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On the correlation structures of multivariate
skew-normal distribution

Ene Käärik, Meelis Käärik, and Inger-Helen Maadik

Abstract. Skew-normal distribution is an extension of the normal dis-
tribution where the symmetry of the normal distribution is distorted
with an extra parameter. A multivariate skew-normal distribution has
been parametrized differently to stress different aspects and construc-
tions behind the distribution. There are several possible parametriza-
tions available to define the skew-normal distribution. The current most
common parametrization is through Ω and α, as an alternative, para-
metrization through Ω and δ can be used if straightforward relation to
marginal distributions is of interest. The main problem with {Ω, δ}-
parametrization is that the vector δ cannot be chosen independently of
Ω. This motivated us to investigate what are the possibilities of choos-
ing δ under different correlation structures of Ω. We also show how
the assumptions on structure of δ and Ω affect the asymmetry param-
eter α and correlation matrix R of corresponding skew-normal random
variable.

1. Background

We consider multivariate correlated data in broader sense including re-
peated measurements over time (longitudinal data) or space. To handle the
dependence between measurements, it is essential to construct a full prob-
ability model that integrates the marginal distributions and the correlation
coherently. For the multivariate normal distribution, such approach has been
extensively investigated (see, for example, [23]). There are also many com-
prehensively examined analyses using simple correlation structure (uniform
correlation and/or serial correlation).

However, in many cases, the assumption of normality might be unreal-
istic, especially for skewed data. Data may be skewed naturally (consider,

Received December 3, 2015.
2010 Mathematics Subject Classification. 60E15, 62H05, 60E05.
Key words and phrases. Multivariate skew-normal distribution, compound symmetry cor-
relation structure, autoregressive correlation structure.
http://dx.doi.org/10.12697/ACUTM.2016.20.07

83
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e.g., the environmental pollution data in [11]) or because of conditioning
while gathering the data (for example medical data of patients with certain
diagnosis [13]). Conditioning causes a situation where (although the over-
all underlying distribution is normal) the gathered data actually follows a
skew-normal distribution.

The history of skew-normal distribution is not very long, but the devel-
opment has been rapid and intensive. The first systematic representation
of univariate skew-normal distribution is given by Azzalini [5]. The multi-
variate skew-normal distribution is introduced by Azzalini and Dalla Valle
[10] and structured by Azzalini and Capitanio [7]. Extensions to the class
are proposed by several authors [2, 8, 6, 16, 12]. Multivariate skew-normal
distribution also has several different equivalent parametrizations, each of
which offers advantages depending on a particular problem.

To fully understand the mechanics of skewing, it is important to study
the underlying dependence structures. A related widely studied example is
the data of Australian athletes collected by Australian Institute of Sport
(AIS-data). Various skewed models have been applied by different authors,
main focus has been on the bivariate skew-normal distribution [10, 4, 3, 16]
Similar problems in more general setup are addressed in [7], where a 5-
dimensional skew-normal model is applied to a diabetes data. Arellano-
Valle et al. developed a skew-normal mixed model for fitting longitudinal
cholesterol levels data in Framingham heart study [1]. An extensive list of
applications is given in [15, 6, 9].

Despite the growing number of publications, there remain several things
to be explored. In this paper we examine the behaviour of the correlation
matrices of multivariate skew-normal random variables in different specific
situations starting from the more simple correlation structures like com-
pound symmetry and autoregressive structure.

2. Framework

The multivariate skew-normal distribution has received considerable at-
tention over the last years. Nevertheless, even the “classical” multivariate
skew-normal distribution, introduced by Azzalini and Dalla Valle in 1996,
can be parametrized in many different ways starting from the initial {Ψ,λ}-
parametrization to the currently prevalent {Ω,α}-parametrization (see, e.g.,
[7], or, for a comprehensive analysis, [9]). Yet, because of the construction
of α, the {Ω,α}-parametrization does not seem to be the most appropri-
ate choice if the connection to the parameters of corresponding marginal
distributions is of importance (see, e.g., [17, 19]). We have shown that the
{Ω, δ}-parametrization is a reasonable choice, especially in the situation
where direct connection with marginal parameters is of importance [20].
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We use {Ω, δ}-parametrization and analyze properties of the correspond-
ing skew-normal random variable in different situations. We will reveal how
the choice of correlation structure in Ω affects possible choices for δ and
how the vector α is expressed in these special cases (recall that the vector
α is determined by the vector δ and the concentration matrix Ω−1). The
correlation matrix R and the region of possible correlation coefficients of the
corresponding skew-normal random variable are studied as well.

Let us first recall the definition of a multivariate skew-normal random
variable through {Ω, δ}-parametrization.

Definition 1. Let Ω be a positive definite k×k correlation matrix and let
δ be a k-dimensional vector such that δTΩ−1δ < 1. We say that a random
variable Z = (Z1, . . . , Zk)

T has the k-variate skew-normal distribution with
skewness parameter δ, and write Z ∼ SN(Ω, δ), if its probability density
function is given by

f(z; Ω, δ) = 2φk(z; Ω)Φ

(
δTΩ−1z√

1− δTΩ−1δ

)
, z ∈ Rk, (1)

where φk is the probability density function of the k-variate normal distri-
bution with standard normal marginals and correlation matrix Ω, and Φ is
the univariate standard normal distribution function.

We also recall the following conditional representation of skew-normal
variable (see, e.g., [10], [14] or [20] for {Ω, δ}-parametrization). If we have
a k-dimensional random variable X ∼ N(0,Ω), a one-dimensional random
variable X0 ∼ N(0, 1) and a vector δ = (δ1, . . . , δk)

T such that

δTΩ−1δ < 1 (2)

and δ is the vector of correlations betweenX and X0, then a random variable
Z = X|X0 > 0 has the skew-normal distribution Z ∼ SN(Ω, δ).

Considering the interpretation of δ as a vector of correlations it is useful
to introduce the matrices

Ω∗ =

(
1 δT

δ Ω

)
, Ω∗ =

(
Ω δ

δT 1

)
,

where Ω∗ is the correlation matrix for (X0,X)T and Ω∗ is the correlation
matrix for (X, X0)

T .
In different applications, these matrices have important role and mean-

ing. For example, in repeated measurement studies, the former has intuitive
meaning if we consider conditioning by baseline and the latter in imputation
of dropouts.

In consequence, we have four correlation matrices related to a skew-normal
random variable
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• Ω = (ωij) – the (scale) parameter matrix of the skew-normal distri-
bution (see, e.g., (1)),
• Ω∗,Ω∗ – denoted above,

• R = (rij) – the correlation matrix of a skew-normal random variable
Z,

and it is now quite interesting to analyze the nature of restrictions on ele-
ments of these matrices.

The general formula for computing the correlation matrix R = (rij) of
a skew-normal random variable Z = (Z1, . . . , Zk) is given by Azzalini and
Dalla Valle [10] as follows:

rij = corr(Zi, Zj) =
ωij − 2

π δiδj√
1− 2

π δ
2
i

√
1− 2

π δ
2
j

, i, j = 1, . . . , k. (3)

An important special case is when all marginals have the same distribution
SN(δ), that means all the components of δ are identical, i.e., δ = (δ, . . . , δ)T .
Then the last formula simplifies to

rij =
ωij − 2

π δ
2

1− 2
π δ

2
, i, j = 1, . . . , k. (4)

We are interested in structures of correlation matrices Ω, Ω∗, Ω∗, espe-
cially when they have the same stucture, and we would like to examine how
their structure affects the structure of the correlation matrix R and the pa-
rameter vectors δ and α in different situations. A natural starting point
is to use certain simple correlation structures depending on one parameter
only. Thus, we consider the following correlation structures of Ω:

(1) the exchangeable correlation structure or the compound symmetry
(CS) when the correlations between all variables are equal, ωij =
ω, i, j = 1, . . . , k, i 6= j;

(2) the correlation structure, where the distance between variables in
space or time determines the correlation (consider, e.g., autoregres-
sive structure in repeated measurements or spatial processes). We fo-

cus on the simplest structure with this property: ωij = ω|j−i|, i, j =
1, . . . , k, i 6= j, and call this structure the autoregressive correlation
structure (AR).

Of course, there are various alternative structures for correlations avail-
able. We begin our analysis with the CS and AR correlation structures
because of the distinctive reasons: they are the simplest most commonly
used approaches and require the estimation of one parameter ω only, no
matter how big the number of variables is.
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3. Formulation of the problem

Let us formulate the problem setup in more detail. Let Z = (Z1, . . . , Zk)
T

have the k-variate skew-normal distribution, Z ∼ SN(Ω, δ), as specified
in (1). Our aim is to investigate the effect of special cases of Ω to the
corresponding skew-normal distribution. In the following we are going to
study the aforementioned two special cases of Ω (CS, AR), starting with
Ω = I as the simplest subcase of either structure.

Two main special cases for vector δ are considered:

(a) the case when all the components of parameter vector δ are identical,
δ = (δ, . . . , δ)T , i.e., all marginals have the same distribution (i.e.,
SN(δ));

(b) the situation when the correlation matrix Ω∗ (or Ω∗) has also some
simple structure.

We search for answers to the following questions.

(1) How can the parameter vector α of the corresponding {Ω,α}-para-
metrization be calculated?

(2) What is the region of valid values for ωij (given δ)?
(3) How can the correlation coefficients rij (defined in (3)) be calculated?
(4) What is the region of possible correlation coefficients rij?

4. The case when Ω = I and δ = (δ, . . . , δ)T

Let us start with the simplest possible structure. Let Ω = I and δ =
(δ, . . . , δ)T , i.e., the skew-normal distribution has i.i.d. marginals and the
corresponding normal distribution has independent marginals.

Let us recall the dual relation between the parameter vectors δ and α
(see, e.g., [7]):

α =
Ω−1δ√

1− δTΩ−1δ
(5)

and

δ =
Ωα√

1 +αTΩα
. (6)

Taking into account our current assumptions, formulas (5) and (6) simplify
to

α =
δ√

1− kδ2
, δ =

α√
1 + kα2

. (7)

In other words, the vector α is in the form (α, . . . , α)T , where α =
δ√

1− kδ2
.

The region of valid values for δ (with δ = (δ, . . . , δ)T ) also follows from
(7):

δ ∈
(
− 1√

k
;

1√
k

)
. (8)
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Also, Ω = I means that ωij = 0, i 6= j, which together with (4) implies

that rij = − 2δ2

π − 2δ2
, where rij = corr(Zi, Zj) are the correlation coefficients

corresponding to the skew-normal random variable Z. The relationship be-
tween correlation coefficients rij = r and δ for some values of k is shown in
Figure 1.
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Figure 1. Relationship between r and δ when Ω = I.

We conclude that the correlation matrix of the random variable Z has
the CS structure and, by (8), the region of possible values of correlation
coefficients rij = r is given by

r ∈
(
− 2

kπ − 2
; 0

]
. (9)

Remark 1. If the components of δ are identical, δ = (δ, . . . , δ)T , then
the components of λ are also identical, λ = (λ, . . . , λ)T , and the following
relations between δ and λ hold (see, for example, [10]):

δ =
λ√

1 + λ2
; λ =

δ√
1− δ2

.

Now, given Ω = I, the region of valid values for δ (8) also specifies the
following region for valid values of λ:

λ ∈
(
− 1√

k − 1
;

1√
k − 1

)
.

5. The case when Ω has the CS structure

Let us begin with a motivating example.

Example 1 (Customer satisfaction data). The customer satisfaction in-
dex (CSI) is an economic indicator that measures the satisfaction of con-
sumers. This is found by a customer satisfaction survey, which consists
a questionnaire where the respondents (customers) are requested to give
scores.
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Now, for example, in case of benchmarking, we are interested in the be-
haviour of the customers whose score for specific questions is bigger (or
smaller) than the overall mean or certain threshold. This implies that we
have skewed data. Also, the whole customer satisfaction survey has usually
several blocks of similar questions and the questions in blocks are correlated.
The natural assumption is that the ordering of questions within a block does
not matter, so we can assume the CS correlation structure.

5.1. The case when Ω has the CS structure and δ = (δ, . . . , δ)T .
Let us assume that the correlation matrix Ω = (ωij) has the CS correlation
structure, i.e., ωij = ω, for i, j = 1, . . . , k, i 6= j. Consider the case of
identical marginals, i.e., the vector δ has the form δ = (δ, . . . , δ)T . Formula
(4) now simplifies to

r =
πω − 2δ2

π − 2δ2
. (10)

In other words, the correlation matrix R also has the CS structure with
parameter r. Now, from (10) it is easy to see that if δ is fixed, then r is a
linear function of ω.

To calculate α, let us first denote the elements of Ω−1 by ω
(−1)
ij , i.e.,

Ω−1 = (ω
(−1)
ij ). Then the matrix Ω−1 has the following structure (see [21]):

ω
(−1)
ii =

1 + (k − 2)ω

(1 + (k − 1)ω)(1− ω)
; ω

(−1)
ij = − ω

(1 + (k − 1)ω)(1− ω)
, i 6= j.

Let us now apply formula (5) forα. The numerator Ω−1δ is a k-dimensional
vector with equal components

ω
(−1)
ii δ + (k − 1)ω

(−1)
ij δ =

δ

1 + (k − 1)ω

and for the the denominator we get

1− δTΩ−1δ =
1 + (k − 1)ω − kδ2

1 + (k − 1)ω
.

In summary, the parameter vector α also has identical components, α =
(α, . . . , α)T with

α =
δ√

1 + (k − 1)ω
√

1 + (k − 1)ω − kδ2
. (11)

Let us look what the restriction (2) implies on the correlation matrix Ω
and on the correlation matrix R. Considering the positive definiteness of Ω
and restriction (2) we get the following requirement for δ and ω:

0 <
kδ2

1 + (k − 1)ω
< 1 . (12)
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To find the region of valid values for ω, we start from (12). Since the
numerator is always nonnegative, the denominator must be positive, which
implies that the region of valid values for ω is given by

ω ∈
(
kδ2 − 1

k − 1
; 1

)
. (13)

This region is illustrated in Figure 2.
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Figure 2. The region of valid values for ω when Ω has the
CS structure and δ = (δ, . . . , δ)T .

Remark 2. It is easy to see that in case δ = 0, that is, if we have normal

distribution, the region of valid values for ω is ω ∈
(
− 1

k − 1
; 1

)
, which is

the whole region where Ω is positive definite, as expected.

Now, we have found the region (13) of valid elements ω of the correlation
matrix Ω. This region also helps us to find the limits for the corresponding
correlation coefficients r. Recall that the correlation matrix R has the CS
structure with the correlation coefficient r defined as in (10), and observe
that

ω ↓ kδ
2 − 1

k − 1
and ω ↑ 1.

Using formula (10), straightforward calculations lead to the following region
for possible values for r:

r ∈
(
δ2(πk − 2k + 2)− π

(k − 1)(π − 2δ2)
, 1

)
. (14)
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Remark 3. We have proved that if Ω has the CS structure and δ =
(δ, . . . , δ)T , then R also has the CS structure. It is not hard to prove that
if R has the CS structure and δ = (δ, . . . , δ)T , then Ω also has the CS
structure. Nevertheless, it is also easy to show that the CS structure of R
is not sufficient to ensure that Ω has the CS structure or δ = (δ, . . . , δ)T .

Such situation is described in the following simple example.

Example 2. Let us have a vector δ such that its elements are not identi-

cal: δ = (0,
1

2
, 0)T . Let us also have Ω that does not have the CS structure:

Ω =


1 1− 1

2π

√
1− 1

2π

1− 1
2π 1 1− 1

2π√
1− 1

2π 1− 1
2π 1

 .

But it turns out that the matrix R has the CS structure (apply formula (3)):

r12 =

√
1− 1

2π
, r13 =

√
1− 1

2π
and r23 = r12 =

√
1− 1

2π
.

Thus, the CS structure of R does not ensure that the vector δ has equal
components nor that the matrix Ω has the CS structure.

5.2. The case when Ω and Ω∗ (and Ω∗) have the CS structures.
Let us assume that the correlation matrix Ω has the CS structure as in the
previous section. It is obvious that Ω∗ and Ω∗ also have the CS structures
if δ = (ω, . . . , ω)T . So, we have an evidential subcase of the previous case.

Let us see, how this simplification affects the quantities of interest. First,
since δ = (ω, . . . , ω)T , equality (11) reduces to

α =
ω√

1 + (k − 1)ω
√

1 + (k − 1)ω − kω2
.

Also, the restriction (12) with δ = ω takes the form

0 <
kω2

1 + (k − 1)ω
< 1, (15)

which implies that if Ω has the CS structure and δ = (ω, . . . , ω)T , the region
of valid values for ω is

ω ∈
(
−1

k
; 1

)
. (16)

The assumption that δ = ω also simplifies formula (10) as follows:

r =
πω − 2ω2

π − 2ω2
=
ω(π − 2ω)

π − 2ω2
. (17)

This relationship is shown in Figure 3.
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Figure 3. The relationship between the correlation coeffi-
cients r and ω for some values of k when Ω has the CS
structure and δ = (ω, . . . , ω)T .

To find the region for possible values for r, consider the limit situations

for ω ∈
(
−1

k
; 1

)
. If ω ↓ −1

k
, then r ↓ − πk + 2

πk2 − 2
, and if ω ↑ 1, then r ↑ 1.

Therefore, the region for possible correlation coefficients r is

r ∈
(
− πk + 2

πk2 − 2
; 1

)
. (18)

6. The case when Ω has the AR structure

Let us again begin with a motivating example.

Example 3 (PW170 test)). Let us consider the test for estimating aerobic
fitness of athletes, which measures the physical working capacity (PWC) at
a heart rate of 170 beats per minute (test called PWC170). Fifteen athletes
(Estonian cross-country skiing team) performed six consecutive workloads on
a bicycle ergometer and the average heart rate was recorded before test and
at every step. So we had repeated measurements at seven time points. Now,
if the model for the whole dataset was of interest, the multivariate normal
fit was well justified (see, e.g., [18]). On the other hand, if the purpose is to
analyze only some selection of data, for example, athletes whose heart rate
before test was higher (or lower) than the average, the joint distribution is
no longer multivariate normal but multivariate skew-normal. Analyzing the
dependence between measurements showed that the correlations decreased
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monotonically, so the natural choice is to use the autoregressive correlation
structure.

6.1. The case when Ω has the AR structure and δ = (δ, . . . , δ)T . Let
us now assume that the correlation matrix Ω has autoregressive structure
(AR), i.e.,

Ω = (ωij) = (ω|i−j|). (19)

The inverse Ω−1 of the correlation matrix is a three-diagonal matrix with
well-known properties. The structure of matrix Ω−1 is the following (see,
e.g., [22]):

Ω−1 =
1

1− ω2



1 −ω 0 . . . 0 0

−ω (1 + ω2) −ω . . . 0 0

0 −ω (1 + ω2) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . (1 + ω2) −ω
0 0 0 . . . −ω 1


.

We are interested in the same questions as in previous sections. To find an
expression for calculation of α, we will observe how the current assumptions
(Ω has the AR structure and δ has the form δ = (δ, . . . , δ)T ) influence
formula (5). Let us study the numerator and denumerator of (5) separately.
For the numerator we derive

Ω−1δ =
δ

1 + ω
(1, 1− ω, . . . , 1− ω, 1)T , (20)

and the denominator of (5) is

1− δTΩ−1δ =
1 + ω − (k(1− ω) + 2ω)δ2

1 + ω
. (21)

Now, the form of α = (α1, . . . , αk) follows from formulas (20) and (21):

α1 = αk =
δ

√
1 + ω

√
1 + ω − (k(1− ω) + 2ω)δ2

and α2 = . . . = αk−1 = αk(1−ω) = α1(1−ω). Applying the derivation (21)
to restriction (2), the region of valid values for ω is specified by

ω >
kδ2 − 1

(k − 2)δ2 + 1
. (22)

The region corresponding to this inequality is shown in Figure 4.
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Figure 4. The region of valid values for ω (given δ and k)
when Ω has the CS structure and δ = (ω, . . . , ω)T .

One can also note that the border curve for valid values of ω (specified
by equality in (22)) is a convex function for k = 2. For k > 2, there is a flex

point at ± 1√
3(k − 2)

, the curve is convex in

(
− 1√

3(k − 2)
;

1√
3(k − 2)

)
and concave outside.

Let us now focus on the correlation coefficients rij . Formula (3) together

with ωij = ω|i−j| and δ = (δ, . . . , δ)T implies that

rij =
πω|i−j| − 2δ2

π − 2δ2
. (23)

The remaining task is to find the limits of rij depending on ω. For upper
limit we consider ω ↑ 1, which, by (23), results in rij ↑ 1. By formula (23)
we can also see that the infimum value of the rij depends on whether |i− j|
is odd or even. If |i− j| is even, then rij tends to its infimum if ω → 0, thus

rij ∈
(
− 2δ2

π − 2δ2
; 1

)
.

Because of (22), ω = 0 yields that |δ| < 1/
√
k. For |δ| ∈

[
1/
√
k, 1
)

, we

have ω > 0, the infimum of the rij is found in the process ω ↓ kδ2 − 1

(k − 2)δ2 + 1
,

and by (23) we have
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rij ∈

π( kδ2−1
(k−2)δ2+1

)|i−j| − 2δ2

π − 2δ2
; 1

 . (24)

Exactly the same reasoning can be used if |i − j| is odd, thus the corre-
sponding region of valid values for rij is also specified by (24).

Remark 4. From a practical perspective, the situation where ω > 0 is
obviously more common (consider, e.g., repeated measurements where the
correlation decays in time). If ω > 0, then the region of valid values for rij
becomes

rij ∈
(
− 2δ2

π − 2δ2
; 1

)
for both even and odd values of |i − j|, with |δ| < 1/

√
k, because of (22).

This means that even if ω > 0, the rij can also have negative values.

6.2. The case when Ω and Ω∗ have the AR structures. Let us assume
that Ω and Ω∗ have the AR structures. Note that if Ω∗ has the AR structure,
then the vector δ is specified as follows: δ = (ωk, . . . , ω)T .

Let us now derive a formula for corresponding α. We again start from the
general relation (5) and calculate the numerator and denominator of given
expression separately. For the numerator we get

Ω−1δ = (0, . . . , 0, ω)T ,

and the denominator therefore reduces to 1 − δTΩ−1δ = 1 − ω2. Also, as
δTΩ−1δ > 0 if |ω| < 1, the region of valid values of ω is ω ∈ (−1; 1).

Taking into account the forms of the numerator and the denominator of
(5) under current assumptions, the components of α = (α1, . . . , αk)

T are

the following: α1 = . . . = αk−1 = 0 and αk =
ω√

1− ω2
. For the correlation

coefficients we can see that the general formula (3) transforms to

rij =
ω|i−j| − 2

πω
2k+2−i−j√

1− 2
πω

2(k+1−i)
√

1− 2
πω

2(k+1−j)
. (25)

The behaviour of rij for different choices of ω and k is shown in Figure 5.

Remark 5. Let us now examine how the choice of ω affects the correlation
coefficients rij . In the process ω ↑ 1 we have rij ↑ 1. In the process ω → 0
we have rij → 0 (the case of independent marginals). In the process ω ↓ −1,
the value of rij depends on indices i and j: if |i − j| is even, then rij ↑ 1,
and if |i− j| is odd, then rij ↓ −1.

The dependence of the regions for valid values of rij from the parity of
|i− j| is also illustrated in Figure 5. One can also see from this figure that
bigger values of i and j produce smoother curve (especially if the difference
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Figure 5. The relationship between the correlation coeffi-
cients r and ω when Ω and Ω∗ have the AR structures.

of i and j is small) and big difference between i and j results in rij = 0
except for the extreme cases when |ω| is close to 1.

Although the correlation matrix R does not retain the AR-structure, it is
worth noting that there still exists a certain structure.

Proposition 1. Let Z follow a k-variate skew-normal distribution, Z ∼
SN(Ω, δ), such that Ω and Ω∗ have the AR structures. Then the correlation
matrix R = (rij) has the following property:

rij = I{i<j}

j−1∏
m=i

rm,m+1 + I{j<i}

i−1∏
m=j

rm,m+1, i 6= j,

where I{i<j} and I{j<i} are indicator functions.

The proof is straightforward, as the correlation coefficients rij and rm,m+1

are on the form (25).
In other words, the elements on the first off-diagonal of the correlation

matrix R describe the whole structure of R.
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Remark 6. Similar results for the relations between ω and rij and the
regions of their values can be proved for the case when Ω and Ω∗ have
the AR structures. As the calculations are similar, they are omitted. The
obtained formulas are available in the tables in the summary section. It can
also be shown that under these assumptions the correlation matrix R has
exactly the same structure as in Proposition 1.

7. Summary

The main aim of the paper was to investigate the effect of special cases of
Ω and δ to the corresponding skew-normal distribution.

We studied the two special cases of Ω (CS, AR), starting with Ω = I
as the simplest subcase of either structure and find simple formulas for the
parameter vector α, for the correlation coefficients rij and for the valid
regions of ωij and rij .

The following interesting findings can be pointed out:

• when Ω = I and δ has identical components, the only valid values
for correlation coefficients in rij are non-positive and the region of
possible values for rij diminishes with the increase of k (see formula
(9));
• when Ω has the CS structure and δ has identical components, the

correlation matrix R has the CS structure as well, but the converse
implication is not true;
• when Ω∗ and Ω∗ have thr AR structures, it does not imply that

R has the AR structure, yet there is some special structure (see
Proposition 1).

More detailed results are summarized in the following tables.

Assumptions

δ = (δ, . . . , δ)T δ = (ω, . . . , ω)T

Results

α = (α, . . . , α)T α = (α, . . . , α)T

α = δ√
1+(k−1)ω

√
1+(k−1)ω−kδ2

α = ω√
1+(k−1)ω

√
1+(k−1)ω−kω2

rij = r rij = r

r = πω−2δ2
π−2δ2 r = ω(π−2ω)

π−2ω2

r ∈
(
δ2(πk−2k+2)−π
(k−1)(π−2δ2) ; 1

)
r ∈

(
− πk+2
πk2−2 ; 1

)
ω ∈

(
kδ2−1
k−1 ; 1

)
ω ∈

(
− 1
k ; 1
)

Table 1. The case when Ω (or also Ω∗ and Ω∗) has the CS structure.
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Assumptions

δ = (δ, . . . , δ)T

Results

α = (α1, . . . , αk)
T

α1 = αk = δ√
1+ω
√

1+ω−(k(1−ω)+2ω)δ2

α2 = . . . = αk−1 = αk(1− ω) = α1(1− ω)

rij = πω|i−j|−2δ2
π−2δ2

(a) rij ∈

(
π( kδ2−1

(k−2)δ2+1
)|i−j|−2δ2

π−2δ2 ; 1

)
, if |i− j| is odd or |δ| ∈ [

√
1
k , 1)

(b) rij ∈
(
− 2δ2

π−2δ2 ; 1
)

, if |i− j| is even and |δ| <
√

1
k (or ω > 0)

ω ∈
(

kδ2−1
(k−2)δ2+1

; 1
)

Table 2. The case when Ω has the AR structure.

Assumptions

δ = (ωk, . . . , ω)T δ = (ω, . . . , ωk)T

Results

α = (0, . . . , 0, ω√
1−ω2

)T α = ( ω√
1−ω2

, 0, . . . , 0)T

rij =
ω|i−j|− 2

π
ω2k+2−i−j√

1− 2
π
ω2(k+1−i)

√
1− 2

π
ω2(k+1−j)

rij =
ω|i−j|− 2

π
ωi+j√

1− 2
π
ω2i

√
1− 2

π
ω2j

rij ∈ (−1; 1), if |i− j| is odd rij ∈ (−1; 1), if |i− j| is odd

rij ∈ (0; 1), if |i− j| is even or ω > 0 rij ∈ (0; 1), if |i− j| is even or ω > 0

ω ∈ (−1; 1) ω ∈ (−1; 1)

Table 3. The cases when Ω∗ or Ω∗ has the AR structure.
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