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Nonhomogeneous linear differential polynomials
generated by solutions of complex differential
equations in the unit disc

BENHARRAT BELAIDI

ABSTRACT. We consider the complex oscillation of nonhomogeneous lin-
ear differential polynomials g = Zf:o d; F9+b, where d; (=0,1,...,k)
and b are meromorphic functions of finite [p,q]-order in the unit disc A,
generated by meromorphic solutions of linear differential equations with
meromorphic coefficients of finite [p,q]-order in A.

1. Introduction

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of Nevanlinna’s value distri-
bution theory on the complex plane and in the unit disc A = {z: |z| < 1}
(see [11], [12], [16], [17], [25]).

First, let us recall some notations about the finite iterated order and the
growth index to classify generally meromorphic functions of fast growth in A
as those in C (see [6], [15], [16]). Let us define inductively, for r € (0, +00),
exp;r = €" and exp,, ;7 = exp (expp 7') , p € N. We also define, for all r
sufficiently large in (0, +00), log; r = logr and log, ;7 = log (1ogp 1“) , DE
N. Moreover, we use the notations expyr = r, loggr = r, exp_; r = log; r,
and log_; r =exp; r.

Definition 1.1 (see [8]). The iterated p-order of a meromorphic function

f in A is defined by
. logy T (r, f)
pp(f) = thUplpil (p>1).
r—1- 08 1
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46 BENHARRAT BELAIDI
For an analytic function f in A, we also define

gl M(r,f)
prip (f) = limsup L2200

1 1 (p > 1)'
r—1- 08 1=

Remark 1.1. It follows by M. Tsuji [25] that if f is an analytic function
in A, then p1 (f) < pma (f) < p1(f) + 1. However, by Proposition 2.2.2 in
[16], we have paryp (f) = pp () (p = 2).

Definition 1.2 (see [8]). The growth index of the iterated order of a
meromorphic function f(z) in A is defined by

0, if f is non-admissible,
i(f) = qmin{p; (f) <oo :jeN}, if fis admissible,
+00, if p;j (f) = oo for all j € N.
For an analytic function f in A, we also define
0, if f is non-admissible,
iv (f) = ¢min{pa; (f) < oo :jeN}, if fis admissible,
~+00, if parj (f) = oo for all j € N.

Definition 1.3 (see [7]). Let f be a meromorphic function. Then the
iterated p-convergence exponent of the sequence of zeros of f (z) is defined
by

log;rN (r, %)
Ap (f) = limsup———5—%

1 9
r—1- 08 1=

where N (r, %) is the integrated counting function of zeros of f (z) in {z €

C: |z| < r}. Similarly, the iterated p-convergence exponent of the sequence
of distinct zeros of f (z) is defined by

- log;;N (7", %)
A (f) = limsupl—1
r—1- 0g 1=

)

f
in{zeC: |z| <r}.

where N (r l) is the integrated counting function of distinct zeros of f (2)

Definition 1.4 (see [7]). The growth index of the convergence exponent
of the sequence of the zeros of f(z) in A is defined by

0, if N (7", %) =0 (log ﬁ),
ix(f) = min {\; (f) < oo:je N}, if \j(f) < oo for some j € N,
+00, if \j (f) = oo for all j € N.
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Remark 1.2. Similarly, we can define the growth index i (f) of A,(f).

Definition 1.5 (see [11]). For a € C = CU {cc}, the deficiency of a with
respect to a meromorphic function f in A is defined as

. 1
6 (a, f) = liminfnw =1- limsup]\w
r—1- T (’l“, f) o T (7“, f

provided that f has unbounded characteristic.

Consider the complex differential equation

O+ A () fE D b b A (2) f + Ao (2) f=0 (1.1)
and the k** order nonhomogeneous linear differential polynomial
gr = dif® + d 1 fED - dof + 0, (1.2)

where A; (j=0,1,...,k—1), d; (¢=0,1,...,k), and b are meromorphic
functions in A. Let £ (G) denote a differential subfield of the field M (G)
of meromorphic functions in a domain G C C. If G = A, we simply write £
instead of £ (A). A special case of such a differential subfield is

Lpi1, = {g meromorphic: i1 (g) < p}

where p is a positive constant. In [18], Laine and Rieppo considered value dis-
tribution theory of differential polynomials generated by solutions of linear
differential equations in the complex plane. After that, Cao et al. [7] stud-
ied the complex oscillation of differential polynomial generated meromorphic
solutions of second order linear differential equations with meromorphic co-
efficient in A, and obtained the following result.

Theorem A (see [7]). Let A be an admissible meromorphic function of
finite iterated order p, (A) = p >0 (1 < p < 00) in the unit disc A such that

g™ (1 A)
o = n it )

and let f be a non-zero meromorphic solution of the differential equation
f"+A(z) f=0
such that 6 (oo, f) > 0. Moreover, let

=6 >0,

k
Plf]="Y pifV
=0

be a linear differential polynomial with coefficients p; € Ly41,p, assuming that
at least one of the coefficients p; does not vanish identically. If ¢ € L,11,
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is a mon-zero meromorphic function in A, and neither P[f] nor P[f] — ¢
vanishes identically, then

i(f)=ix(P[fl=¢p)=p+1

and

Ap+1 (Pfl =) = Pp+1 (f) :Pp(A) =p
if p> 1, while

pp (A) <A1 (PIfT—0) < ppr1 (f) < pp(A) +1
ifp=1.

Recently, the author and Latreuch investigated the growth and oscillation
of higher order differential polynomial with meromorphic coefficients in the
unit disc A generated by solutions of equation (1.1). They obtained the
following results.

Theorem B (see [20]). Let A;(z) (i=0,1,...,k—1) be meromorphic
functions in A of finite iterated p-order. Let dj(z) (j =0,1,...,k) be fi-
nite iterated p-order meromorphic functions in A that are not all vanishing
identically such that

0,0 (& S 0 S )
Qo1 a1 e Q1.1
hi = ) . ] . Z0, (1.3)
k-1 Q1k—1 --- Ok—1k-1
where the meromorphic functions o, ; (4,7 =0,...,k—1) in A are defined
by
o o taic1jo1—Aiag-1j-1, ifij=1,... k-1,
Q4 5= a67j_1—A0ak_1’j_1, ’Lfl :0, ] = 1,...,]<:— 1, (1.4)
d; — diAj;, if7=0,1=0,...,k—1.

If f(z) is an infinite iterated p-order meromorphic solution in A of (1.1)
with pp1 (f) = p, then the differential polynomial g, = Z?Z‘def(j) satisfies
pp (9k) = pp (f) =00 and

Pp+1 (gr) = pp+1 (f) = p.

Furthermore, if f is a finite iterated p-order meromorphic solution in A such
that

po(f) > max  {pp(Ai), pp(d;)},

=01,k
then py (gr) = Pp (f)-
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Theorem C (see [20]). Under the hypotheses of Theorem B, let ¢ (z) # 0
be a meromorphic function in A with finite iterated p-order such that

Y2 04170 e Oék_l’()
¢ ] o-e. Qg1
@(kfl) a1 k—1 --- Of—1k—1
Ui (2) = ,
hi (2)

is not a solution of (1.1). If f (z) is an infinite iterated p-order meromorphic
solution in A of (1.1) with pp1 (f) = p, then the differential polynomial

g =Yk _odi f9) satisfies

Ap (g — ) = Xp (gr — @) = pp (f) =00

and

Ap1 (gk = 9) = A1 (g6 — ©) = p.
Furthermore, if f is a finite iterated p-order meromorphic solution in A such
that

Pp (f) > i:Or{lanfl {pp (A’L) y Pp (dj) y Pp (90)} )
§=01, .k

then

Ap (G — @) = Xp (g — ) = pp (f) -

Juneja et al. [13, 14] investigated some properties of entire functions of
[p, ¢]-order, and obtained some results concerning their growth. In 2010, Liu
et al. [22] firstly studied the growth of solutions of equation (1.1) with entire
coefficients of [p, g]-order in the complex plane. After that, many authors
applied the concepts of entire (meromorphic) functions in the complex plane
and analytic functions in the unit disc A = {z € C: |z| < 1} of [p, ¢]-order
to investigate complex differential equations (see [2]-[5], [19], [21], [23], [24],
[26]). In this paper, we use the concept of [p, g]-order to study the growth and
zeros of differential polynomial (1.2) generated by meromorphic solutions of
[p, ¢J-order in the unit disc to equation (1.1).

In the following, we will give similar definitions as in [13, 14] for analytic
and meromorphic functions of [p, g]-order, [p, g]-type and [p, g]-exponent of
convergence of the zero-sequence in the unit disc.

Definition 1.6 (see [2]). Let p > ¢ > 1 be integers, and let f be a
meromorphic function in A. The [p, g]-order of f (z) is defined by
log, T (r, f)

Pip.q (f) = limsup———-.
P, r—1- qu 1%7‘
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For an analytic function f in A, we also define

 logh M(r.f)
patpa) () = imsup— 2L

r—1- logq _r

Remark 1.3. It is easy to see that 0 < py, o (f) < +00 (0 < pagjpq (f) <
+00 ) whenever p > g > 1. By Definition 1.6, we have that pp 1) = p(f)
(paria) = P (f)) and pp1y = p2 () (Par2,1) = parz (f))-

In [23], Tu and Huang extended Proposition 1.1 in [2] with more details,
as follows.

Proposition 1.1 (see [23]). Let f be an analytic function of [p, q|-order
in A. Then the following five statements hold.

(i) Ifp=q=1, then p(f) < pm (f) < p(f) +1.

(i) fp=q=2 and ppq (f) <1, then py g (f)

(iii) If p = ¢ > 2 and ppg (f) > 1, orp > g
PM,[p,q] (f)

(iv) If p > 1 and pppy1) (f) > 1, then D(f) = hmsup1 Iir, ch) = oo; if

r—1-
+ r
(v) If p>1 and pprjpps1) (f) > 1, then Dy (f) = limsuplogg#’f) =
ooy Zf pM,[p,p+1] (f) < 17 then DM (f) =0.

Definition 1.7 (see [19]). Let p > ¢ > 1 be integers. The [p, q]-type of a

meromorphic function f (z) in A of [p, g]-order pp, g (f) (0 < ppp.q (f) <+00)
is defined by

< PM,[p,q] (f) <1
> 1, then Plp,q] (f) =

log;_—l T (7’7 f)

()’
(logq,l 17£r>p[pq]

ur (f) = limsup

r—1-

Definition 1.8 (see [19]). Let p > ¢ > 1 be integers. The [p, g]-exponent
of convergence of the zero-sequence of f (z) in A is defined by

\ () =1 logp N( )
7 = 1msup—.
[p,q] - qul%T

Similarly, the [p, g]-exponent of convergence of the sequence of distinct zeros
of f(z) is defined by

B logz‘)Ir N (r, %)
Aip gl (f) = limsup———=.
lp.a] r—1- lqu 173,’

There exists a natural question: how about the growth and oscillation
of the differential polynomial (1.2) with meromorphic coefficients of finite
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[p, q]-order generated by solutions of equation (1.1) in the unit disc? The
main purpose of this paper is to consider the above question.

2. Main results

Before we state our results, assuming that b and ¢(z) are meromorphic
functions in A with py, 4 (¢) < 0o, we define the functions 9y, (2) by

=0 aio ... Qg1
gOl — bl i1 e Oékfl,l
D (2) =1 — pk—1) A1 - Ok _1k-1
k = )
hi (2)
where hy, # 0 and «a;; (4,5 =0,...,k — 1) are determined, respectively, in

(1.3) and (1.4).
The main results state as follows.

Theorem 2.1. Let A;(z) (i=0,1,...,k —1) be meromorphic functions
in A of finite |p,q|-order. Let d;(z) (j=0,1,...,k) and b be finite [p, ql-
order meromorphic functions in A that are not all vanishing identically such
that hy, 2 0. If f (2) is an infinite [p, q|-order meromorphic solution in A of
(1.1) with pyiq.q (f) = p, then the differential polynomial (1.2) satisfies

Plp.q) (9k) = Plp,q (f) = 00
and
Plpt.q) (9k) = Ppr1,q (f) = p-

Furthermore, if f is a finite [p, q]-order meromorphic solution in A such that

Plp,q] (f) > i:Or{l?.kal {p[p,q] (Al) y Plp,q (dj) » Plp,q (b)} ) (21)

=01,k
then
Plp.q) (9) = Plp.q (f) -

Remark 2.1. In Theorem 2.1, if we do not have the condition hy % 0,
then the conclusions of Theorem 2.1 cannot hold. For example, if we take
di = dpA; (i=0,...,k—1), then hy = 0. It follows that g, = b and
Pip.a) (Gk) = Ppg (b). So, if f(2) is an infinite [p, g|-order meromorphic so-
lution of (1.1), then py, 4 (9r) = Pp.g () < Ppg (f) = oo, and if f is a
finite [p, ¢J-order meromorphic solution of (1.1) such that (2.1) holds, then
Plp.a) (95) = Plp,g) (B) < pipg (f)-



52 BENHARRAT BELAIDI

Theorem 2.2. Under the hypotheses of Theorem 2.1, let ¢ (z) be a mero-
morphic function in A with finite [p, q|-order such that 1y, (2) is not a solu-
tion of (1.1). If f(z) is an infinite [p, q|-order meromorphic solution in A
of (1.1) with py, 41,4 (f) = p, then the differential polynomial (1.2) satisfies

Ap.g) (9 = ) = Ap.g) (96 — ©) = pppg (f) = 00
and
Ap+1,q) (G = ©) = Apt1,q) (9k — ) = Pppr1,q (f) = p.
Furthermore, if f is a finite [p, q]-order meromorphic solution in A such that

Ppa) () > max  {ppg (A), plpg (d5), Plpg) (0)5 Pppg) (9)}, (2:2)
5=0,1,....k
then _

Ap (g — @) = Ap (gk — @) = plp,q (f)-

Remark 2.2. Obviously, Theorems 2.1 and 2.2 are generalizations of
Theorems A, B and C.

From Theorems 2.1 and 2.2, and Lemmas 3.4 and 3.5 below, we easily
obtain the following corollaries.

Corollary 2.1. Let p > g > 1 be integers. Let H be a set of complex
numbers with densa {|z|: z€ H C A} > 0, and let Ao (2),...,Ak—1(2) be
analytic functions in the unit disc A satisfying

1% Plpd) (Ai) < ppp,g (Ao) = p.

Suppose that there exists a real number p satisfying 0 < u < p such that for
any given € (0 < e < p— p) sufficiently small, we have

T (r, A) > exp, {<P ~€)log (1—1||> }

1 .
T (r, A;) < exp, {,ulogq (1—|z|>} (i=1,....,k—1)

as |z| = 17 for z € H. Let d;(z) (j=0,1,...,k) and b be finite [p,q]-
order analytic functions in A that are not all vanishing identically such that

hi Z0. If f # 0 is a solution of (1.1), then the differential polynomial (1.2)
satisfies Plp,q] (9x) = Plp.q] (f) = PM,[p,q) (f) =00 and

Pip.g) (A0) < Pipt1,q (k) = Pppr1q (F) = Paspr1,q ()
< max{pypq(Ai):i=0,1,... . k—1}.

and

Furthermore, if p > q, then
Plp+1.q) (k) = Plpr1g (F) = Parpr1,q (F) = Plp.g (Ao) -
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Corollary 2.2. Letp, q and H be as in Corollary 2.1, and let Ay (2) , ...,
Ag_1 (2) be analytic functions in the unit disc A satisfying

il Ak PM[pd] (Ai) < parp,q) (Ao) = p-

Suppose that there exists a real number u satisfying 0 < p < p such that for
any given £ (0 < e < p — p) sufficiently small, we have

40 ()] 2 expy {<p - &) log, (1—1\>}

and

1 .
|4; (2)] < exppyq {Mlogq <1—z|>} (i=1,....k—1)

as |z| = 17 for z € H. Let d;(z) (j=0,1,...,k) and b be finite [p,q]-
order analytic functions in A that are not all vanishing identically such that
hi Z0. If f #0 is a solution of (1.1), then the differential polynomial (1.2)

satisfies pip g (9k) = Plp,g) (f) = Pr [p,g (f) = 00 and
Plp+1.a) (k) = Pp+1,q (F) = Prfp1,g) () = P fp,g) (Ao) = p-

Corollary 2.3. Under the hypotheses of Corollary 2.1, let ¢ (z) be an
analytic function in A with finite [p, q|-order such that vy, (2) is not a solution
of (1.1). If f # 0 is a solution of (1.1), then the differential polynomial (1.2)
satisfies

Mg (96 = ©) = Ap.g) (95 = ©) = Pppg) (f) = pasfp.g (f) = 0

and
Pipsgl (A0) < Npi1.q (9k — ©) = Npt1,g (9% — ©)
= Plpt1,q (f) = Parpt1,q ()
<max{pypq (45) 15 =0,1,... .k —1}.
Furthermore, if p > q, then
At (9= %) = Apr1.g) (9 =) = Pppr1.q) (F) = Pt pa1g) (F) = Ppp.g (Ao) -

Corollary 2.4. Under the hypotheses of Corollary 2.2, let v (z) be an
analytic function in A with finite [p, q|-order such that vy, (z) is not a solution
of (1.1). If f # 0 is a solution of (1.1), then the differential polynomial (1.2)
satisfies

Mg (9 = ) = Apg) (95 = ©) = Pppg) (f) = pasfp.g (f) = 0

and

X[p+1,q} (9 —¢) = )‘[p-l-l,q] (g — ) = Plp+1,q] (f)
= P pt+1,q (F) = Parp,qg (Ao) = p-
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We now consider the differential equation
f"+AQR) f=0, (2.3)

where A (z) is a meromorphic function of finite [p, g]-order in the unit disc
A. In the following, we will give sufficient conditions on A which satisfied
the results of Theorem 2.1 and Theorem 2.2 without the conditions “hj # 0”
and “i (z) is not a solution of (1.1)”, where k = 2.

Corollary 2.5. Letp > q > 1 be integers, and let A(z) be a meromorphic
function in A with 0 < py, 4 (A) = p < 00 such that & (0o, A) > 0. Let dy, d,
da, b be meromorphic functions in A that are not all vanishing identically
such that

jmax, {P1.a) (d5) s Plp.g ()} < Pppg) (A).

If f # 0 is a meromorphic solution of (2.3) such that § (oo, f) > 0, then
the differential polynomial go = daf" + dif' + dof + b satisfies pppq (92) =
Plp.g) (f) = o0 and

Pip.al (A) < Pipr1,q (92) = Ppt1,q (F) = g pr1,q (F) < ppg (A) + 1.

Furthermore, if p > q, then

Plp+1,q (92) = Pps1,q () = o pr1q (F) = plpg (A) -

Corollary 2.6. Under the hypotheses of Corollary 2.5, suppose that 0 <
Tip,ql(A) < +00, and let p be a meromorphic function in A such that —b # 0
with pp,q () < 0o. If f # 0 is a meromorphic solution of (2.3) such that
d (00, f) > 0, then the differential polynomial go = dof" +di f' +dof +b with
dy # 0 satisfies

X[p,q] (92 - 90) = /\[p,q] (92 - 90) = Plp,q| (f) =

and

P (A) < Api1g (92 — ©) = Api,q (92 — @)
= Plp+1,q| (f) = PM,[p+1,q] (f)
< Pp,g (A) + 1.

Furthermore, if p > q, then

Apt1,g (92— 9) = Api1,g (92— 0) = Pppr1.q) () = Pasprrg (F) = pppg (A) -
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3. Auxiliary lemmas

Lemma 3.1 (see [3]). Let p > q > 1 be integers, and let f be a meromor-
phic function of [p,q] —order in A. Then py, o (f') = pip.q (f)-

Lemma 3.2 (see [3]). Let p > q > 1 be integers, and let f and g be
non-constant meromorphic functions of [p, q|-order in A. Then
Pipgl (f +9) <max {ppqa (f) g (9)}
and
Pipg (F9) < max {ppq (f) s Pp.q (9)} -
Furthermore, if ppp.q (f) > ppp.q (9), then

Pipal (f +9) = Pp.g (f9) = ppp.g (f) -

By using similar proof of Lemma 2.6 in [3] or Lemma 2.6 in [19], we easily
obtain the following lemma.

Lemma 3.3 (see [3], [19]). Let p > q > 1 be integers. Let A; (i =0,...,
k—1) and F # 0 be meromorphic functions in A, and let f (z) be a solution
of the differential equation

F® 4+ A () D AR+ A () f=F
satisfying

_max {pp g (i), pppg (F)} < plpg (f) = p < +oc.

Then B
)\[IMI} (f) = A[P,Q] (f) = Plp,q (f)

and
Apt1,q) (F) = Api1,g (F) = Pppsrg () -

Lemma 3.4 (see [4]). Let p > q > 1 be integers. Let H be a set of complex
numbers satisfying densa {|z|: z € H C A} >0, and let Ay (%), ..., Ak—1 (2)
be analytic functions in the unit disc A satisfying

max{p[pg] (A):i=1,....k—1} < Plp,q] (Ag) = p.

Suppose that there exists a real number p satisfying 0 < p < p such that for
any given £ (0 < e < p— p) sufficiently small, we have

T (r, Ag) > exp, {<P ) logg (1—1|Z|> }

and

1 .
T (r, A;) < exp, {,ulogq (1—|z|>} (i=1,....,k—1)
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as |z| — 17 for z € H. Then every solution f # 0 of (1.1) satisfies
Pip.a) (f) = P jpq (f) = 00 and

Pipa (A0) < Ppirg (F) = P pprrg (f) < max  parfpg) (As).

Furthermore, if p > q, then
Pipt1,q (F) = Pt fpr1.q () = plpg (Ao) -

Lemma 3.5 (see [3]). Let p > q > 1 be integers. Let H be a set of complex
numbers with densa {|z|: z € H C A} > 0, and let Ao (2),...,Ak—1(2) be
analytic functions in the unit disc A satisfying

max{par g (Ai): i =1,....k =1} < parfp g (Ao) = p.

Suppose that there exists a real number p satisfying 0 < p < p such that for
any given £ (0 < e < p — p) sufficiently small, we have

Ao (2)] > exp, {(p —¢)log, (1_120 }

and

1 .
|AZ (Z)| < CXPp+1 {Mlogq <1—Z|)} (7’ = 1a s k— 1)
as |z| = 17 for z € H. Then every solution f # 0 of (1.1) satisfies
Pl (f) = Parjp.q (f) = oo and
Plp+1,q] (f) = PM,[p+1,q] (f) = PM,[p,q] (AO) =p-

Lemma 3.6 (see [11], [12], [25]). Let f be a meromorphic function in the
unit disc and let k € N. Then

m(r,f;k)> =S(rf),

where
1
S(r,f)=0 <10g+T(T, f) +log (H))
possibly outside a set By C [0,1) with fEl % < 00.

Lemma 3.7 (see [2]). Let p > q > 1 be integers. Let f be a meromorphic
function in the unit disc A such that py, g (f) = p < 00, and let k > 1 be an
integer. Then for any e > 0,

) ool ()

holds for all v outside a set Ea C [0,1) with [, 4 < oo,
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Lemma 3.8 (see [1], [12]). Let g: (0,1) - R and h: (0,1) — R be
monotone increasing functions such that g (r) < h(r) holds outside of an
exceptional set B3 C [0,1) for which [p, 4 < co. Then there exists a
constant d € (0,1) such that if s(r) =1—d(1—7r), then g(r) < h(s(r))
for allr €]0,1).

Lemma 3.9 (see [10], Corollary 2.5). Suppose that 0 < p<r <t < R <
oo and the path I' =T'(6y, p,t) is given by the segment

[: z=7e%, p<r<t< i(fﬂr—i—R),
followed by the circle
Ty: z=te?, 6, <0 <6+ 2.
We suppose that [ is a meromorphic solution of the equation
FB + a1 (2) fE D+ tar (2) f + a0 (2) f =0,

where the coefficients ag (2) ,a1 (2) ,...,ax—1 (2) are meromorphic in the disc
|z| < R. We also define

C=C(ap,p,m,R) = (k+2)exp

k—1 k—1
20R R
S T ) n 1 — )
e e (S e ()
where py, is the multiplicity of the pole of a,, at the origin if a, (0) = oo, and
pn =0 otherwise. If 6 = (o0, f) >0 and 0 <e <9, then

T(r,f) < <51> (2r+1)RC, r(e)<r<R.

Lemma 3.10. Let p > q > 1 be integers, and let A(z) be a meromorphic
function with 0 < py, 4 (A) = p < 0o such that § (00, A) > 0. If f #0 is a
meromorphic solution of

fP AR f=0 (3.1)
such that & (oo, f) > 0, then pp,q (f) = oo and
Plpg) (A) < Pppr1,g) (F) = Parpi1,g) (f) < pppg (A) + 1.
Furthermore, if p > q, then
Pip+1,q (F) = Prapr1,q) (F) = Plpg) (A) -

Proof. First, we prove that py, , (f) = oo. We suppose that py, 4 (f) =
[ < 400 and then we obtain a contradiction. It follows from the definition
of deficiency (see Theorem A) ¢ (o0, A) that, for r — 17, we have

m(r,A) > gT (r,A).
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So, when 7 — 17, we get by (3.1) and Lemma 3.7 that

T (r, A) < %m (r,4) = gm <T’ f;k)> -0 <eXp”‘1 {mogq <1i7“> }>

holds for all 7 outside a set Ep C [0,1) with [ 4 < oco. Therefore, by

Lemma 3.8 we obtain pp,_; 4 (A) < co which is a contradiction since A is a
meromorphic function with py, ;1 (A) = p > 0. Hence py, 4 (f) = 0.
Now, we prove that

Pp.g) (A) < ppy1g (F) < ppg (A) +1
and

Pp+1.q () = parpr1,q () = ppg (4)
if p > gq. Since py, 4 (f) = o0, by (3.1) and Lemma 3.6 it follows from the
definition of deficiency that, for r — 17, we have

f

o) <1og+ T (r, f) + log (1;)) .

By Lemma 3.8, there exists a constant d € (0,1) such that if s(r) = 1 —
d(1—r), then

1
< TT(1—-d(1—- -
T(r,A)_O(log T(1—d( T)’f)—HOg(d(l—r)))
for r — 17. Hence, by the definition of [p, g]-order,

. 10g+ 1 r (Ta f)
Plp+1,q] (f) =1lim Super—l > Pl (A) = p.
r—17 08¢ T
On the other hand, if § (oo, f) > 0, then by Lemma 3.9, for any fixed e,
0<e<dr=6(c0,f),and ri(e) <r <t<R:=1r <1,

0.0 < (50

1 — €&

(k)
T(r,A) < %m (r,A) = %m (r, fk)

> (27 + 1) RC (3.2)

holds on the path I' = T'(6y, p,t) chosen in accordance with Lemma 3.9,
where

2
C = (k+2)exp [ﬁT (R, A) + po log <f)] ,

po is the multiplicity of the pole of A at the origin if A(0) = oo, and pg =0
otherwise. By (3.2), we immediately get that

Pip+1,q (F) = Pt pr1,q (F) < pppg (A) +1
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and

Pp+1.q () = parpr1,q () < ppg (A)
if p > q. Therefore,

Pip.g) (A) < Ppr1.q (F) = Prrfprrg (F) < ppg (A) +1

and

Plp+1,q] (f) = PM,[p+1,q) (f) = Plp,q] (A)
if p>q. (]

Remark 3.1. Lemma 3.10 was proved for ¢ = 1 by Cao et al. [9].

Lemma 3.11 (see [19]). Let p > q > 1 be integers, and let f and g be
meromorphic functions of [p, q]-order in A such that 0 < p, 1 (f) ; ppp.g (9) <
00 and 0 < 7.4 (f) , Tip,q (9) < 00. The following statements hold.

1) If pp,g (f) > pp.q (9), then
Tog) (f +9) = Tpq) (£9) = Tp.q) (F) -
(ii) If Plp,q] ( ) = Plp,q] (g) and Tp,q] (f) 7& Tlp,q (9)7 then

Plp,q] (f + g) = Plp,q] (fg) = Plp,q] (f) = Plp,q] (g) :

4. Proofs of main results

Proof of Theorem 2.1. Suppose that f is an infinite [p, ¢]-order meromor-
phic solution of (1.1). By (1.1) we have

k—1
) = _ZAif(i) (4.1)
i=0
which implies
k—1 '
g —b=dif® + diy fEV o pdof =D (di — drA) fO. (4.2)
i=0

We can rewrite (4.2) as

k-1
ge—b=> aiof, (4.3)
i=0
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where «; is defined in (1.4). Differentiating both sides of equation (4.3)
and using (4.1), we obtain

k—1 k—1 k—1 k
g;ﬁ . b/ _ Z O[;’Of(l) + Zai,of(erl) — Z a;,Of(Z) + Z ai—l,Of(Z)
=0 i=0 i=0 =1

k-1 k-1
= apof + Z Ol;,of(i) + Z ai_10fY + Oék—1,0f(k)
i—1 i1

(4.4)
k-1 k-l k-l ‘
=apof +)_aiofV+ Y aiiofP =) ak10Aif?
i=1 i=1 =0
k-1 ‘
= (afo — an-1040) f + > _ (g + 10— ar-104) f1.
i=1
We can rewrite (4.4) as
k—1
g, — b = Zai,lf(z), (4.5)
=0
where
;= a£i70 + Qi—1,0 — ak—l,OA’b le = 17 ceey k — 17 (46)
a0 — Aok—1,0, if i = 0.

Differentiating both sides of equation (4.5) and using (4.1), we obtain

k-1 k-1 k-1 k
PRI >TSSV ARG St
=0 i=0 i=0 =1

k-1 k-1
=ap,f+ Z(X;Jf(i) + Zai—l,lf(i) + g1 f®

i=1 i=1

(4.7)
k—1 k-l k-l '
=ap,f + ZO&;,J(” + Zai—mfm - ZAiOék—l,lf(l)
i=1 i=1 i=0
k—1 '
= (b1 — ar-1140) f + Z (a1 + @i11 — Agag_r1) f9O.
i=1
This implies
k—1 ‘
gg - b// = Zaijgf(l), (4.8)
i=0
where
- 04271 + 11 — Aiak71,17 1f7, =1,...,k—1, (4'9)
04071 - AOO{k_Ll, lf 1 = O



NONHOMOGENEOUS LINEAR DIFFERENTIAL POLYNOMIALS 61

By using the same method as above we can easily deduce that

k—1
19 =St j=0n ko1 )
=0

where the coefficients a; ; are determined by (1.4). By (4.3) - (4.10) we obtain
the system of equations

gk —b=agof +aiof + - +ag10f*Y,
gy —bV =ap1f+aiif +- +oap_ fE,
g =V = aoaf +araf -+ apoofEY,
R R X
g,i ) kD) — aop—1f + a1 g1 f + -+ apog o fET.
By Cramer’s rule, since hy # 0, we have

gk —b Qo ... Qg1
/ /
9 — b a1 Ok—1,1

k=1) (ke
91& ) plk-) Q1 k-1 - Q1 k-1

f= I

Then
f=Colge=b)+Ci (g =)+ + o (g0 = 0) | (a11)

where C; are finite [p, gJ-order meromorphic functions in A depending on
«; j, where «; ; are defined in (1.4).

If pp.q (9r) < 400, then by (4.11), and Lemmas 3.1 and 3.2, we obtain
Plp,q (f) < +o0, and this is a contradiction. Hence py, 1 (gr) = plp,q (f) =
+00.

Now, we prove that pp11,4 (9%) = Plp+1,q (f) = p. By (4.2), Lemma 3.1
and Lemma 3.2, we get ppi1,4 (9k) < Plpt1,q (f), and by (4.11) we have
Pp+1,q (f) < Ppt1,q (9x)- This yields pi1.q) (k) = pipt1,q (f) = p-

Furthermore, if f is a finite [p,g|-order meromorphic solution in A of
equation (1.1) such that (2.1) holds, then

P, (F) > max {pp, g(aij):i=0,....k—1,j=0,....k—1}. (412

So by (4.2) we have Plp.d] (gr) < Plpd] (f). To prove the equality Plp.al (g) =
Plpd] (f), we suppose that Plpd] (gr) < Plp.d] (f). Then, by (4.11) and (4.12),

Pipg) (f) Smax{ppq (C;) (3=0,....k = 1), ppq (98)} < Pppg (f)
which is a contradiction. Hence pp, o) (9k) = pip,q (f)- O
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Remark 4.1. From (4.11) it follows that the condition hy # 0 is equiv-
alent to the condition that gy — b,g;, — U/, ... ,g,(f—l) — b =1 are linearly
independent over the field of meromorphic functions of finite [p, g]-order. As
it was noted in the paper by Laine and Rieppo [18], one may assume that
di = 0. Note that the linear dependence of g, —b,g;, — V', ... ,g,gk_l) — pk=1)
implies that f satisfies a linear differential equation of order smaller than k
with appropriate coefficients, and vise versa (e.g., Theorem 2.3 in the paper
of Laine and Rieppo [18]).

Proof of Theorem 2.2. Suppose that f is an infinite [p, ¢]-order meromor-
phic solution of equation (1.1) with pp,1q 4 (f) = p. Set w(z) = gr — .
Since py, q () < oo, by Lemma 3.2 and Theorem 2.1 we have py, g (w) =
Plp.g) (9r) = 00 and ppp1.) (W) = plps1,) (9k) = p - To prove Ay, ) (gr — ) =
Aip.ql (9K _f) = o0 and Ajpqqq) (9r — ¥) = Apt+1,q (9 — ) = p, we must
show that Ap, o (w) = A g (w) = 00 and Api g g (W) = Apyr,q (W) = p. By
the equalities g = w + ¢ and (4.11),

f=Cow+Crw + -+ Cr_jw1 + Yi (2), (4.13)
where
Ui (2) = Co (p = ) + C1 (¢ =) + -+ Cpy (1570 =50,
Substituting (4.13) into (1.1), we obtain

2k—2
Cp_qw®=1 4 Z (bjw(j) = - (w,(f) + Ag-1(2) Tﬁ;(j_l) +- 4+ A (2) ¢k>
=0
= H,
where Cj,_; and ¢; (j =0, ...,2k — 2) are meromorphic functions in A with

finite [p, gl-order. Since 1k (z) is not a solution of (1.1), it follows that
H # 0. Thus by Lemma 3.3, we obtain A, o (w) = Ap g (w) = oo and

E[pﬂ,q] (W) = Apr1,g (W) = p, i, Mg (9 = @) = Apg (95 — @) = 00 and
)‘[p—l-l,q] (9 — ) = )\[p+1,q} (9x — @) = p-

Suppose that f is a finite [p, ¢]-order meromorphic solution in A of equa-
tion (1.1) such that (2.2) holds. Set w(z) = gr — ®. Since pp,q (¢) <

Plp,q (f), by Lemma 3.2 and Theorem 2.1, we have py, g (w) = pipq (9k) =

Plp.g) (f) - In order to prove that Ay, g (9k — ©) = Apg (96 — ) = pppg (f),
we must show that A, o1 (w) = Ap g (w) = ppp g (f) - Using the same reason-
ing as above, we get
2%—2
G0 4 37 gu0) = — () + At ()9 4+ Ao (1))
§=0
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= F,
where Cy_1 and ¢; (j =0,...,2k — 2) are meromorphic functions in A with
finite [p, gl-order pp, g (Cr—1) < ppp.q (f),
Ppa) (85) < pppg (f) (G=0,...,2k—2),

and

Y (2) = Co(p —b) +C1 (tp' _ b’) 4+ +Cy <<P(k_1) _ b(k_l)) ,

Plp.g) (F) < Py (f)-
Since v (2) is not a solution of (1.1), it follows that F' # 0. Then by
Lemma 3.3, we obtain A, o (w) = A g (W) = pppg (), 1€, Apg (96 — ) =
Alp,d] (gr — ) = Plp,q] (f)- O

Proof of Corollary 2.5. Suppose that f is a nontrivial meromorphic solu-
tion of (2.3). Then, by Lemma 3.10, we have p, o (f) = oo and
Pp.g) (A) < Pppr1.q) (F) = prsfprrg () < ppg (A) + 1.
Furthermore, if p > ¢, then

Plp+1.q) (F) = prrfpi1,g) () = ppp.g) (A) -
By the same reasoning as before we obtain that
g2 —b=aoof +aiof’,
’ ’ 4.14
{ g —b =ag1f+ainf, (4.14)
where
a0 =do— daA, a1 =—doA+dy+d,
and
Qo1 = —(dQA)/ —di1 A+ d6, Q1o = d.
First, we suppose that do #Z 0. We have
Qo0 1,0
Qo1 Q11
+ dido A" — djydy + dody + d?.
Since d2 # 0, A # 0, by Lemma 3.11 we have pj, o1 (h2) = pjpq (4) > 0.
Hence hs # 0. Now suppose that do = 0, d; # 0; then
hy = d3A — djydy + dody + d2,

and, by Lemma 3.2, we have py, g (h2) = pppq (A) > 0. Hence hy # 0.
Finally, if dy = 0, d; = 0 and dy # 0, then hy = d3 # 0. By (4.14), since
ho # 0, we obtain

hg =

= d3A* — (—dydy + dids + 2dgds — d7) A

_ Z00(gh =) +ara (g —b) (4.15)

ha
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It is clear that ppq (92) < Pp.g (f) (Ppi1,q (92) < ppi1q (f)) and, by
(4.15), we have ppg (f) < Pppg (92) (Ppt1g (f) < Plpt1gq (92)). Hence
Plpg) (92) = Pip.g) (F) (Ppt1,q (92) = Pppi1,q (F))- O

Proof of Corollary 2.6. Set w (z) = dof” +di f'+dof +b— . Then, since
Plp,q] (90) < 00, we have Plp,q] (w) = Plp,q] (gf) = Plpq] (f) and Plp+1,q] (w) =
Plp+1,q (92) = Pppy1,q (f)- To prove that Ay, g (92 — @) = Apg (92 —») =

Plng) () and X1 g) (92 = ) = Api1g) (92— ©) = plpr1,q (f), we only need

to prove that )‘[p,q} (w) = )‘[p,q} (w) = Plp.q] (f) and X[p+17q} (w) = )‘[PJFL(I] (w) =
Plp+1,q (f). Since g = w + ¢, from (4.15) it follows that

—aq oW + ajjw

f = - + i, (4.16)

where

A ) Gl b’}); a1 (p = b) (4.17)

Substituting (4.16) into equation (2.3), we obtain

— " " I "
h21,0w + pow + Prw + dow = — (% + A(2) 1/12) =F,

where ¢; (j = 0,1,2) are meromorphic functions in A with pp, 4 (¢5) < o0

(j =0,1,2). First, we prove that ¢ #Z 0. Suppose that 1)y = 0; then by
(4.17), since ¢ — b # 0, we obtain that

QDl—b/
-0

Since pp, g (¢ —b) < max {ppq (©) ;g (b)} =1 < 00, by Lemma 3.7, it
follows that

Q11 =010

)

1
m(r7 A) < m(r, d ) + m(r7 dO) + m(rv dll) + m(r, dl)
2
1
+0 (exppl {(77 +¢) log, 1—7“}) +O(1)
for all 7 outside a set Ep C [0,1) with [, 4 < co. Thus

DT (r, 4) < mir, A) < T(r,dy) + T(r,do) + T ) + 70 )

1
+ O (epr_1{(77 +¢)log, l—r}> +0(1) (r¢Ey).
By ds # 0 and Lemma 3.8 we obtain the contradiction

Plpa) (A) < max, pp g (d;).
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Hence 1o # 0. It is clear now that 12 # 0 cannot be a solution of (2.3),
because py, g (¥2) < co. Thus, by Lemma 3.3,

X[p,q] (92 - 90) = A[p,q] (92 - 90) = Plp,q| (f) =0

and

Pl (A) < Apr1g (92 = ©) = Ap1,q) (92 — ©) = Pl g (f)
= P fpi1g (f) < ppg (A) + 1.
Furthermore, if p > ¢, then

Apt1,g (92 = ©) = Apt1,g (92 — ©) = Pp1,g (F) = Paspi1,q) (F) = Pppg (A) -
O
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