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On Jordan’s and Kober’s inequality

Barkat Ali Bhayo and József Sándor

Abstract. We refine some classical inequalities for trigonometric func-
tions, such as Jordan’s inequality, Cusa–Huygens’s inequality, and Kober’s
inequality.

1. Introduction

The study of classical inequalities for trigonometric functions such as
the inequalities of Adamović–Mitrinović, Cusa–Huygens, Jordan, Redhef-
fer, Becker–Stark, Wilker, Huygens, and Kober has caught the attention of
numerous authors. Since the last ten years, a large number of papers on
refinement and generalization of these inequalities has appeared (see, e.g.,
[1, 2, 5, 6, 8, 9, 10, 14, 16, 15, 17] and the references therein). Motivated by
these studies, we refine Jordan’s, Kober’s and Cusa–Huygens’s inequalities.

The well-know Jordan’s inequality (see [7]) states that

π

2
≤ sinx

x
, 0 < x ≤ π

2
, (1.1)

with equality for x = π/2.
In 2003, Debnath and Zhao [3] refined the inequality (1.1) as follows:

d1(x) :=
2

π
+

1

12π
(π2 − 4x2) ≤ sinx

x
,

d2(x) :=
2

π
+

1

π3
(π2 − 4x2) ≤ sinx

x
(1.2)

for x ∈ (0, π/2), with equality in both inequalities for x = π/2. Thereafter,
another proof of the inequality (1.2) was given by Zhu in [20].
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In 2006, Özban [11] proved the inequality

o(x) :=
2

π
+

1

π3
(π2 − 4x2) +

4(π − 3)

π3

(
x− π

2

)2
≤ sinx

x
, (1.3)

for x ∈ (0, π/2), with equality for x = π/2.
In the same year, the following refinement of (1.1) was proved by Jiang

and Yun [4]:

j(x) =
2

π
+
π4 − 16x4

2π5
<

sinx

x
for x ∈ (0, π/2), with equality for x = π/2.

In [19], Zhang et al. gave the following inequality:

zw(x) :=
3

π
− 4

π3
x2 <

sinx

x
, 0 < x <

π

2
.

It is easy to see that d1(x) < d2(x), d2(x) = zw(x), and j(x) < d2(x) <
o(x) for x ∈ (0, π/2).

Our first main result refines the inequality (1.3).

Theorem 1. For x ∈ (0, π/2), we have

o(x) ≤ 1 +
16(π − 3)

π4
x3 − 4(3π − 8)

π3
x2 ≤ sinx

x
,

with equality in both inequalities for x = π/2.

In literature, the inequalities

(cosx)1/3 <
sinx

x
<

cosx+ 2

3
, 0 < |x| < π

2
, (1.4)

are known as Adamović–Mitrinović’s inequality (see [7, p. 238]) and Cusa–
Huygens’s inequality (see [15]), respectively. For a refinement of (1.4), see,
e.g., [5, 8, 10, 16, 15, 17] and the bibliography of these papers. Most of
the refinements of (1.4) involve very complicated upper and lower bounds
of (sinx)/x. In the following theorem, we refine (1.4) by giving the upper
and lower bound of (sinx)/x in terms of much simpler functions, and these
functions are also independent of the exponent.

Theorem 2. For x ∈ (0, π), we have

1 + cosx

2− αx2
<

sinx

x
<

1 + cosx

2− βx2
,

with the best possible constants α = 1/6 ≈ 0.166667 and β = 2/π2 ≈
0.202642.

In 1944, Kober [7, 3.4.9] established the inequalities

1− 2
x

π
< cosx, x ∈

(
0,
π

2

)
, and cosx < 1− x2

π
, x ∈

(π
2
, π

)
.

In literature, these inequalities are known as Kober’s inequalities.
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By studying the function x 7→ (1 − cosx)/x, x ∈ (0, π/2), Sándor [13]
refined Kober’s inequalities as follows:

cosx < 1− 2

π
x− 2(π − 2)

π2

(
x− π

2

)
, 0 < x <

π

2
,

1− x2

2
< cosx < 1− 4x2

π2
, 0 < x <

π

2
.

In [19], the following refinement appeared:

1− 4− π
π

x− 2(π − 2)

π2
x2 < cosx < 1− 4

π2
x2, 0 < x <

π

2
.

By applying Taylor series expansion, one has

1− x2

2
< cosx < 1− x2

2
+
x4

24
, 0 < x <

π

2
.

Using Mathematica Software R© [12], we conclude that our next result re-
fines the above Kober’s inequalities.

Theorem 3. For x ∈ (0, π/2), we have

1− x2/2

1 + x2/12
< cosx < 1− 24x2/(5π2)

1 + 4x2/(5π2)
.

Remark 1. For x ∈ (0, π/2), the inequalities(
π2 − 4x2

12

)3/2

< cosx <

(
1− x2

3

)3/2

(1.5)

hold. The proof of (1.5) follows from the monotonicity of the function

f1(x) = (cosx)2/3 + x2/3, which is strictly decreasing from (0, π/2) onto
(π2/12, 1), because by Adamović–Mitrinović’s inequality, we have

f ′1(x) =
2x

3
− 2 sinx

3(cosx)1/3
=

2x

3

(
1− (sinx)/x

(cosx)1/3

)
< 0.

Clearly, limx→0 f1(x) = 1 and limx→π/2 f1(x) = π2/12. Using Mathemat-
ica Software R©, we can see that the second inequality in (1.5) refines the
corresponding inequality in Theorem 3 for x ∈ (0, 1.1672).

2. Proofs of main results

Proof of Theorem 2. For x ∈ (0, π), let

g1(x) =
(1 + cosx)

x sinx
− 2

x2
.
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Differentiating g1 with respect to x, we get

g′1(x) =
4

x3
− 1

x
− 1 + cosx

x2 sinx
− (1 + cosx) cosx

x sinx

=
4(1− cosx)/x2 − 1− (sinx)/x

x(1− cosx)
.

In order to prove that g′1(x) < 0, we must show that

4(1− cosx)/x2 < 1 + (sinx)/x

or, equivalently,

a(x) = x2 + x sinx+ 4 cosx− 4 > 0

for x ∈ (0, π). This is true, as one has

a′(x) = (2 + x) cosx− 3 sinx > 0

by Cusa–Huygens’s inequality (sinx)/x < (2 + cosx)/3, valid for all x ∈
(0, π) (in fact it holds for all x 6= 0, see [7, Problems 5.11 and 5.15], [18,
Lemma 2.4]). Thus a(x) > a(0) = 0, and it follows that g1 is strictly
decreasing in x ∈ (0, π). By applying l’Hôpital’s rule, we get the limiting
values. This completes the proof. �

Lemma 1. The function

f2(x) =
x− sinx

x3

is strictly decreasing and concave from (0, π) onto (1/π2, 1/6). In particular,
for x ∈ (0, π),

1− x2

6
<

sinx

x
< 1− x2

π2
.

Proof. One has

f ′2(x) =
1− cosx

x3
− 3

x− sinx

x4
=

3(sinx)/x− 2− cosx

x4
,

which is negative by Cusa–Huygens’s inequality, hence f2 is strictly decreas-
ing in x ∈ (0, π). Further,

f ′′2 (x) =
2 cosx+ x sinx− 2

x5
− 4

x5
(3 sinx− x(2 + cosx))

=
6x(1 + cosx)− (12− x2) sinx

x5
,

which is negative by Theorem 2. This implies the concavity of the func-
tion f2. �
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Proof of Theorem 1. Since by Lemma 1 the function f2(x) is concave in
(0, π/2), the tangent line at the point (π/2, f2(π/2)) is above the graph of
f2(x) on (0, π/2). The equation of the tangent line is

y =
4(π − 2)

π3
+

16(3− π)

π4
(x− π/2).

After some computations, we get the desired inequality. The first inequality
is equivalent to

−4(π − 3)(π − 2x)2x

π4
< 0,

which is obvious. This completes the proof. �

Proof of Theorem 3. For x ∈ (0, π/2), let

f(x) =
x2(5 + cosx)

1− cosx
.

We have

f ′(x) =
2x(5− g(x))

(cosx− 1)2
,

where

g(x) = cosx(4 + cosx) + 3x sinx.

Further,

g′(x) = 3x cosx− (1 + 2 cosx) sinx

= x cosx

(
3−

(
2

sinx

x
+

tanx

x

))
,

which is negative by Huygens’s inequality (see [10])

2
sinx

x
+

tanx

x
> 3, 0 < x <

π

2
.

Thus, g is decreasing and limx→0 g(x) = 5. It follows that f ′ > 0. This
implies that f is strictly increasing. Applying l’Hôpital’s rule, we get

12 = lim
x→0

f(x) < f(x) < lim
x→0

f(x) =
5π2

4
≈ 12.33701,

which is equivalent to

6

1 + x2/12
− 5 < cosx <

6

1 + 4x2/(5π2)
− 5.

This implies the desired inequalities. �
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