness of C1 ·A method. Lenski and
Szal [4, Theorem 2] have extended the results of Mittal [5] to more general
means B ·A, and proved their results in terms of moduli of continuity. They
proved the following result:∣∣tB·An f(x)− f(x)

∣∣� n∑
m=0

bn,m

[
1

m+ 1

m∑
k=0

ωxf

(
π

k + 1

)]
for every natural number n and all real x, where

ωxf(δ) = sup
0≤t≤δ

∣∣∣∣1t
∫ t

0
φ(x, u)du

∣∣∣∣ ,
known as the integral modulus of continuity of f .

Lenski and Szal [3] defined the class Lp(ω)β and proved their results by
using the sequences αn = (an,k)

n
k=0 of rest bounded variation (RBV S) or

head bounded variation (HBV S). They estimated the pointwise deviation
as follows (see [3, Theorem 3]):

|Tn,Af(x)− f(x)| = Ox

(
(n+ 1)

β+ 1
p
+1
an ω

(
π

n+ 1

))
,
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where

an =

{
an,0 if {an,k} ∈ RBV S,
an,n if {an,k} ∈ HBV S.

Recently, Krasniqi [2, Theorem 10] used the lower triangular infinite matrix
A ≡ (an,k) with an,m ≤

∑n
k=m | 4 an,k|, and proved his result in the same

class Lp(ω)β as follows:

|Tn,Af(x)− f(x)| = Ox

(
(n+ 1)

β+ 1
p
+1

n∑
k=0

|∆an,k| ω
(

π

n+ 1

))
.

Clearly, in these results, the error of approximation depends on p. Fur-
ther, very recently, Singh and Srivastava [6, Theorem 2.2] obtained the de-
gree of approximation of functions belonging to weighted Lipschitz class
W (Lp, ξ(t), β) by C1 ·A means of its Fourier series; their result is given as

‖tC1·A
n (f ;x)− f(x)‖p = O((n+ 1)βω(1/(n+ 1))),

where ω(t) is a positive increasing function. We note that deviation in this
result is free from p.

3. Main results

In this paper, we extend the results of Krasniqi [2] to the product means
defined in (2). More precisely, we prove the following theorem.

Theorem 3.1. Let f ∈ Lp(ω)β with 0 < β < 1 − 1/p, p > 1, and the
entries of the lower triangular matrices A ≡ (an,k) and B ≡ (bn,k) satisfy
the conditions

bn,n �
1

n+ 1
, n ∈ N0, (3)

|bn,mam,0 − bn,m+1am+1,1| �
bn,m

(m+ 1)2
, 0 ≤ m ≤ n− 1, (4)

and
m−1∑
k=0

|(bn,mam,m−k − bn,m+1am+1,m+1−k)

−(bn,mam,m−k−1 − bn,m+1am+1,m−k)|

� bn,m
(m+ 1)2

, 0 ≤ m ≤ n− 1,

(5)

with An,n = Bn,n = 1 for n = 0, 1, 2, . . . . Then the degree of approximation
of f by B ·A means of its Fourier series is given by∣∣tB·An (f ;x)− f(x)

∣∣ = Ox

(
n∑

m=0

bn,m
m+ 1

(n+ 1)β+1ω(1/(n+ 1))

)
,
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provided that the positive nondecreasing function ω satisfies the conditions

ω(t)/t is a decreasing function, (6){∫ π/(n+1)

0

(
|φ(t)| sinβ(t/2)

ω(t)

)p
dt

}1/p

= Ox

(
(n+ 1)−1/p

)
, (7)

{∫ π

π/(n+1)

(
t−γ
|φ(t)| sinβ(t/2)

ω(t)

)p
dt

}1/p

= Ox

(
(n+ 1)γ−1/p

)
, (8)

where γ is an arbitrary number such that 1/p < γ < β+1/p, p−1 +q−1 = 1.

Note 3.2. The condition (6) implies that

ω(π/(n+ 1))

π/(n+ 1)
≤ ω(1/(n+ 1))

1/(n+ 1)
, i.e., ω

(
π

n+ 1

)
= O

(
ω

(
1

n+ 1

))
.

In the proof of above theorem given in Section 5 we use Hölder’s inequality
for p > 1. Therefore, the proof is not applicable for p = 1. Moreover, for
p = 1, the number β becomes negative. Thus, for p = 1, we have the
following theorem.

Theorem 3.3. Let f ∈ L1(ω)β with 0 < β < 1 and the entries of the
lower triangular matrices A and B satisfy the conditions (3)−(5) with An,n =
Bn,n = 1 for n = 0, 1, 2, . . . . Then the degree of approximation of f by B ·A
means of its Fourier series is given by∣∣tB·An (f ;x)− f(x)

∣∣ = Ox

(
n∑

m=0

bn,m
m+ 1

(n+ 1)β+1ω(1/(n+ 1))

)
,

provided that the positive nondecreasing function ω satisfies (6) and the con-
ditions

ω(t)/tβ is a non-decreasing function, (9)∫ π/(n+1)

0

|φ(t)| sinβ(t/2)

ω(t)
dt = Ox

(
(n+ 1)−1

)
, (10)∫ π

π/(n+1)
t−γ
|φ(t)|
ω(t)

dt = Ox
(
(n+ 1)γ−1

)
, (11)

where γ is an arbitrary number such that 1 < γ < β + 1 and p−1 + q−1 = 1.

4. Lemmas

We need the following lemmas for proving our theorems.

Lemma 4.1 (see [4]). If the conditions (4) and (5) hold, then

|bn,rar,r−l − bn,r+1ar+1,r+1−l| �
bn,r

(r + 1)2
, 0 ≤ l ≤ r − 1 ≤ n− 2.
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For the proof, we refer to [4, Lemma 3.2].

Lemma 4.2. If the matrices A and B satisfy the conditions of Theorem
3.1, then

|(B ·A)n(t)| = O (n+ 1) , 0 < t ≤ π/(n+ 1).

Proof. Since 1/sin(t/2) = O (π/t) and 0 ≤ sin(nt) ≤ nt, for 0 < t ≤
π/(n+ 1), we have

|(B ·A)n(t)| =

∣∣∣∣∣ 1

2π

n∑
m=0

m∑
k=0

bn,mam,k
sin (k + 1/2)t

sin(t/2)

∣∣∣∣∣
≤ 1

2π

n∑
m=0

m∑
k=0

bn,mam,k

∣∣∣∣sin (k + 1/2)t

sin(t/2)

∣∣∣∣
= O

(
n∑

m=0

m∑
k=0

bn,mam,k
(k + 1)t

t

)

= O

(
(n+ 1)

n∑
m=0

bn,m

(
m∑
k=0

am,k

))

= O

(
(n+ 1)

n∑
m=0

bn,mAm,m

)
= O ((n+ 1)Bn,n) = O(n+ 1),

because An,n = Bn,n = 1. �

Lemma 4.3. If the matrices A and B satisfy the conditions of Theorem
3.1, then

|(B ·A)n(t)| = O

(
1

t2

(
n∑

m=0

bn,m
m+ 1

+
1

n+ 1

))
, π/(n+ 1) < t ≤ π.

Proof. Since 1/sin(t/2) = O (π/t) for π/(n+ 1) < t ≤ π, we have

|(B ·A)n(t)| =

∣∣∣∣∣ 1

2π

n∑
m=0

m∑
k=0

bn,mam,k
sin (k + 1/2)t

sin(t/2)

∣∣∣∣∣
= O

(
1

t

) ∣∣∣∣∣
n∑

m=0

m∑
k=0

bn,mam,k sin (k + 1/2)t

∣∣∣∣∣ .
Now, using Abel’s transformation after changing the order of summation,
we have
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n∑

m=0

m∑
k=0

bn,mam,k sin(k + 1/2)t

∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=0

m∑
k=0

bn,mam,m−k sin (m− k + 1/2)t

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=0

[
n−1∑
m=k

(bn,mam,m−k − bn,m+1am+1,m+1−k)
k∑

l=m

sin (l − k + 1/2)t

+bn,nan,n−k

n∑
l=k

sin (l − k + 1/2)t

]∣∣∣∣∣
= O

(
1

t

)(n−1∑
m=0

[
m∑
k=0

|bn,mam,m−k − bn,m+1am+1,m+1−k|

]

+

n∑
k=0

bn,nan,n−k

)

= O

(
1

t

)[n−1∑
m=0

m−1∑
k=0

|bn,mam,m−k − bn,m+1am+1,m+1−k|+ bn,n

+

n−1∑
m=0

|bn,mam,0 − bn,m+1am+1,1|

]

= O

(
1

t

)[n−1∑
m=0

m.
bn,m

(m+ 1)2
+ bn,n +

n−1∑
m=0

bn,m
(m+ 1)2

]

= O

(
1

t

)[ n∑
m=0

bn,m
(m+ 1)

+
1

(n+ 1)

]
,

in view of Lemma 4.1, conditions (3) and (4), and An,n = 1.
Hence

|(B ·A)n(t)| = O

(
1

t2

(
n∑

m=0

bn,m
m+ 1

+
1

n+ 1

))
.

�

5. Proofs of main results

Proof of Theorem 3.1. By using the integral representation of sk(f ;x),
we have

sk(f ;x)− f(x) =
1

2π

∫ π

0
φ(t)

sin (k + 1/2)t

sin(t/2)
dt.
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From (2), we get

tB·An (f ;x)− f(x) =
n∑

m=0

m∑
k=0

bn,mam,k(sk(f ;x)− f(x))

=
n∑

m=0

m∑
k=0

bn,mam,k

(
1

2π

∫ π

0
φ(t)

sin (k + 1/2)t

sin(t/2)
dt

)

=
1

2π

∫ π

0
φ(t)

n∑
m=0

m∑
k=0

bn,mam,k
sin (k + 1/2)t

sin(t/2)
dt

=

∫ π

0
φ(t)(B ·A)n(t)dt

=

∫ π/(n+1)

0
φ(t)(B ·A)n(t)dt+

∫ π

π/(n+1)
φ(t)(B ·A)n(t)dt

= I1 + I2. (12)

Now, using Lemma 4.2, the equality 1/sin(t/2) = O (π/t) for 0 < t ≤ π/(n+
1), and Hölder’s inequality, we have

|I1| ≤
∫ π/(n+1)

0
|φ(t)(B ·A)n(t)| dt = lim

ε→0

∫ π/(n+1)

ε
|φ(t)||(B ·A)n(t)|dt

= O

(
lim
ε→0

∫ π/(n+1)

ε

|φ(t)| sinβ(t/2)

ω(t)
.
(n+ 1)ω(t)

sinβ(t/2)
dt

)

= O

(n+ 1)

{∫ π/(n+1)

0

(
|φ(t)| sinβ(t/2)

ω(t)

)p
dt

}1/p

×
{

lim
ε→0

∫ π/(n+1)

ε

(
ω(t)

sinβ(t/2)

)q
dt

}1/q
]

= Ox

(n+ 1)1−1/pω(π/(n+ 1))

{
lim
ε→0

∫ π/(n+1)

ε
t−qβdt

}1/q


= Ox

[
(n+ 1)1−1/pω(π/(n+ 1))(n+ 1)β−1/q

]
= Ox

(
ω(π/(n+ 1))(n+ 1)β+1−1/p−1/q

)
= Ox

(
ω(π/(n+ 1))(n+ 1)β

)
,

in view of condition (7), mean value theorem for integrals, 0 < β < 1− 1/p,
and p−1 + q−1 = 1.
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Again, by Lemma 4.3, the equality 1/sin(t/2) = O (π/t) for π/(n + 1) <
t ≤ π, and Hölder’s inequality, we have

|I2| ≤
∫ π

π/(n+1)
|φ(t)(B ·A)n(t)| dt

=

∫ π

π/(n+1)

|φ(t)|
t2(n+ 1)

dt+

∫ π

π/(n+1)

|φ(t)|
t2

n−1∑
m=0

bn,m
(m+ 1)

dt

= I21 + I22.

Here

I21 = O

[∫ π

π/(n+1)

|φ(t)|
t2(n+ 1)

dt

]

= O

[
(n+ 1)−1

∫ π

π/(n+1)

t−γ |φ(t)| sinβ(t/2)

ω(t)
.

ω(t)

t−γ+2 sinβ(t/2)
dt

]

= O

(n+ 1)−1

{∫ π

π/(n+1)

(
t−γ |φ(t)| sinβ(t/2)

ω(t)

)p
dt

}1/p

×

{∫ π

π/(n+1)

(
ω(t)

t−γ+2 sinβ(t/2)

)q
dt

}1/q


= Ox

(n+ 1)γ−1/p−1

{∫ π

π/(n+1)

(
ω(t)

t
t−(−γ+β+1)

)q
dt

}1/q


= Ox

(n+1)γ−1/p−1ω(π/(n+1))(n+1)

{∫ π

π/(n+1)
t−q(−γ+β+1)dt

}1/q


= Ox

[
(n+ 1)γ−1/pω(π/(n+ 1))(n+ 1)−γ+β+1−1/q

]
= Ox

(
ω(π/(n+ 1))(n+ 1)β

)
,

and, similarly,

I22 = O

 n∑
m=0

bn,m
(m+ 1)

{∫ π

π/(n+1)

(
t−γ |φ(t)| sinβ(t/2)

ω(t)

)p
dt

}1/p

×

{∫ π

π/(n+1)

(
ω(t)

t−γ+2 sinβ(t/2)

)q
dt

}1/q

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= Ox

 n∑
m=0

bn,m
(m+ 1)

(n+ 1)γ−1/p

{∫ π

π/(n+1)

(
ω(t)

t
t−(−γ+β+1)

)q
dt

}1/q


= Ox

[
n∑

m=0

bn,m
(m+ 1)

(n+ 1)γ−1/pω(π/(n+1))(n+1)(n+1)−γ+β+1−1/q

]

= Ox

(
n∑

m=0

bn,m
(m+ 1)

ω(π/(n+ 1))(n+ 1)β+1

)
,

in view of conditions (6) and (8), mean value theorem for integrals, 1/p <
γ < β + 1/p, and p−1 + q−1 = 1.

Further, we have

(n+ 1)βω(π/(n+ 1)) +
∑n

m=0
bn,m
m+1(n+ 1)β+1ω(π/(n+ 1)

= ω(π/(n+ 1))(n+ 1)β

[
1 +

n∑
m=0

bn,m
m+ 1

(n+ 1)

]
≥ 2ω(π/(n+ 1))(n+ 1)β,

thus

(n+ 1)βω(π/(n+ 1)) = O

(
n∑

m=0

bn,m
m+ 1

(n+ 1)β+1ω(π/(n+ 1)

)
. (13)

Finally, from (12)–(13) we get

|tB·An (f ;x)− f(x)| = Ox

(
n∑

m=0

bn,m
m+ 1

(n+ 1)β+1ω(1/(n+ 1))

)
,

in view of Note 3.2. This completes the proof of Theorem 3.1.

Proof of Theorem 3.3. Following the proof of Theorem 3.1, by Hölder’s
inequality for p = 1, q =∞, we have

|I1| = O

[
(n+ 1)

∫ π/(n+1)

0

|φ(t)| sinβ(t/2)

ω(t)
dt

× ess sup
0<t≤π/(n+1)

∣∣∣∣ ω(t)

sinβ(t/2)

∣∣∣∣
]

= Ox

[
(n+ 1)(n+ 1)−1 ess sup

0<t≤π/(n+1)

∣∣∣∣ω(t)

tβ

∣∣∣∣
]

= Ox

(
ω(π/(n+ 1))(n+ 1)β

)
, (14)

in view of conditions (9) and (10).
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Similarly,

I21 = O

[
(n+ 1)−1

∫ π

π/(n+1)

t−γ |φ(t)| sinβ(t/2)

ω(t)
dt

× ess sup
π/(n+1)<t≤π

∣∣∣∣ ω(t)

t−γ+2 sinβ(t/2)

∣∣∣∣
]

= Ox

[
(n+ 1)γ−1−1ω

(
π

n+ 1

)(
(n+ 1)2+β−γ

π2+β−γ

)]
= Ox

(
ω(π/(n+ 1))(n+ 1)β

)
, (15)

and

I22 = O

[
n∑

m=0

bn,m
(m+ 1)

∫ π

π/(n+1)

t−γ |φ(t)| sinβ(t/2)

ω(t)
dt

× ess sup
π/(n+1)<t≤π

∣∣∣∣ ω(t)

t−γ+2 sinβ(t/2)

∣∣∣∣
]

= Ox

[
n∑

m=0

bn,m
(m+ 1)

(n+ 1)γ−1ω

(
π

n+ 1

)(
(n+ 1)2+β−γ

π2+β−γ

)]

= Ox

(
n∑

m=0

bn,m
(m+ 1)

ω(π/(n+ 1))(n+ 1)β+1

)
, (16)

in view of the decreasing nature of ω(t)/tβ+2−γ , and condition (11).
Using (14)–(16), we get∣∣tB·An (f ;x)− f(x)

∣∣ = Ox

(
n∑

m=0

bn,m
m+ 1

(n+ 1)β+1ω(1/(n+ 1))

)
,

in view of Note 3.2. This completes the proof of Theorem 3.3.

Acknowledgements

The authors express their sincere gratitude to the reviewers for their valu-
able suggestions for improving the paper. This research is supported by
the Council of Scientific and Industrial Research (CSIR), New Delhi, India
(Award No. 09/143(0821)/2012-EMR-I) in the form of fellowship to the
second author.

References

[1] X. Z. Krasniqi, On the degree of approximation of continuous functions that pertains
to the sequence-to-sequence transformation, Aust. J. Math. Anal. Appl. 7(2) (2010),
Art. 13, 10 pp.



34 UADAY SINGH AND SOSHAL

[2] X. Z. Krasniqi, Slight extensions of some theorems on the rate of pointwise approxi-
mation of functions from some subclasses of Lp, Acta Comment. Univ. Tartu. Math.
17 (2013), 89–101.

[3] W. Lenski and B. Szal, Approximation of functions belonging to the class Lp(ω)β by
linear operators, Acta Comment. Univ. Tartu. Math. 13 (2009), 11–24.

[4] W. Lenski and B. Szal, Approximation of integrable functions by general linear oper-
ators of their Fourier series, Acta Math. Sin. (Engl. Ser.) 28 (2012), 1119–1134.

[5] M. L. Mittal, A sufficient condition for (F1)-effectiveness of the C1T -method, J. Math.
Anal. Appl. 220 (1998), 434–450.

[6] U. Singh and S. K. Srivastava, Trigonometric approximation of functions belonging to
certain Lipschitz classes by C1 · T operator, Asian-Eur. J. Math. 7(4) (2014), 1–13.

[7] A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, 2002.

Department of Mathematics, Indian Institute of Technology Roorkee, Roor-
kee, Uttarakhand 247667, India

E-mail address: usingh2280@yahoo.co.in
E-mail address: sainisoshal25@gmail.com




