On Jordan's and Kober's inequality

Barkat Ali Bhayo and József SÁndor

Abstract

We refine some classical inequalities for trigonometric functions, such as Jordan's inequality, Cusa-Huygens's inequality, and Kober's inequality.

1. Introduction

The study of classical inequalities for trigonometric functions such as the inequalities of Adamović-Mitrinović, Cusa-Huygens, Jordan, Redheffer, Becker-Stark, Wilker, Huygens, and Kober has caught the attention of numerous authors. Since the last ten years, a large number of papers on refinement and generalization of these inequalities has appeared (see, e.g., [1, 2, 5, 6, 8, 9, 10, 14, 16, 15, 17, and the references therein). Motivated by these studies, we refine Jordan's, Kober's and Cusa-Huygens's inequalities.

The well-know Jordan's inequality (see [7) states that

$$
\begin{equation*}
\frac{\pi}{2} \leq \frac{\sin x}{x}, \quad 0<x \leq \frac{\pi}{2} \tag{1.1}
\end{equation*}
$$

with equality for $x=\pi / 2$.
In 2003, Debnath and Zhao [3] refined the inequality (1.1) as follows:

$$
\begin{align*}
d_{1}(x) & :=\frac{2}{\pi}+\frac{1}{12 \pi}\left(\pi^{2}-4 x^{2}\right) \leq \frac{\sin x}{x} \\
d_{2}(x) & :=\frac{2}{\pi}+\frac{1}{\pi^{3}}\left(\pi^{2}-4 x^{2}\right) \leq \frac{\sin x}{x} \tag{1.2}
\end{align*}
$$

for $x \in(0, \pi / 2)$, with equality in both inequalities for $x=\pi / 2$. Thereafter, another proof of the inequality (1.2) was given by Zhu in [20].

[^0]In 2006, Özban [11] proved the inequality

$$
\begin{equation*}
o(x):=\frac{2}{\pi}+\frac{1}{\pi^{3}}\left(\pi^{2}-4 x^{2}\right)+\frac{4(\pi-3)}{\pi^{3}}\left(x-\frac{\pi}{2}\right)^{2} \leq \frac{\sin x}{x} \tag{1.3}
\end{equation*}
$$

for $x \in(0, \pi / 2)$, with equality for $x=\pi / 2$.
In the same year, the following refinement of (1.1) was proved by Jiang and Yun [4]:

$$
j(x)=\frac{2}{\pi}+\frac{\pi^{4}-16 x^{4}}{2 \pi^{5}}<\frac{\sin x}{x}
$$

for $x \in(0, \pi / 2)$, with equality for $x=\pi / 2$.
In [19], Zhang et al. gave the following inequality:

$$
z w(x):=\frac{3}{\pi}-\frac{4}{\pi^{3}} x^{2}<\frac{\sin x}{x}, \quad 0<x<\frac{\pi}{2}
$$

It is easy to see that $d_{1}(x)<d_{2}(x), d_{2}(x)=z w(x)$, and $j(x)<d_{2}(x)<$ $o(x)$ for $x \in(0, \pi / 2)$.

Our first main result refines the inequality (1.3).
Theorem 1. For $x \in(0, \pi / 2)$, we have

$$
o(x) \leq 1+\frac{16(\pi-3)}{\pi^{4}} x^{3}-\frac{4(3 \pi-8)}{\pi^{3}} x^{2} \leq \frac{\sin x}{x}
$$

with equality in both inequalities for $x=\pi / 2$.
In literature, the inequalities

$$
\begin{equation*}
(\cos x)^{1 / 3}<\frac{\sin x}{x}<\frac{\cos x+2}{3}, \quad 0<|x|<\frac{\pi}{2} \tag{1.4}
\end{equation*}
$$

are known as Adamović-Mitrinović's inequality (see [7, p. 238]) and CusaHuygens's inequality (see [15]), respectively. For a refinement of 1.4 , see, e.g., [5, 8, 10, 16, 15, 17] and the bibliography of these papers. Most of the refinements of (1.4) involve very complicated upper and lower bounds of $(\sin x) / x$. In the following theorem, we refine (1.4) by giving the upper and lower bound of $(\sin x) / x$ in terms of much simpler functions, and these functions are also independent of the exponent.

Theorem 2. For $x \in(0, \pi)$, we have

$$
\frac{1+\cos x}{2-\alpha x^{2}}<\frac{\sin x}{x}<\frac{1+\cos x}{2-\beta x^{2}}
$$

with the best possible constants $\alpha=1 / 6 \approx 0.166667$ and $\beta=2 / \pi^{2} \approx$ 0.202642 .

In 1944, Kober [7, 3.4.9] established the inequalities

$$
1-2 \frac{x}{\pi}<\cos x, \quad x \in\left(0, \frac{\pi}{2}\right), \quad \text { and } \cos x<1-\frac{x^{2}}{\pi}, \quad x \in\left(\frac{\pi}{2}, \pi\right)
$$

In literature, these inequalities are known as Kober's inequalities.

By studying the function $x \mapsto(1-\cos x) / x, x \in(0, \pi / 2)$, Sándor [13] refined Kober's inequalities as follows:

$$
\begin{gathered}
\cos x<1-\frac{2}{\pi} x-\frac{2(\pi-2)}{\pi^{2}}\left(x-\frac{\pi}{2}\right), \quad 0<x<\frac{\pi}{2} \\
1-\frac{x^{2}}{2}<\cos x<1-\frac{4 x^{2}}{\pi^{2}}, \quad 0<x<\frac{\pi}{2}
\end{gathered}
$$

In [19], the following refinement appeared:

$$
1-\frac{4-\pi}{\pi} x-\frac{2(\pi-2)}{\pi^{2}} x^{2}<\cos x<1-\frac{4}{\pi^{2}} x^{2}, \quad 0<x<\frac{\pi}{2} .
$$

By applying Taylor series expansion, one has

$$
1-\frac{x^{2}}{2}<\cos x<1-\frac{x^{2}}{2}+\frac{x^{4}}{24}, \quad 0<x<\frac{\pi}{2}
$$

Using Mathematica Software ${ }^{\circledR}$ [12], we conclude that our next result refines the above Kober's inequalities.

Theorem 3. For $x \in(0, \pi / 2)$, we have

$$
1-\frac{x^{2} / 2}{1+x^{2} / 12}<\cos x<1-\frac{24 x^{2} /\left(5 \pi^{2}\right)}{1+4 x^{2} /\left(5 \pi^{2}\right)}
$$

Remark 1. For $x \in(0, \pi / 2)$, the inequalities

$$
\begin{equation*}
\left(\frac{\pi^{2}-4 x^{2}}{12}\right)^{3 / 2}<\cos x<\left(1-\frac{x^{2}}{3}\right)^{3 / 2} \tag{1.5}
\end{equation*}
$$

hold. The proof of 1.5 follows from the monotonicity of the function $f_{1}(x)=(\cos x)^{2 / 3}+x^{2} / 3$, which is strictly decreasing from $(0, \pi / 2)$ onto $\left(\pi^{2} / 12,1\right)$, because by Adamović-Mitrinović's inequality, we have

$$
f_{1}^{\prime}(x)=\frac{2 x}{3}-\frac{2 \sin x}{3(\cos x)^{1 / 3}}=\frac{2 x}{3}\left(1-\frac{(\sin x) / x}{(\cos x)^{1 / 3}}\right)<0
$$

Clearly, $\lim _{x \rightarrow 0} f_{1}(x)=1$ and $\lim _{x \rightarrow \pi / 2} f_{1}(x)=\pi^{2} / 12$. Using Mathematica Software ${ }^{\circledR}$, we can see that the second inequality in 1.5 refines the corresponding inequality in Theorem 3 for $x \in(0,1.1672)$.

2. Proofs of main results

Proof of Theorem 2. For $x \in(0, \pi)$, let

$$
g_{1}(x)=\frac{(1+\cos x)}{x \sin x}-\frac{2}{x^{2}} .
$$

Differentiating g_{1} with respect to x, we get

$$
\begin{aligned}
g_{1}^{\prime}(x) & =\frac{4}{x^{3}}-\frac{1}{x}-\frac{1+\cos x}{x^{2} \sin x}-\frac{(1+\cos x) \cos x}{x \sin x} \\
& =\frac{4(1-\cos x) / x^{2}-1-(\sin x) / x}{x(1-\cos x)} .
\end{aligned}
$$

In order to prove that $g_{1}^{\prime}(x)<0$, we must show that

$$
4(1-\cos x) / x^{2}<1+(\sin x) / x
$$

or, equivalently,

$$
a(x)=x^{2}+x \sin x+4 \cos x-4>0
$$

for $x \in(0, \pi)$. This is true, as one has

$$
a^{\prime}(x)=(2+x) \cos x-3 \sin x>0
$$

by Cusa-Huygens's inequality $(\sin x) / x<(2+\cos x) / 3$, valid for all $x \in$ $(0, \pi)$ (in fact it holds for all $x \neq 0$, see [7, Problems 5.11 and 5.15], [18, Lemma 2.4]). Thus $a(x)>a(0)=0$, and it follows that g_{1} is strictly decreasing in $x \in(0, \pi)$. By applying l'Hôpital's rule, we get the limiting values. This completes the proof.

Lemma 1. The function

$$
f_{2}(x)=\frac{x-\sin x}{x^{3}}
$$

is strictly decreasing and concave from $(0, \pi)$ onto $\left(1 / \pi^{2}, 1 / 6\right)$. In particular, for $x \in(0, \pi)$,

$$
1-\frac{x^{2}}{6}<\frac{\sin x}{x}<1-\frac{x^{2}}{\pi^{2}} .
$$

Proof. One has

$$
f_{2}^{\prime}(x)=\frac{1-\cos x}{x^{3}}-3 \frac{x-\sin x}{x^{4}}=\frac{3(\sin x) / x-2-\cos x}{x^{4}},
$$

which is negative by Cusa-Huygens's inequality, hence f_{2} is strictly decreasing in $x \in(0, \pi)$. Further,

$$
\begin{aligned}
f_{2}^{\prime \prime}(x) & =\frac{2 \cos x+x \sin x-2}{x^{5}}-\frac{4}{x^{5}}(3 \sin x-x(2+\cos x)) \\
& =\frac{6 x(1+\cos x)-\left(12-x^{2}\right) \sin x}{x^{5}},
\end{aligned}
$$

which is negative by Theorem 2. This implies the concavity of the function f_{2}.

Proof of Theorem 1. Since by Lemma 1 the function $f_{2}(x)$ is concave in $(0, \pi / 2)$, the tangent line at the point $\left(\pi / 2, f_{2}(\pi / 2)\right)$ is above the graph of $f_{2}(x)$ on $(0, \pi / 2)$. The equation of the tangent line is

$$
y=\frac{4(\pi-2)}{\pi^{3}}+\frac{16(3-\pi)}{\pi^{4}}(x-\pi / 2)
$$

After some computations, we get the desired inequality. The first inequality is equivalent to

$$
-\frac{4(\pi-3)(\pi-2 x)^{2} x}{\pi^{4}}<0
$$

which is obvious. This completes the proof.

Proof of Theorem 3. For $x \in(0, \pi / 2)$, let

$$
f(x)=\frac{x^{2}(5+\cos x)}{1-\cos x}
$$

We have

$$
f^{\prime}(x)=\frac{2 x(5-g(x))}{(\cos x-1)^{2}}
$$

where

$$
g(x)=\cos x(4+\cos x)+3 x \sin x
$$

Further,

$$
\begin{aligned}
g^{\prime}(x) & =3 x \cos x-(1+2 \cos x) \sin x \\
& =x \cos x\left(3-\left(2 \frac{\sin x}{x}+\frac{\tan x}{x}\right)\right)
\end{aligned}
$$

which is negative by Huygens's inequality (see [10])

$$
2 \frac{\sin x}{x}+\frac{\tan x}{x}>3, \quad 0<x<\frac{\pi}{2}
$$

Thus, g is decreasing and $\lim _{x \rightarrow 0} g(x)=5$. It follows that $f^{\prime}>0$. This implies that f is strictly increasing. Applying l'Hôpital's rule, we get

$$
12=\lim _{x \rightarrow 0} f(x)<f(x)<\lim _{x \rightarrow 0} f(x)=\frac{5 \pi^{2}}{4} \approx 12.33701
$$

which is equivalent to

$$
\frac{6}{1+x^{2} / 12}-5<\cos x<\frac{6}{1+4 x^{2} /\left(5 \pi^{2}\right)}-5
$$

This implies the desired inequalities.
Acknowledgment. The authors thank the anonymous referee for careful reading of the paper and valuable comments.

References

[1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Monotonicity rules in calculus, Amer. Math. Monthly 113 (2006), 805-816.
[2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Monotonicity of some functions in calculus, preprint, https://www.math.auckland.ac.nz/Research/Reports/Series/538.pdf.
[3] L. Debnath and C.-J. Zhao, New strengthened Jordan's inequality and its applications, Appl. Math. Lett. 16 (2003), 557-560.
[4] W.-D. Jiang and H. Yun, Sharpening of Jordan's inequality and its applications, IJPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 102, 4 pp.
[5] R. Klén, M. Visuri, and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. Appl. 2010, Art. ID 362548, 14 pp.
[6] J.-L. Li and Y.-L. Li, On the strengthened Jordan's inequality, J. Inequal. Appl. 2007, Art. ID 74328, 8 pp.
[7] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[8] E. Neuman, Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions, Adv. Inequal. Appl. 1 (2012), 1-11.
[9] E. Neuman, Inequalities involving hyperbolic functions and trigonometric functions, Bull. Int. Math. Virtual Inst. 2 (2012), 87-92.
[10] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13 (2010), 715-723.
[11] A. Y. Özban, A new refined form of Jordan's inequality and its applications, Appl. Math. Lett. 19 (2006), 155-160.
[12] H. Ruskeepää, Mathematica ${ }^{\circledR}$ Navigator. 3rd ed. Academic Press, 2009.
[13] J. Sándor, On new refinements of Kober's and Jordan's trigonometric inequalities, Notes Number Theory Discrete Math. 19 (2013), no. 1, 73-83.
[14] J. Sándor, Sharp Cusa-Huygens and related inequalities, Notes Number Theory Discrete Math. 19 2013, no. 1, 50-54.
[15] J. Sándor and M. Bencze, On Huygens' trigonometric inequality, RGMIA Res. Rep. Coll. 8 (2005), Art. 14.
[16] J. Sándor and R. Oláh-Gál, On Cusa-Huygens type trigonometric and hyperbolic inequalities, Acta Univ. Sapientiae Math. 4 (2012), 145-153.
[17] Z.-H. Yang, Refinements of a two-sided inequality for trigonometric functions, J. Math. Inequal. 7 (2013), 601-615.
[18] Z.-H. Yang, Three families of two-parameters means constructed by trigonometric functions, J. Inequal. Appl. 2013, 2013:541, 27 pp.
[19] X. Zhang, G. Wang, and Y. Chu, Extensions and sharpenings of Jordan's and Kober's inequalities, J. Inequal. Pure. Appl. Math. 7 (2006), no. 2, Article 63, 3 pp.
[20] L. Zhu, Sharpening Jordan's inequality and the Yang Le inequality, Appl. Math. Lett. 19 (2006), 240-243.

Koulutuskeskus Salpaus (Salpaus Further Education), Lahti, Finland
E-mail address: bhayo.barkat@gmail.com
Babes-Bolyai University Department of Mathematics Str. Kogalniceanu NR. 1400084 Cluj-Napoca, Romania

E-mail address: jsandor@math.ubbcluj.ro

[^0]: Received July 15, 2015.
 2010 Mathematics Subject Classification. 26D05; 26D07; 26D99.
 Key words and phrases. Cusa-Huygens's inequality; Jordan's inequality; Kober's inequality; trigonometric functions.
 http://dx.doi.org/10.12697/ACUTM.2016.20.09

