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Wide right Morita contexts in lax-unital
bicategories

Ülo Reimaa

Abstract. The classical result in the theory of unital rings that the
maps of a Morita context are isomorphisms when they are epimorphisms
can be proven in the general setting of wide right Morita contexts in
bicategories. There exists a similar result for non-unital rings, but bi-
categories are not general enough to handle that case. In this paper,
we use the more general lax-unital bicategories to prove a version of the
result and study some related questions.

1. Introduction

There are many structures whose Morita theory has elements in common
with the Morita theory of a class of similar structures, so as to admit a
common generalization. For example for unital rings and monoids, there is
the Morita theory of enriched monoids [6] and the Morita theory of enriched
categories [4]. We will try to unify aspects of the Morita theory of non-unital
rings and semigroups. The approach we will use is based on the one taken in
[1], where El Kaoutit defined the concept of a wide right Morita context in a
bicategory. We will generalize El Kaoutit’s result which allows one to deduce
the bijectivity of a Morita context’s maps from their surjectivity. This result
was itself a generalization of a similar result in the classical Morita theory
for unital rings, and it is not hard to modify their proof so that it also
generalizes a similar result in the Morita theory of monoids or other similar
structures. To apply such a result to a particular kind of structure, we need
to construct a corresponding bicategory.

We note the following about our notation for bicategories:

• we will write the composition of 1-cells of a (lax-unital) bicategory
from left to right and the composition of 2-cells from right to left,
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• as is customary, we will usually omit the subscripts from the natural
2-cells aM,N,L, lM and rM ,
• we will often denote the composition of 2-cells f, g in B(M,N) by
f ◦ g,
• we will write B0 for the collection of objects of a (lax-unital) bicate-

gory B.

In the case of unital rings, the bicategory we need to construct is well
known.

Example 1. There is a bicategory Mod, which consists of the following
data:

• the objects of Mod are all unital rings A,
• the 1-cells M : A→ B are the A-B-bimodules and they are composed

using the tensor product,
• the 2-cells f : M → N are bimodule morphisms and are they com-

posed as functions,
• the unit 1-cell of an object A is the bimodule AAA,
• the unitors lM : IM → M , rM : MI → M are the left and right

multiplication maps respectively.

In general, for certain monoid-like structures like monoids, semirings, or
ordered monoids, the construction goes along the same lines.

There exist similar results about the bijectivity of the maps of a Morita
context for certain non-unital rings and modules, and certain semigroups
and acts (e.g., in [3], for semigroups with local units and unitary biacts). If
we try to apply the bicategorical result to non-unital rings or semigroups,
the problem we run into is that these structures and modules between them
do not form a bicategory, since we do not have unit 1-cells, because the usual
unitors are not invertible. We can not just forget about the units and use
semibicategories, because we need unit 1-cells in order to define wide right
Morita contexts. This is why we will use the notion of lax units.

2. Lax-unital bicategories

Definition 1 (Lax-unital bicategory). A lax-unital bicategory B is given
by the same data as a bicategory:

• a collection B0 of objects,
• for each pair of objects A,B ∈ B0, a category B(A,B), the objects

and morphisms of which are called 1-cells and 2-cells, respectively,
• for each triple of objects A,B,C ∈ B0, a composition functor

B(A,B)× B(B,C)→ B(A,C),

• for each object A ∈ B0, a distinguished 1-cell IA, called a lax unit ;
we will occasionally call these 1-cells units,
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• for each quadruple of objects A,B,C,D ∈ B0 a collection of 2-cells

aM,N,L : (MN)L→M(NL)

natural in M ∈ B(A,B), N ∈ B(B,C), L ∈ B(C,D), called the
associators,
• for each pair of objects A,B ∈ B0, two collections of 2-cells

lM : IAM →M, rM : MIB →M

natural inM ∈ B(A,B), called the left and right unitors respectively.

The morphisms aM,N,L are required to be invertible, but the morphisms lM
and rM are not. The natural morphisms aM,N,L, lM and rM need to be such
that the diagrams

((MN)L)K (MN)(LK)

M(N(LK)),

(M(NL))K M((NL)K)

aMN,L,K

aM,N,LK

aM,N,L1K

aM,NL,K

1MaN,L,K

(MI)N

M(IN) MN

aM,I,N
rM1N

1M lN

commute and the diagrams

(MN)I

M(NI) MN,

aM,N,I
rMN

1MrN

(IM)N

I(MN) MN,

aI,M,N
lM1N

lMN

II I

lI

rI

commute.

Remark 1. The definition of a lax-unital bicategory differs from that of
a bicategory only in two ways:

• the natural transformations l and r are not required to be invertible,
• the last three diagrams are required to commute.

The reason why three additional diagrams are included in the definition of
a lax-unital bicategory is because we want the analogue of the bicategorical
coherence theorem to hold. That is to say, we want any two 2-cells that are
the results of composing the 2-cells l, r, a and 1 in various ways to coincide
whenever their domains are formally the same and codomains are formally
the same. The bicategorical version of the result, when originally proven [5],
included the additional three diagrams in our definition. It was later shown
by Kelly [2] that these diagrams were redundant in the bicategorical case.

One can check that MacLane’s proof [5] of the coherence theorem works
for lax-unital bicategories. Additionally one can check that Kelly’s proof [2]



70 ÜLO REIMAA

of the redundancy of the last three diagrams holds when the unitors l and r
are merely epimorphisms.

We take the definition of a wide right Morita contexts from [1] and put it
into the context of lax-unital bicategories.

Definition 2 (Wide right Morita context). Let A and B be objects in
a lax-unital bicategory B. A wide right Morita context from A to B is a
quadruple Γ = (P,Q, θ, φ), with 1-cells

P : A→ B, Q : B → A,

and 2-cells

θ : PQ→ IA, φ : QP → IB ,

such that the following two diagrams commute:

Q(PQ) QI

Q,

(QP )Q IQ

a

1θ

φ1

r

l

P (QP ) PI

P.

(PQ)P IP

a

1φ

θ1

r

l

If θ and φ are isomorphisms, we call Γ an adjoint equivalence, since by
inverting θ or φ, the axioms of a wide right Morita context are precisely the
conditions that make (P,Q) an adjoint pair. We will occasionally use the
word context to refer to a wide right Morita context.

Lemma 1. Let (P,Q, θ, φ) be a wide right Morita context in a lax-unital
bicategory B. Then the following diagrams commute:

(PQ)(PQ) (PQ)I

I(PQ) PQ,

θ1

1θ

l

r

(QP )(QP ) (QP )I

I(QP ) QP.

φ1

1φ

l

r

Proof. In the diagram
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(PQ)(PQ) I(PQ)

((PQ)P )Q (IP )Q

(P (QP ))Q (PI)Q

P ((QP )Q) P (IQ)

P (Q(PQ)) P (QI)

(PQ)I PQ,

θ(1)

θ(11)

(1)θ (11)θ l

r

(θ1)1

(1φ)1

1(φ1)

1(1θ)

a−1

a1

a

1a

a−1

a

l1
r1

1l

1r

a

a

all the parts commute either because of naturality, coherence, or the axioms
of a wide right Morita context.

This proves that the first diagram in the lemma commutes. In a similar
way, we can prove that the second diagram commutes. �

Until the end of this paper, E will denote a class of epimorphic 2-cells of
the lax-unital bicategory B under discussion. We will require E to satisfy:

(1) E is closed under composition,
(2) all isomorphisms belong to E ,
(3) the 1-cell composition functor of B maps members of E into E ,
(4) every monomorphism in E is an isomoprhism,
(5) if f ◦ g and g are in E then so is f ,
(6) the unitors of the unit 1-cells are in E .

The main example for the class E is the class of all regular epimorphisms
in the case of non-unital rings and also in the case of semigroups.

Theorem 1. Suppose that (P,Q, θ, φ) is a wide right Morita context in a
lax-unital bicategory B, where either all left unitors or all right unitors are
epimorphisms. Then, if θ (resp. φ) is in E, it is an isomorphism.

Proof. Suppose that all left unitors are epimorphisms (the proof is similar
if all right unitors are epimorphisms). Also suppose that θ : PQ → I is E .
We will show that θ is a monomorphism and therefore an isomorphism by
the fourth condition on E . Let u, v : X → PQ be such that θ ◦ u = θ ◦ v. If
we apply the functor (PQ) · − to this equality, we get

(1θ) ◦ (1u) = (1θ) ◦ (1v).

We have the diagram
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(PQ)X (PQ)(PQ)

IX I(PQ) (PQ)I

X PQ

1u

1v

1u

1v

θ1 θ1
1θ

r
l

u

v

l

which is commutative with respect to the upper (lower) morphisms of the
parallel pairs of 2-cells. The squares with horizontal morphisms 1u and
horizontal morphisms 1v commute because of the functoriality of the multi-
plication, while the lower squares commute because of naturality. The right
part of the diagram commutes by Lemma 1. From this we get

u ◦ l ◦ (θ1) = v ◦ l ◦ (θ1),

which implies u = v, since l and θ1 are epimorphisms. Therefore θ is a
monomorphism and since it is in E , an isomorphism.

Similar arguments work for φ. �

Probably the simplest application of the previous theorem is the following.

Corollary 1. Suppose that B is a lax-unital bicategory, where either all
left unitors or all right unitors are epimorphisms. Then the unitors of the
unit 1-cells are isomorphisms.

Proof. For any object A of B, let Γ = (IA, IA, rI , lI) be the unit wide
right Morita context from A to A, as defined in [1]. Since rI an lI are in E ,
we can apply the previous theorem, which means that the unitors of IA are
isomorphisms. �

Among other things, this means that when the conditions of the preceding
corollary are satisfied, the relation of adjoint equivalence is reflexive. It is
symmetric by definition and by assuming slightly more, it is also transitive.

Corollary 2. Suppose that B is a lax-unital bicategory where either all left
unitors or all right unitors are in E. Then the relation of adjoint equivalence
is an equivalence relation.

Proof. As we noted, the relation of adjoint equivalence is reflexive and
symmetric in this setting. To show that it is transitive, let A, B and C be
objects of B, let Γ1 = (P1, Q1, θ1, φ1) be a wide right Morita context from A
to B and let Γ2 = (P2, Q2, θ2, φ2) be a wide right Morita context from B to
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C. In [1], it is shown that in the case of bicategories we can compose these
contexts to get a composite context

Γ1Γ2 = (P1P2, Q2Q1, θ1 ∗ θ2, φ2 ∗ φ1)

from A to C. It is easy to check that the construction given there is also
valid in the case of lax-unital bicategories. In order to show that the relation
of adjoint equivalence is transitive, we need to show that θ1 ∗ θ2 and φ2 ∗ φ1

are isomorphisms. In [1], the 2-cell θ1 ∗ θ2 is given as the composite

(P1P2)(Q2Q1) P1(P2(Q2Q1)) P1((P2Q2)Q1)

I P1Q1 P1(IQ1).

a 1a−1

1(θ21)

1lθ1

θ1 ∗ θ2

If all the left unitors are in E , then θ1 ∗ θ2 is clearly in E , being a composite
of 2-cells in E . We could equivalently define θ1 ∗ θ2 in terms of a composite
featuring the right unitor. Using coherence it would be easy to check that it
would give us the same θ1 ∗ θ2. This means that if all the right unitors are
in E , the 2-cell θ1 ∗ θ2 would still be in E . We can therefore use Theorem 1
to deduce that θ1 ∗ θ2 is invertible. Since we can do the same with φ2 ∗ φ1,
we have an adjoint equivalence from A to C. �

While we can not apply Theorem 1 to the lax-unital bicategory of non-
unital rings or the lax-unital bicategory of semigroups, we can apply the
theorem to their certain lax-unital subbicategories. For example, we can ap-
ply the theorem to the lax-unital bicategory of semigroups with commuting
local units, unitary biacts, and biact morphisms, in which E is the collection
of all regular epimorphisms, which are precisely the surjective epimorphisms.
In this case and in several other cases, the theorem gives us an essentially
known fact. In the following, we will try to lift wide right Morita contexts
in lax-unital bicategories to suitable lax-unital subbicategories, in which the
last theorem could potentially be applied.

3. Improving contexts

In this section we will give a few results that allow us to improve wide right
Morita contexts so as to satisfy the conditions given in Theorem 1. If B is a
lax-unital bicategory, let BL (BR) be the lax-unital locally full subbicategory
determined by the 1-cells for which the left (right) unitors are in E . The fact
that the collection of 1-cells of BL is closed under composition can be seen
from the following diagram, which commutes by coherence:
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I(MN) (IM)N

MN.

a−1

lMN

lM1

In a similar fashion, one can show that the left unitor of IM is always in E .
In fact we have the following proposition.

Proposition 1. Let B be a lax-unital bicategory. Let Γ = (P,Q, θ, φ) be
a wide right Morita context from A to B in B, such that θ and φ are in E.
Then there exists a wide right Morita context Γ′ = (P ′, Q′, θ′, φ′) from A to
B such that θ′, φ′ and the unitors of P ′ and Q′ are in E.

Proof. We define the wide right Morita context Γ′ = (P ′, Q′, θ′, φ′) by
setting P ′ = IP , Q′ = IQ and defining θ′ and φ′ using the diagrams

(IP )(IQ) PQ

I,

ll

θ′
θ

(IQ)(IP ) QP

I.

ll

φ′
φ

Now we will show that Γ′ is indeed a wide right Morita context. This
means that the diagrams in the definition of a wide right Morita context
commute. We will only check that one of the diagrams commutes, since the
other one can be shown to commute in a similar way. We have the following
commutative diagram:

((IP )(IQ))(IP ) (IP )((IQ)(IP ))

((IP )Q)(IP ) (IP )(Q(IP ))

I((PQ)(IP )) I(P (QP ))

(PQ)(IP ) I(I(IP )) I((PQ)P ) I(PI) (IP )(QP )

I(IP ) IP (IP )I.

a

a

(1l)1 1(l1)

a ◦ (a1)

1(1l) 1a

a

(l1)1 1(1l)

l

θ1 1θ

1(θ1)

l 1(1l)

1(θ1) a1r

1(1φ)

1l

l r

All the inner diagrams commute either by naturality, coherence, or because
Γ is a wide right Morita context. Therefore, the outer rectangle commutes.
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The composition of the left (respectively, right) edge of the outer rectangle
is θ′1 (respectively, 1φ′). Therefore, the second diagram in the definition of
wide right Morita context commutes.

Now we need to check that the unitors of P ′ and Q′ are in E . For the left
unitors this is easily seen from the following diagram, which commutes by
coherence:

I(IP )

(II)P IP.

a

lI1P

lIP

I(IQ)

(II)Q IQ.

a

lI1Q

lIQ

We need to check the same thing for the right unitors of P ′ and Q′. Since
it is similar for P ′ and Q′, we will only check it for P ′. The diagram

(IP )(QP ) (IP )I

I(P (QP )) I(PI)

I((PQ)P ) I(IP )

(I(PQ))P (II)P IP

(11)φ

a−1

a

rIP

(1θ)1 rI1

1(1φ)

1a

1r

1l

1(θ1)

a

a

a

commutes since each smaller part of it commutes either because of coher-
ence, naturality, or because Γ is a wide right Morita context. Since the left
composite of the outer diagram is clearly in E , so is the right composite. By
using the fifth property of E , we get that the right unitor of IP is in E .

Finally, we need to check that θ′ and φ′ are in E . We will check this
only for θ′ (the proof for φ′ is similar). Let ∆ be the coherent natural
transformation ∆X : (II)X → X. Clearly, ∆I is in E . We have the following
commutative diagram, where ∼ represent the various coherent combinations
of associators:
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((PQ)P )((QP )Q) (IP )(IQ)

(IP )((QP )Q) I((PI)Q)

I((P (QP ))Q) I(PQ)

I(((PQ)P )Q) I((IP )Q)

((PQ)(PQ))(PQ) (I(PQ))(PQ) (II)(PQ) PQ

(II)I I.

(θ1)(φ1)

∼ ll

(θθ)θ θ

(θ1)(11)

(θ1)1

∼

∼

∼

(11)(φ1)
∼

1((1φ)1)
1(r1)

1((θ1)1)

(1θ)1

(11)θ
∆

l

∼

1(l1)

∆

The diagram commutes since every small diagram in the interior commutes
either because of coherence, naturality, or because Γ is a wide right Morita
context. Once again we can use the fifth property of E to deduce that the
right edge of the outer rectangle is in E , but the right edge is just θ′, which
completes the proof. �

This proposition can help us to use Theorem 1 in situations where it
would normally not apply. To do so, we need to restrict the class E to BL.
Unfortunately, this may cause the fourth condition we required of E not to
hold. This is because BL might have more monomorphic 2-cells than B,
which could potentially not be isomorphisms when in E . To overcome this,
we must additionally assume that BL does not have more monomorphic 2-
cells than B. Then we can restrict E to BL so that the conditions on E given
in Section 2 are satisfied, and the above proposition gives us a wide right
Morita context that lies in BL and to which Theorem 1 can be applied.

We can use a different method to improve 1-cells and contexts, which can
have more pleasing properties. In the paper [3], for example, the method
used to make the unitors of acts surjective used the assignment

SM 7→ {sm | s ∈ S, m ∈M},

which maps an act to the image of the act’s unitor. We can generalize this
construction to our situation, but we have to make more assumptions. We
will need to use orthogonal factorization systems, so we recall the definition
now.
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Definition 3. Let C be a category and let E be a class of epimorphisms
and M a class of monomorphisms belonging to that category. Morphisms
e : A → B and m : C → D are said to be orthogonal, a situation expressed
by writing e ⊥ m, when for each commuting square

A B

C D

s

e

m

there exists a unique diagonal s : B → C making the whole diagram com-
mute. Let E consist of precisely those morphisms e of C for which e ⊥ m
for each m ∈M, and letM consist of precisely those morphisms m of C for
which e ⊥ m for each morphism e in E . If each morphism f of C factors as
f = me, we say that (E ,M) is an orthogonal factorization system on C.

We will now assume that on each morphism category of our lax-unital
bicategory B, the 2-cells in E and the monomorphic 2-cells constitute an
orthogonal factorization system on that category. This means that the col-
lection E is precisely the collection of all strongly epimorphic 2-cells.

Remark 2. We now have a slightly easier way of checking whether a given
class E satisfies the six conditions we required of it in the beginning. Let us
assume that we are given a random lax-unital bicategory B′ such that each
morphism category has (StrongEpis,Monos) as an orthogonal factorization
system. Because of some well knows properties of factorization systems, the
class of all strongly epimorphic 2-cells automatically satisfies all but two
conditions required of E :

• the 1-cell composition functor must preserve strongly epimorphic 2-
cells,
• the unitors of the unit 1-cells must be strongly epimorphic.

The first of these two can often be deduced from other properties of B′. For
example, if the functor of composing with a 1-cell always has a right adjoint,
it automatically preserves strongly epimorphic 2-cells. Such is the case in
the lax-unital bicategory of non-unital rings and modules, which means that
we can get a suitable lax-unital subbicategory simply by throwing out the
rings that do not satisfy the last condition. The same can be done with
semigroups and acts and analogous structures.

We can now define an alternate way of improving wide right Morita con-
texts and the unitors of 1-cells. Since the construction will be lax functorial,
let us, for the sake of completeness, list here the definition of a lax func-
tor, which will essentially be the same as the usual definition in the case of
bicategories.
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Definition 4. Let C and D be lax-unital bicategories. A lax functor F
from C to D consists of

• for each object A of C, an object F (A) of D,
• for each pair A,B ∈ C0, a functor FA,B : C(A,B)→ D(F (A), F (B)),

which we will refer to as the local part of the lax functor,
• natural comparison 2-cells ΦM,N : F (M)F (N)→ F (MN),
• comparison 2-cells Φ0

A : IF (A) → F (IA).

The comparison 2-cells need to be such that the following diagrams commute:

(F (M)F (N))F (K) F (M)(F (N)F (K))

F (MN)F (K) F (M)F (NK)

F ((MN)K) F (M(NK)),

a

1Φ

Φ

Φ1

Φ

F (a)

F (M)IF (B) F (M)F (IB)

F (M) F (MIB),

1Φ0
B

ΦM,I

F (r)

rF (M)

IF (A)F (M) F (IA)F (M)

F (M) F (IAM).

Φ0
A1

ΦI,M

F (l)

lF (M)

Let us fix for each 1-cell M in B, an (E ,mono)-factorization (eM ,mM ) of
lM . Let A and B be objects of B. We will now define a functor

LA,B : B(A,B)→ BL(A,B).

This functor will depend on the choice of the factorizations (eM ,mM ), but
will be unique up to isomorphism. Since LA,B will later turn out to be
the local part of a lax functor, we will omit the subscripts A and B when
applying the functor. Let M : A→ B. We define L(M) as the 1-cell through
which lM factors, as seen in the diagram

IM L(M) M.
eM mM

lM

We need to check that L(M) is actually in BL(A,B). To show this, we will
use the following diagram, which commutes because of coherence and the
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naturality of l:

I(IM) IL(M)

(II)M IM L(M).

a−1

lI1

1e

lL(M)

e

lIM

The right composite lL(M) ◦ 1e is in E , since the left side composite is the
composite of 2-cells in E . This implies that lL(M) is in E , which means that
L(M) is a 1-cell in BL.

Now suppose that f : M → N is a 1-cell in B. Then we can define L(f)
to be the unique 2-cell L(M) → L(N) that makes the following diagram
commutative and exists because of the properties of the factorization system:

IM L(M) M

IN L(N) N.

eM mM

1f f
eN

L(f)
mN

lM

lN

It is clear that we can vertically paste the defining diagrams of L(f) and L(g)
of a composable pair of 2-cells f and g. It is also clear that the resulting
diagram will be the defining diagram of L(g ◦f). Therefore, since L(g ◦f) is
the unique 2-cell making the diagram commute, it must equal to L(g)◦L(f).
Since L also clearly takes unit 2-cells to unit 2-cells, we have shown that LA,B
is a functor.

Now we will construct an identity-on-objects lax functor L : B→ BL with
the functors LA,B as the local components. The only data missing is the
comparison 2-cells. We define the comparison 2-cell

ΦM,N : L(M)L(N)→ L(MN)

as the unique 2-cell that makes the following diagram commute:

(IM)(IN) L(M)L(N)

I(MN) L(MN) MN.

eMeN

mMmN

eMN mMN

a ◦ (1l) ΦM,N

The unique 2-cell exists because of the properties of a factorization system,
since ee is in E , m is a monomorphism and the outer composites are equal.
To see that the outer composites are equal, we simply need to remember
that mM ◦ eM = lM and use coherence.
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To define Φ0
A for an object A of B, we need to remember that lI : II → I

is in E . This means that mI , the monomorphic part of the (E ,mono)-
factorization of lI , is an isomorphism. This means that we can define
Φ0
A : I → L(I) to be m−1

I : I → L(I). Finally we need to check that Φ
and Φ0 satisfy the conditions required of comparison maps and that Φ is
natural.

For the first condition, observe that all the small parts of the following
diagram commute either because of naturality, functoriality, the definition
of Φ, or the definition of L:

(L(M)L(N))L(K) L(M)(L(N)L(K))

(MN)L(K) L(M)(NK)

L(MN)L(K) L(M)L(NK)

(MN)K M(NK)

L((MN)K) L(M(NK)).

(mm)m
m(mm)

a

(mm)1

(11)m1m

m

m1

mm

1(mm)

m(11) m1

m

1m

mm

a

1Φ

Φ

Φ1

Φ

L(a)

One can easily check that the left composite and the right composite of
the outer hexagon are equal under m. This means that they are equal,
because m is a monomorphism. Therefore, the first condition holds. In a
similar fashion, we can see that the second condition holds by looking at the
diagram

L(M)I L(M)L(I)

M MI

L(M) L(MI).

m
r

m

m1 mm

1Φ0

1m−1

ΦM,I

L(r)

rM

One can use a diagram very similar to the previous one to check that the third
condition holds. To check the naturality of Φ, let f : M → U and g : N → V
be 2-cells between suitably composable 1-cells. Then the commutativity of
the following diagram is checked by using the monomorphicity of m, as we
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did before:

L(M)L(N) L(U)L(V )

MN UV

L(MN) L(UV ).

m

fg

m

mm mm

L(f)L(g)

Φ

L(fg)

Φ

Therefore, L is indeed an identity-on-objects lax functor from B to BL.
We could go through a similar process for the right unitors, resulting

in a lax functor R : B → BR into the locally full lax-unital subbicategory
determined by the 1-cells with right unitors in E .

In the paper [1], it is shown that given a wide right Morita context Γ from
A to B in a bicategory C, a 2-functor F : C→ D induces a wide right Morita
context from F (A) to F (B) in D. One can follow their proof to easily check
that it also works for lax-unital bicategories and that the comparison 2-cells
F (A)F (B) → F (AB) do not have to be invertible for the construction to
be valid. This means that the lax functors L and R can be used to improve
wide right Morita contexts, just as we did in Proposition 1.

Let us assume that the monomorphic 2-cells in BL are the ones inherited
from B. Then we can restrict E to BL so that it satisfies the conditions given
in Section 2. The only thing that we need to verify in order for this new
construction to have the same power as the one in Proposition 1, is that
given a wide right Morita context Γ = (P,Q, θ φ) from A to B in B, with θ
and φ in E , does the wide right Morita context ΓL = (PL, QL, θL, φL) in BL,
induced by L, have θL and φL in E .

According to [1], a 2-functor F will take a wide right Morita context
Γ = (P,Q, θ φ) to the context (F (P ), F (Q), θ∗, φ∗), where θ∗ is the composite

F (P )F (Q) F (PQ) F (I) I
Φ F (θ) Φ0−1

and φ∗ is the obvious counterpart. If we apply this result to the lax functor
L, we see that the 1-cells in ΓL are given by PL = L(P ), QL = L(Q), the
2-cell θL is the composite

PLQL = L(P )L(Q) L(PQ) L(I) I
Φ L(θ) m

and the 2-cell φL is a similar composite. To see that θL is in E if θ is in E ,
observe that the following diagram commutes because of the definitions of
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L and Φ:

(IP )(IQ) I(PQ) II

L(P )L(Q) L(PQ) L(I) I.

a ◦ (1l) 1θ

l
ee e e

Φ L(θ) m

By using naturality and coherence, one can simply verify that the upper
composite of the diagram above is just θ′ as constructed in Proposition 1.
This means that θL ◦ ee = θ′ is in E . Therefore, θL is in E .

The above can of course also be done for the lax functor R. The construc-
tion of ΓL offers some advantages over the construction of Γ′. First of all,
under the assumptions required to construct the lax functor L, it is easy to
check that each BL(A,B) is a coreflective subcategory of B(A,B) with LA,B
being the right adjoint of the inclusion functor. This allows for an easier
transfer of properties between the two categories.
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