Diametral strong diameter two property of Banach spaces is stable under direct sums with 1-norm

Rainis Haller, Katriin Pirk, and Märt Põldvere

Abstract

We prove that the diametral strong diameter 2 property of a Banach space (meaning that, in convex combinations of relatively weakly open subsets of its unit ball, every point has an "almost diametral" point) is stable under 1 -sums, i.e., the direct sum of two spaces with the diametral strong diameter 2 property equipped with the 1-norm has again this property.

All Banach spaces considered in this note are over the real field. The closed unit ball and the unit sphere of a Banach space X will be denoted by B_{X} and S_{X}, respectively. Whenever referring to a relative weak topology, we mean such a topology on the closed unit ball of the space under consideration.

Diameter 2 properties for a Banach space mean that certain subsets of its unit ball (e.g., slices, nonempty relatively weakly open subsets, or convex combinations of weakly open subsets) have diameter equal to 2 . In recent years, these properties have been intensively studied (see, e.g., [1-11] for some typical results and further references).

To clarify the gap between the well-studied Daugavet property [12] and known diameter 2 properties, the diametral diameter 2 properties were introduced and studied in the recent preprint [7]. In particular, the stability under p-sums of diametral diameter 2 properties was analyzed. The question whether the 1-sum of two Banach spaces enjoying the diametral strong diameter 2 property also has this property, was posed as an open problem in [7]. Below, we shall answer this question in the affirmative.

[^0]Definition (see [7]). A Banach space X is said to have the diametral strong diameter 2 property (DSD2P) if, given $n \in \mathbb{N}$, relatively weakly open subsets U_{1}, \ldots, U_{n} of $B_{X}, \lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ with $\sum_{i=1}^{n} \lambda_{i}=1, x \in$ $\sum_{i=1}^{n} \lambda_{i} U_{i}$, and $\varepsilon>0$, there is a $u \in \sum_{i=1}^{n} \lambda_{i} U_{i}$ satisfying

$$
\|x-u\| \geq\|x\|+1-\varepsilon .
$$

Theorem. Suppose that Banach spaces X and Y have the DSD2P. Then also the 1-sum $X \oplus_{1} Y$ has the $D S D 2 P$.

Our proof of Theorem makes use of the following observation:
(\bullet) in Definition, one may assume that the element x is of the form $x=\sum_{i=1}^{n} \lambda_{i} x_{i}$ where $x_{i} \in S_{X} \cap U_{i}$.
For (\bullet), first notice that the space X may be assumed to be infinite dimensional (because clearly no finite dimensional space can have the DSD2P) and the sets U_{1}, \ldots, U_{n} to be convex (because, since $x=\sum_{i=1}^{n} \lambda_{i} u_{i}$ where $u_{i} \in U_{i}$, for every $i \in\{1, \ldots, n\}$, it suffices to consider in the role of U_{i} a convex relatively weakly open neighbourhood V_{i} of u_{i} satisfying $V_{i} \subset U_{i}$). Now, for (\bullet), it suffices to observe that
(o) every $a \in U_{i}$ can be written in the form $a=\left(1-\mu_{i}\right) y_{i}+\mu_{i} z_{i}$ where $\mu_{i} \in[0,1]$ and $y_{i}, z_{i} \in S_{X} \cap U_{i}$,
because, if (\circ) holds, then the element x can be written as

$$
x=\sum_{i=1}^{n} \lambda_{i}\left(1-\mu_{i}\right) y_{i}+\sum_{i=1}^{n} \lambda_{i} \mu_{i} z_{i}
$$

and (by the convexity of U_{1}, \ldots, U_{n})

$$
\sum_{i=1}^{n} \lambda_{i}\left(1-\mu_{i}\right) U_{i}+\sum_{i=1}^{n} \lambda_{i} \mu_{i} U_{i} \subset \sum_{i=1}^{n} \lambda_{i} U_{i}
$$

It remains to prove (o). Let $i \in\{1, \ldots, n\}$ and let $a \in U_{i},\|a\|<1$. Let $m \in \mathbb{N}, x_{1}^{*}, \ldots, x_{m}^{*} \in X^{*}$, and $\delta>0$ be such that

$$
U_{i} \supset\left\{b \in B_{X}:\left|x_{j}^{*}(b)-x_{j}^{*}(a)\right|<\delta, j=1, \ldots, m\right\} .
$$

Choose a non-zero $c \in \bigcap_{j=1}^{m} \operatorname{ker} x_{j}^{*}$ (such a c exists when the space X is infinite dimensional), and consider the function $f(t)=\|a+t c\|, t \in \mathbb{R}$. Since $f(0)=\|a\|<1$ and $f(t) \xrightarrow[t \rightarrow \pm \infty]{ } \infty$, there are $s, t \in(0, \infty)$ such that $f(-s)=f(t)=1$, but now $y_{i}:=a-s c, z_{i}:=a+t c$, and $\mu_{i}:=\frac{s}{s+t}$ do the job.

Proof of Theorem. Put $Z:=X \oplus_{1} Y$, and let $n \in \mathbb{N}$, let $W_{1}, \ldots W_{n}$ be relatively weakly open subsets of B_{Z}, let $\lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ satisfy $\sum_{i=1}^{n} \lambda_{i}=1$, and let $z=\sum_{i=1}^{n} \lambda_{i} z_{i}$ where $z_{i}=\left(x_{i}, y_{i}\right) \in S_{Z} \cap W_{i}$. We must find a
$w=(u, v) \in \sum_{i=1}^{n} \lambda_{i} W_{i}$ so that $\|z-w\| \geq\|z\|+1-\varepsilon$, i.e., putting $x:=$ $\sum_{i=1}^{n} \lambda_{i} x_{i}$ and $y:=\sum_{i=1}^{n} \lambda_{i} y_{i}$ (now one has $z=(x, y)$),

$$
\|x-u\|+\|y-v\| \geq\|x\|+\|y\|+1-\varepsilon
$$

For every $i \in\{1, \ldots, n\}$, putting

$$
\widehat{x}_{i}=\left\{\begin{array}{ll}
\frac{x_{i}}{\left\|x_{i}\right\|}, & \text { if } x_{i} \neq 0, \\
0, & \text { if } x_{i}=0,
\end{array} \quad \text { and } \quad \widehat{y}_{i}= \begin{cases}\frac{y_{i}}{\left\|y_{i}\right\|}, & \text { if } y_{i} \neq 0 \\
0, & \text { if } y_{i}=0\end{cases}\right.
$$

there are relatively weakly open neighbourhoods $U_{i} \subset B_{X}$ and $V_{i} \subset B_{Y}$ of \widehat{x}_{i} and \widehat{y}_{i}, respectively, such that $\left(\left\|x_{i}\right\| U_{i}\right) \times\left(\left\|y_{i}\right\| V_{i}\right) \subset W_{i}$. Indeed, letting $m \in \mathbb{N}, z_{j}^{*}=\left(x_{j}^{*}, y_{j}^{*}\right) \in S_{Z^{*}}, j=1, \ldots, m$, and $\delta>0$ be such that

$$
W_{i} \supset\left\{w \in B_{Z}:\left|z_{j}^{*}(w)-z_{j}^{*}\left(z_{i}\right)\right|<\delta, j=1, \ldots, m\right\}
$$

and defining

$$
\begin{aligned}
U_{i} & :=\left\{u \in B_{X}:\left|x_{j}^{*}(u)-x_{j}^{*}\left(\widehat{x}_{i}\right)\right|<\delta, j=1, \ldots, m\right\}, \\
V_{i} & :=\left\{v \in B_{Y}:\left|y_{j}^{*}(v)-y_{j}^{*}\left(\widehat{y}_{i}\right)\right|<\delta, j=1, \ldots, m\right\},
\end{aligned}
$$

one has, whenever $u \in U_{i}$ and $v \in V_{i}$, for every $j \in\{1, \ldots, m\}$,

$$
\begin{aligned}
\mid z_{j}^{*}\left(\left\|x_{i}\right\| u,\right. & \left.\left\|y_{i}\right\| v\right)-z_{j}^{*}\left(z_{i}\right)\left|=\left|z_{j}^{*}\left(\left\|x_{i}\right\| u,\left\|y_{i}\right\| v\right)-z_{j}^{*}\left(x_{i}, y_{i}\right)\right|\right. \\
& =\left|x_{j}^{*}\left(\left\|x_{i}\right\| u\right)+y_{j}^{*}\left(\left\|y_{i}\right\| v\right)-x_{j}^{*}\left(x_{i}\right)-y_{j}^{*}\left(y_{i}\right)\right| \\
& =\left|x_{j}^{*}\left(\left\|x_{i}\right\| u\right)+y_{j}^{*}\left(\left\|y_{i}\right\| v\right)-x_{j}^{*}\left(\left\|x_{i}\right\| \widehat{x}_{i}\right)-y_{j}^{*}\left(\left\|y_{i}\right\| \widehat{y}_{i}\right)\right| \\
& =\left|\left\|x_{i}\right\| x_{j}^{*}\left(u-\widehat{x}_{i}\right)+\left\|y_{i}\right\| y_{j}^{*}\left(v-\widehat{y}_{i}\right)\right| \\
& \leq\left\|x_{i}\right\|\left|x_{j}^{*}\left(u-\widehat{x}_{i}\right)\right|+\left\|y_{i}\right\|\left|y_{j}^{*}\left(v-\widehat{y}_{i}\right)\right| \\
& <\left(\left\|x_{i}\right\|+\left\|y_{i}\right\|\right) \delta=\left\|z_{i}\right\| \delta \\
& =\delta
\end{aligned}
$$

Put

$$
\alpha:=\sum_{i=1}^{n} \lambda_{i}\left\|x_{i}\right\| \quad \text { and } \quad \beta:=\sum_{i=1}^{n} \lambda_{i}\left\|y_{i}\right\| .
$$

Notice that

$$
\alpha+\beta=\sum_{i=1}^{n} \lambda_{i}\left(\left\|x_{i}\right\|+\left\|y_{i}\right\|\right)=\sum_{i=1}^{n} \lambda_{i}\left\|z_{i}\right\|=\sum_{i=1}^{n} \lambda_{i}=1
$$

We only consider the case when both $\alpha \neq 0$ and $\beta \neq 0$. (The case when $\alpha=0$ or $\beta=0$ can be handled similarly and is, in fact, simpler.)

For every $i \in\{1, \ldots, n\}$, letting

$$
\alpha_{i}:=\frac{\lambda_{i}\left\|x_{i}\right\|}{\alpha} \quad \text { and } \quad \beta_{i}:=\frac{\lambda_{i}\left\|y_{i}\right\|}{\beta}
$$

one has $\alpha_{i}, \beta_{i} \in[0,1]$, and $\sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{i}=1$. Since X and Y have the DSD2P, observing that

$$
\frac{x}{\alpha}=\sum_{i=1}^{n} \frac{\lambda_{i}\left\|x_{i}\right\|}{\alpha} \widehat{x}_{i} \in \sum_{i=1}^{n} \alpha_{i} U_{i} \quad \text { and } \quad \frac{y}{\beta}=\sum_{i=1}^{n} \frac{\lambda_{i}\left\|y_{i}\right\|}{\beta} \widehat{y}_{i} \in \sum_{i=1}^{n} \beta_{i} V_{i}
$$

there are $u_{0} \in \sum_{i=1}^{n} \alpha_{i} U_{i}$ and $v_{0} \in \sum_{i=1}^{n} \beta_{i} V_{i}$ such that

$$
\left\|\frac{x}{\alpha}-u_{0}\right\| \geq \frac{1}{\alpha}\|x\|+1-\varepsilon \quad \text { and } \quad\left\|\frac{y}{\beta}-v_{0}\right\| \geq \frac{1}{\beta}\|y\|+1-\varepsilon
$$

Finally, putting

$$
\begin{aligned}
& u:=\alpha u_{0} \in \sum_{i=1}^{n} \alpha \alpha_{i} U_{i}=\sum_{i=1}^{n} \lambda_{i}\left\|x_{i}\right\| U_{i} \\
& v:=\beta v_{0} \in \sum_{i=1}^{n} \beta \beta_{i} V_{i}=\sum_{i=1}^{n} \lambda_{i}\left\|y_{i}\right\| V_{i}
\end{aligned}
$$

one has

$$
(u, v) \in \sum_{i=1}^{n} \lambda_{i}\left(\left(\left\|x_{i}\right\| U_{i}\right) \times\left(\left\|y_{i}\right\| V_{i}\right)\right) \subset \sum_{i=1}^{n} \lambda_{i} W_{i}
$$

and

$$
\|x-u\|+\|y-v\| \geq\|x\|+\|y\|+(\alpha+\beta)(1-\varepsilon)=\|x\|+\|y\|+1-\varepsilon
$$

as desired.
Thus the stability of the diametral strong diameter 2 property under 1 and ∞-sums is similar to that of the Daugavet property. In fact, among all 1-unconditional sums of two Daugavet spaces only the 1 - and ∞-sum have the Daugavet property. Whether the diametral strong diameter two property and the Daugavet property coincide remains an open question.

Acknowledgements

This research was supported by institutional research funding IUT20-57 of the Estonian Ministry of Education and Research.

The authors thank the referee for a careful reading of the paper, and valuable comments and suggestions which improved the presentation.

References

[1] T. A. Abrahamsen, P. Hájek, O. Nygaard, J. Talponen, and S. Troyanski, Diameter 2 properties and convexity, arXiv:1506.05237v1 [math.FA] (2015).
[2] T. A. Abrahamsen, V. Lima, and O. Nygaard, Remarks on diameter 2 properties, J. Conv. Anal. 20 (2013), 439-452.
[3] M. D. Acosta, J. Becerra Guerrero, and G. López Pérez, Stability results of diameter two properties, J. Convex Anal. 22 (2015), 1-17.
[4] J. Becerra Guerrero, G. López-Pérez, and A. Rueda Zoca, Big slices versus big relatively weakly open subsets in Banach spaces, J. Math. Anal. Appl. 428 (2015), 855865.
[5] J. Becerra Guerrero, G. López-Pérez, and A. Rueda Zoca, Extreme differences between weakly open subsets and convex combinations of slices in Banach spaces, Adv. Math. 269 (2015), 56-70.
[6] J. Becerra Guerrero, G. López-Pérez, and A. Rueda Zoca, Octahedral norms in spaces of operators, J. Math. Anal. Appl. 427 (2015), 171-184.
[7] J. Becerra Guerrero, G. López-Pérez, and A. Rueda Zoca, Diametral and Lipschitz diameter two properties, arXiv:1509. 02061v3 [math.FA] (2016).
[8] R. Haller and J. Langemets, Two remarks on diameter 2 properties, Proc. Estonian Acad. Sci. 63 (2014), 2-7.
[9] R. Haller, J. Langemets, and M. Põldvere, On duality of diameter 2 properties, J. Convex Anal. 22 (2015), 465-483.
[10] G. López-Pérez, The big slice phenomena in M-embedded and L-embedded spaces, Proc. Amer. Math. Soc. 134 (2005), 273-282.
[11] O. Nygaard and D. Werner, Slices in the unit ball of a uniform algebra, Arch. Math. 76 (2001), 441-444.
[12] D. Werner, Recent progress on the Daugavet property, Irish. Math. Soc. Bull. 46 (2001), 77-97.

Institute of Mathematics and Statistics, University of Tartu, J. Lifvi 2, 50409 Tartu, Estonia

E-mail address: rainis.haller@ut.ee
E-mail address: katriinp@ut.ee
E-mail address: mart.poldvere@ut.ee

[^0]: Received March 31, 2016.
 2010 Mathematics Subject Classification. 46B20, 46B22.
 Key words and phrases. Banach space, diameter 2 property, Daugavet property, 1-sum, relatively weakly open set.
 http://dx.doi.org/10.12697/ACUTM.2016.20.08

