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Fixed points of α− ψ multivalued contractive
mappings in cone metric spaces

Amit Kumar Laha and Mantu Saha

Abstract. Some results on fixed points of α−ψ multivalued mappings
of different contractive nature over a cone metric space with a normal
constant equal to 1 have been established.

1. Introduction

Starting from the fundamental results of fixed point theory, namely
the Banach contraction principle, many results on fixed points of mappings
with their applications in different branches of mathematics are available in
the current literature. The fixed point of multifunctions is a generalization
of the fixed point of single valued mappings. In some works of non convex
analysis, especially in ordered normed vector spaces, one defined an order by
using a cone in a vector space (see [16]). In the recent past years Huang and
Zhang [6] initiated a new notion of cone metric that generalizes the concept
of the usual metric, by replacing its values (real numbers) with ordered el-
ements in a Banach space. Subsequently many results in this direction can
also be found in [1] – [3], [4], [5], [7], [8], [9] – [11], [15].

Samet et al. [19] introduced a new idea of an α− ψ contractive mapping
and obtained some fixed point theorems in a complete metric space. Then
Karapinar [12] and Karapinar et al. [13], [14] succeeded in showing many
results on fixed points of (α−ψ)-contractive mappings over complete metric
spaces. In 2009 Rezapour and Haghi [17] proved some results on fixed points
of multifunctions over cone metric spaces with a normal constant equal to
1. In this paper we prove some fixed point theorems for a class of α − ψ
multivalued mappings of different contractive characters over a cone metric
space having normal constant equal to 1. Some suitable examples are given
in support of our theorems.
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2. Preliminaries

Let E be a real Banach space. A non-empty subset P of E is said to be
a cone whenever

(i) P is closed and P 6= {0},
(ii) ax+ by ∈ P for all x, y ∈ P and for all real numbers a, b ≥ 0 ,
(iii) P ∩ (−P ) = {0}.
For a given cone P ⊆ E, one can define the partial ordering ≤ with respect

to P by x ≤ y if and only if y − x ∈ P . In addition, a < b stands for a ≤ b
but a 6= b, while a � b stands for b − a ∈ intP , where intP denotes the
interior of P .

A cone P is said to be a normal cone if there exists a real number k > 0
such that for all x, y ∈ E,

0 ≤ x ≤ y ⇒ ‖x‖ ≤ k‖y‖.

The least positive number k satisfying the above condition is called the
normal constant of P . Clearly k ≥ 1.

In the following we always suppose that E is a real Banach space and P
is a cone in E with normal constant k = 1, intP 6= φ and ≤ is the partial
ordering with respect to P .

Definition 2.1 (see [6]). Let X be a non-empty set. Suppose that the
mapping d : X ×X → E satisfies

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x), x, y ∈ X,
(iii) d(x, y) ≤ d(x, z) + d(z, y), x, y, z ∈ X.

Then one says that d is a cone metric on X and (X, d) is a cone metric space.

Example 2.2 (see [6] or [17]). Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0},
X = R and d : X ×X → E defined by d(x, y) = (|x − y|, α|x − y|), where
α ≥ 0 is a constant. Then (X, d) is a cone metric space and the normal
constant of P is k = 1.

Definition 2.3 (see [6]). Let (X, d) be a cone metric space, x ∈ X and
let {xn} be a sequence in X. Then

(A) {xn} converges to x ∈ X ( lim
n→∞

xn = x) whenever for every c ∈ E
with 0 � c there is a natural number N such that d(xn, x) � c for
all n ≥ N ;

(B) {xn} is a Cauchy sequence whenever for every c ∈ E with 0� c there
is a natural number N such that d(xn, xm)� c for all n,m ≥ N ;

(C) (X, d) is a complete cone metric space if every Cauchy sequence in
X is convergent in X.
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Definition 2.4 (see [17]). Let (X, d) be a cone metric space and B ⊂ X.

(1) An element b ∈ B is called an interior point of B whenever there is
0� p such that N(b, p) ⊂ B, where

N(b, p) = {y ∈ X : d(y, b)� p}.
(2) A subset A ⊂ X is called open if each element of A is an interior

point of A.

The family B = {N(x, e) : x ∈ X, 0� e} is a sub-basis for a topology τc,
called cone topology on X. The topology τc is Hausdorff and first countable
(see [17]).

We mainly deal with normal cones having normal constant equal to 1.
But for each integer k > 1, there are cones with normal constant k. Also
there are non-normal cones (see [18]). Before introducing our main results
we first state some known lemmas and give some more definitions.

Lemma 2.5 (see [17]). Let (X, d) be a cone metric space, P be a normal
cone with normal constant 1, and let A be a compact set in (X, τc). Then
for every x ∈ X, there exists a0 ∈ A such that ‖d(x, a0)‖ = inf

a∈A
‖d(x, a)‖.

Lemma 2.6 (see [17]). Let (X, d) be a cone metric space, P be a normal
cone with normal constant 1, and let A,B be two compact sets in (X, τc).
Then sup

x∈B
d′(x,A) <∞, where, d′(x,A) = inf

a∈A
‖d(x, a)‖.

Definition 2.7 (see [17]). Let (X, d) be a cone metric space, P be a
normal cone with normal constant 1, let Hc(X) be the set of all compact
subsets of (X, τc), and A ∈ Hc(X). Define

hA : Hc(X)→ [0,∞) by hA(B) = sup
x∈A

d′(x,B)

and

dH : Hc(X)×Hc(X)→ [0,∞) by dH(A,B) = max{hA(B), hB(A)}.

Remark 2.8 (see [17]). Let (X, d) be a cone metric space with normal
constant equal to 1. Define ρ : X×X → [0,∞) by ρ(x, y) = ‖d(x, y)‖. Then
(X, ρ) is a metric space.

Remark 2.9 (see [17]). For each A,B ∈ Hc(X) and x, y ∈ X, we have the
following relations:

(a) d′(x,A) ≤ ‖d(x, y)‖+ d′(y,A),
(b) d′(x,A) ≤ d′(x,B) + hB(A),
(c) d′(x,A) ≤ ‖d(x, y)‖+ d′(y,B) + hB(A).

Definition 2.10 (see [19]). Let T : X → X be a map and α : X×X → R
be a function. Then T is said to be α-admissible if α(x, y) ≥ 1 implies
α(Tx, Ty) ≥ 1, for all x, y ∈ X. An α-admissible map T is is said to be
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triangular α-admissible if α(x, y) ≥ 1 and α(y, z) ≥ 1 imply α(x, z) ≥ 1 for
all x, y, z ∈ X.

Lemma 2.11 (see [13]). Let T : X → X be a triangular α-admissible
map. Assume that there exists x1 ∈ X such that α(x1, Tx1) ≥ 1. Define a
sequence {xn} ∈ X by xn+1 = Txn. Then we have α(xn, xm) ≥ 1 for all
m,n ∈ N with n < m.

Definition 2.12 (see [12]). Let Ψ be the class of all functions ψ : [0,∞)→
[0,∞) satisfying the following conditions:

(i) ψ is non-decreasing,
(ii) ψ is sub-additive, i.e., ψ(s+ t) ≤ ψ(s) + ψ(t) for all s, t ∈ [0,∞),

(iii) ψ is continuous,
(iv) ψ(t) = 0 if and only if t = 0.

3. Main results

Definition 3.1. Let T : X → Hc(X) be a map and α : Hc(X)×Hc(X)→
R be a function. Then T is said to be Hausdorff α-admissible if α(A,B) ≥ 1
implies α(TA, TB) ≥ 1, for all A,B ∈ Hc(X).

Definition 3.2. A Hausdorff α-admissible map T is said to be a triangular
α-orbital contraction if α(A,B) ≥ 1 and α(B,C) ≥ 1 imply α(A,C) ≥ 1,
for all A,B,C ∈ Hc(X)

Lemma 3.3. Let T : X → Hc(X) be a triangular α-orbital contraction.
Assume that

α(x1, Tx1) ≥ 1 for some x1 ∈ X. (3.1)

Define a sequence {xn} by xn+1 ∈ Txn. Then we have α(xn, xm) ≥ 1 for all
m,n ∈ N with n < m.

Proof. The proof is straightforward. �

Definition 3.4. Let (X, d) be a cone metric space, let α : Hc(X) ×
Hc(X) → R be a function and let ψ ∈ Ψ. A map T : X → Hc(X) is called
an (α− ψ)-Banach type contraction if there is a constant c, 0 < c < 1, such
that

α(x, y)ψ(dH(Tx, Ty)) ≤ cψ(d′(x, y)), x, y ∈ X. (3.2)

Theorem 3.5. Let (X, d) be a complete cone metric space with normal
constant equal to 1, let α : Hc(X)×Hc(X)→ R be a function and let ψ ∈ Ψ.
Assume that T : X → Hc(X) is an (α−ψ)-Banach type triangular α-orbital
contraction such that (3.1) holds. Then T has a fixed point.

Proof. For some x1 ∈ X we have α(x1, Tx1) ≥ 1. Then we can define a
sequence {xn} ⊂ X by xn+1 ∈ Txn for all n ∈ N. If xn0 = xn0+1 for some
n0 ∈ N, then xn0 is a fixed point. So the proof is done in this case.
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Let xn 6= xn+1 for all n ∈ N. Then by Lemma 3.3 we get that α(xn, xn+1) ≥
1 for all n ∈ N. As x1 ∈ X, again by Lemma 2.6, there exists x2 ∈ Tx1 such
that d′(x1, Tx1) = ‖d(x1, x2)‖. In this way, if xn ∈ Txn−1, then there exists
xn+1 ∈ Txn such that d′(xn, Txn) = ‖d(xn, xn+1)‖. Now, since

ψ(‖d(xn, xn+1)‖) = ψ(d′(xn, Txn))

≤ ψ(hTxn−1(Txn)) ≤ ψ(dH(Txn−1, Txn))

≤ α(xn−1, xn)ψ(dH(Txn−1, Txn)), (3.3)

by (3.2) and c < 1 we have

ψ(‖d(xn, xn+1)‖)) ≤ c(ψ(d′(xn−1, xn))) = cψ(‖d(xn−1, xn)‖)
< ψ(‖d(xn−1, xn)‖).

As ψ is non-decreasing we get,

‖d(xn, xn+1)‖<‖d(xn−1, xn)‖.

Thus {‖d(xn, xn+1)‖} is decreasing sequence of real numbers which is also
bounded below. Hence the sequence is convergent to a number r ≥ 0. We
claim that r = 0. Otherwise, if r > 0, then in view of the continuity of ψ
we have that ψ(‖d(xn, xn+1)‖) → ψ(r), as n → ∞. So from (3.3) we see
that ψ(r) ≤ cψ(r), i.e., c ≥ 1, a contradiction. Therefore, r = 0. Hence the
sequence {‖d(xn, xn+1)‖} converges to 0. But

ψ(‖d(xn, xn+1)‖) ≤ c(ψ(‖d(xn−1, xn)‖))
≤ ... ≤ cn−1(ψ(‖d(x1, x2)‖)). (3.4)

Hence

ψ(‖d(xn, xm)‖) ≤ ψ(

n−1∑
i=m

‖d(xi, xi+1)‖)

≤
n−1∑
i=m

ψ(‖d(xi, xi+1)‖)

≤ (cn−2 + ...+ cm−1)ψ(‖d(x1, x2)‖)

≤ cm−1

1− c
ψ(‖d(x1, x2)‖), (3.5)

which shows that

lim
m,n→∞

ψ(‖d(xn, xm)‖) = 0.

Consequently,

lim
m,n→∞

‖d(xn, xm)‖ = 0.
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So {xn} is a Cauchy sequence in X. As X is complete, lim
n→∞

xn = ξ ∈ X. As

α(xn, xm) ≥ 1 for n < m, we see that α(xn, ξ) ≥ 1 for all n. Since

d′(ξ, T ξ) ≤ d′(ξ, Txn) + hTxn(Tξ) ≤ d′(ξ, Txn) + dH(Txn, T ξ),

so

ψ(d′(ξ, T ξ)) ≤ ψ(d′(ξ, Txn)) + ψ(dH(Txn, T ξ))

≤ ψ(d′(ξ, Txn)) + α(xn, ξ)ψ(dH(Txn, T ξ)), (3.6)

which, because of (3.2), gives

ψ(d′(ξ, T ξ)) ≤ ψ(d′(ξ, Txn)) + c(ψ(d′(xn, ξ))).

If n→∞, then ψ(d′(ξ, T ξ)) = 0 implying that d′(ξ, T ξ) = 0. Hence ξ ∈ Tξ
showing that ξ is a fixed point of T . �

Definition 3.6. Let (X, d) be a cone metric space, let α : Hc(X) ×
Hc(X) → R be a function and let ψ ∈ Ψ. A map T : X → Hc(X) is called
an (α − ψ)-Kannan type contraction if there is a constant c, 0 < c < 1/2,
such that

α(x, y)ψ(dH(Tx, Ty)) ≤ cψ(d′(Tx, x) + d′(y, Ty)), x, y ∈ X. (3.7)

Theorem 3.7. Let (X, d) be a complete cone metric space with normal
constant equal to 1. Let α : Hc(X) × Hc(X) → R be a function, ψ ∈ Ψ
and let T : X → Hc(X) be an (α − ψ)-Kannan type triangular α-orbital
contraction. If (3.1) holds, then T has a fixed point.

Proof. For x1 ∈ X we have α(x1, Tx1) ≥ 1. Then we can define a sequence
{xn} ⊂ X by xn+1 ∈ Txn for all n ∈ N. If xn0 = xn0+1 for some n0 ∈ N,
then xn0 is a fixed point and the proof is done. As in the proof of Theorem
3.5, for xn 6= xn+1 (n ∈ N) we determine a sequence {xn} such that (3.3)
holds. Then by (3.7) we have

ψ(‖d(xn, xn+1)‖) ≤ cψ(d′(Txn−1, xn−1) + d′(Txn, xn))

≤ c(ψ(‖d(xn−1, xn)‖) + ψ(‖d(xn+1, xn)‖)),

which shows that

ψ(‖d(xn, xn+1)‖) ≤
c

1− c
ψ(‖d(xn−1, xn)‖) = pψ(‖d(xn−1, xn)‖), (3.8)

where p = c
1−c < 1. So

ψ(‖d(xn, xn+1)‖) < ψ(‖d(xn−1, xn)‖),

and by a similar argument as in Theorem 3.5, using only (3.4) and (3.5) with
p instead of c, we see that the sequence {xn} converges to an element ξ ∈ X
and α(xn, ξ) ≥ 1 for all n.
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To prove that ξ is a fixed point of T , we observe that (3.6) together with
(3.7) gives that

ψ(d′(ξ, T ξ)) ≤ ψ(d′(ξ, Txn)) + c(ψ(d′(Txn, xn) + d′(Tξ, ξ)))

and so

ψ(d′(ξ, T ξ)) ≤ 1

1− c
ψ(d′(ξ, Txn)) +

c

1− c
ψ(d′(Txn, xn)). (3.9)

Thus, as n→∞, we get ψ(d′(ξ, T ξ)) = 0 which implies d′(ξ, T ξ) = 0. Hence
ξ ∈ Tξ, i.e., ξ is a fixed point of T . �

Definition 3.8. Let (X, d) be a cone metric space, let α : Hc(X) ×
Hc(X) → R be a function and let ψ ∈ Ψ. A map T : X → Hc(X) is called
an (α−ψ)-Chatterjea type contraction if there is a constant c, 0 < c < 1/2,
such that

α(x, y)ψ(dH(Tx, Ty)) ≤ cψ(d′(Tx, y) + d′(Ty, x)), x, y ∈ X. (3.10)

Theorem 3.9. Let (X, d) be a complete cone metric space with normal
constant equal to 1. Let α : Hc(X) × Hc(X) → R be a function, ψ ∈ Ψ
and let T : X → Hc(X) be an (α − ψ)-Chatterjea type triangular α-orbital
contraction. If (3.1) is satisfied, then T has a fixed point.

Proof. In the same way as in the proof of Theorem 3.7, in the case xn 6=
xn+1 (n ∈ N) we determine a sequence {xn} such that (3.3) holds. Then by
(3.10) we get that

ψ(‖d(xn, xn+1)‖) ≤ cψ(d′(Txn−1, xn) + d′(Txn, xn−1))

≤ c(ψ(‖d(xn+1, xn−1)‖))
≤ c(ψ(‖d(xn+1, xn)‖+ ‖d(xn, xn−1)‖))
≤ c(ψ(‖d(xn+1, xn)‖) + ψ(‖d(xn, xn−1)‖)).

Thus (3.8) holds and the sequence {xn} converges to an element ξ ∈ X
satisfying α(xn, ξ) ≥ 1 for all n.

To find a fixed point of T , we observe that (3.6) together with (3.10) gives
that

ψ(d′(ξ, T ξ)) ≤ ψ(d′(ξ, Txn)) + c(ψ(d′(Txn, ξ) + d′(Tξ, xn))).

Therefore,

ψ(d′(ξ, T ξ)) ≤ 1 + c

1− c
ψ(d′(ξ, Txn)) +

c

1− c
ψ(d′(xn, ξ)),

which, similarly to (3.9), shows that ξ is a fixed point of T . �

Example 3.10. Let X = [0, 1], E = R2 and P = {(x, y) ∈ E : x, y ≥ 0}.
Define d : X × X → E by d(x, y) = (12 |x − y|,

1
2 |x − y|), x, y ∈ X. Then
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(X, d) is a complete cone metric space with normal constant of P equal to
1. Define T : X → Hc(X) by

T (x) =

{
{0} if x ∈ [0, 12 ];

[0, 12(x− 1
2)2] if x ∈ (12 , 1].

define ψ : [0,∞)→ [0,∞) by ψ(t) = t for all t ∈ [0,∞) and let α : Hc(X)×
Hc(X)→ R be defined by α(A,B) = 1 for all A,B ∈ Hc(X). Clearly all the
conditions of Theorem 3.5 are satisfied by assuming c = 3

4 . Then T has a
fixed point 0.

Example 3.11. Let X = [0, 1], E = R2 and P = {(x, y) ∈ E : x, y ≥ 0}.
Define d : X × X → E by d(x, y) = (|x − y|, 12 |x − y|), x, y ∈ X. Then
(X, d) is a complete cone metric space with normal constant of P equal to
1. Define T : X → Hc(X) by

T (x) =

{
{0} if x ∈ [0, 12 ];

[0, 12(x− 1
2)2] if x ∈ (12 , 1].

define ψ : [0,∞)→ [0,∞) by ψ(t) = t for all t ∈ [0,∞) and let α : Hc(X)×
Hc(X)→ R be defined by α(A,B) = 1 for all A,B ∈ Hc(X). Clearly all the
conditions of Theorem 3.7 are satisfied by assuming c = 0.49. Then T has a
fixed point 0.

Example 3.12. Let X = {a1, a2, a3, ...} be a countable set, E = (l2, ‖.‖2)
and P = {{xn}n≥1 ∈ l2 : xn ≥ 0 for all n ≥ 1}. Let xi = {3in }n≥1 for all

i ≥ 1 and note that xi ∈ l2(i ≥ 1). Define the map d : X ×X → P by

d(ai, aj) = |xi − xj | = {
|3i − 3j |

n
}n≥1.

Then we can easily see that (X, d) is a complete cone metric space with the
normal constant of P is equal to 1. We define the multifunction

T : X → Hc(X)

by Ta1 = {a1} and Tai = {a1, a2, ..., ai−1} for all i > 1. Again we define ψ :
[0,∞)→ [0,∞) by ψ(t) = t for all t ∈ [0,∞) and let α : Hc(X)×Hc(X)→ R
be defined by α(A,B) = 1 for all A,B ∈ Hc(X). Then we see that T is a
triangular α-admissible map satisfying all the conditions of Theorem 3.9 by
assuming c = 1

3 with a fixed point Ta1 = a1.
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