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On Jordan’s and Kober’s inequality

BARKAT ALI BHAYO AND JOZSEF SANDOR

ABSTRACT. We refine some classical inequalities for trigonometric func-
tions, such as Jordan’s inequality, Cusa—Huygens’s inequality, and Kober’s
inequality.

1. Introduction

The study of classical inequalities for trigonometric functions such as
the inequalities of Adamovi¢-Mitrinovi¢, Cusa—Huygens, Jordan, Redhef-
fer, Becker—Stark, Wilker, Huygens, and Kober has caught the attention of
numerous authors. Since the last ten years, a large number of papers on
refinement and generalization of these inequalities has appeared (see, e.g.,
[1, 2, [ 6, 18, @, 10} 14 16l 15 17] and the references therein). Motivated by
these studies, we refine Jordan’s, Kober’s and Cusa—Huygens’s inequalities.

The well-know Jordan’s inequality (see [7]) states that

™ sinzx
— <
27 =z
with equality for z = /2.

In 2003, Debnath and Zhao [3] refined the inequality (|L.1]) as follows:

: O<x§g, (1.1)

2 1 sinzx
di(z) 1:;+m(772—496‘2)§ ot
1 sinz

(1.2)

2
dy(z) = - + ﬁ(ﬂ'z —4x?) <

for = € (0,7/2), with equality in both inequalities for z = m/2. Thereafter,
another proof of the inequality (1.2)) was given by Zhu in [20].
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In 2006, Ozban [11] proved the inequality

2 1 4(r —3 m\2 _sinz
o(z) = - + ;(WZ — 42%) + (773) (x — 5) <
for x € (0,7/2), with equality for x = 7/2.
In the same year, the following refinement of was proved by Jiang
and Yun [4]:

;o (13)

T

(2) 2+7r4—16334<sinx
x)=—
J T 270 x
for x € (0,7/2), with equality for x = 7/2.

In [I9], Zhang et al. gave the following inequality:

zw(x) == % - %aﬁ < Sn;w, 0<z< g

It is easy to see that dy(z) < da(z), da(z) = zw(z), and j(z) < da(z) <
o(z) for x € (0,7/2).

Our first main result refines the inequality .

Theorem 1. For x € (0,7/2), we have

o(z) <1+ L;?’)x:ﬂ B 4(37T73—8)x2 o sinz
T T T

with equality in both inequalities for x = w/2.

)

In literature, the inequalities

13 _ sinx _ cosx +2 ™
) <——< 3 ,0<]a:\<2,
are known as Adamovié-Mitrinovi¢’s inequality (see [7), p. 238]) and Cusa—
Huygens’s inequality (see [15]), respectively. For a refinement of , see,
e.g., [5, 8, [I0L 16, 15, 17] and the bibliography of these papers. Most of
the refinements of involve very complicated upper and lower bounds
of (sinz)/x. In the following theorem, we refine by giving the upper
and lower bound of (sinz)/z in terms of much simpler functions, and these
functions are also independent of the exponent.

(1.4)

(cosz

Theorem 2. For x € (0,7), we have
l4+cosx sinz 14cosx
2 — ax? x <2—,8x2’
with the best possible constants a = 1/6 ~ 0.166667 and B = 2/m% =~
0.202642.

In 1944, Kober [7, 3.4.9] established the inequalities
2
1—2E <cosx, «xE€ (O,E), and cosz < 1—x—, T € (E,ﬂ').
s 2 s 2

In literature, these inequalities are known as Kober’s inequalities.
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By studying the function z +— (1 — cosx)/z, z € (0,7/2), Sandor [13]
refined Kober’s inequalities as follows:

2 2(m — 2
cosx<1——x—M(az—z), 0<x<z,
T 2 2 2
2 2
T 4z s
1—— 1-—, 0 —.
2<COS:E< poR <$<2

In [I9], the following refinement appeared:

4 — 2(mr — 2
Ww— (772 )x2<cosx<1— 3
T T T

T
—x2, O<a:<§.

1—

By applying Taylor series expansion, one has

2 .%'2 1.4

T s
1—— l1——+—, 0 —.
2<Cos.ac< 2—1-24, <91:<2

Using Mathematica Software® [12], we conclude that our next result re-
fines the above Kober’s inequalities.

Theorem 3. For z € (0,7/2), we have
2/2 2422 /(572
T2 sp e 2A/OT)
14+ 22/12 1+ 422/(5m2)
Remark 1. For z € (0,7/2), the inequalities

2 _ g2\ 3/2 2\ 3/2
<771233> <cosx < <1 - g) (1.5)

hold. The proof of (L.5) follows from the monotonicity of the function
fi(z) = (cosz)?3 4+ x2/3, which is strictly decreasing from (0,7/2) onto
(72/12,1), because by Adamovié-Mitrinovié’s inequality, we have

2x 2sinz 2z (1_ (sinx)/$) <o

filz) = 3 3(cosz) /3 3 (cosz)1/3

Clearly, limgo fi(z) = 1 and lim,_,; /> fi(x) = 72/12. Using Mathemat-
ica Software®, we can see that the second inequality in (1.5) refines the
corresponding inequality in Theorem (3| for z € (0, 1.1672).

2. Proofs of main results
Proof of Theorem[9 For z € (0,7), let

(I4+cosz) 2

gi(z) = rsine a2
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Differentiating g1 with respect to x, we get

, 4 1 1+4cosz (1+cosz)cosz
n@)=—5--—-—F_— - :
23 x  2?sinx xsinx
_ 4(1—cosz)/a? — 1 — (sinz)/x

x(1 — cosx)
In order to prove that g} (z) < 0, we must show that
4(1 —cosx)/x* < 1+ (sinz)/x
or, equivalently,
a(r) =2> + zsinz +4cosz —4 >0
for x € (0, 7). This is true, as one has
a'(z) = (2+x)cosx — 3sinz > 0

by Cusa—Huygens’s inequality (sinz)/z < (2 4 cosx)/3, valid for all x €
(0,7) (in fact it holds for all  # 0, see [7, Problems 5.11 and 5.15], [18]
Lemma 2.4]). Thus a(x) > a(0) = 0, and it follows that g¢; is strictly
decreasing in z € (0,7). By applying I'Hopital’s rule, we get the limiting
values. This completes the proof. ]

Lemma 1. The function

is strictly decreasing and concave from (0,7) onto (1/72,1/6). In particular,
for x € (0,m),
2

T sinz x
1-—< <1l-—.
6 x 2
Proof. One has
1—cosx _x—sinz 3(sinz)/z—2—cosz
fé('r) = 3 -3 4 = 4 ’
x x x

which is negative by Cusa—Huygens’s inequality, hence fs is strictly decreas-
ing in = € (0, 7). Further,

2cosx +xsinx —2 4
1" .
= ——=(3 —x(2
5 (1) 5 $5( sinz — z(2 + cos z))
_ 6x(1+cosz) — (12— 2?)sinz
= - 7
T

which is negative by Theorem This implies the concavity of the func-
tion fo. O
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Proof of Theorem[1. Since by Lemma [1] the function fa(x) is concave in
(0,7/2), the tangent line at the point (7/2, fo(7/2)) is above the graph of
fa(x) on (0,7/2). The equation of the tangent line is

y— A(m - 2) n 16(34 7r)(:c—7r/2).
T 7r
After some computations, we get the desired inequality. The first inequality
is equivalent to

A = 3)(m — 27)%x <0,

1
s
which is obvious. This completes the proof. ]

Proof of Theorem[3 For z € (0,7/2), let
2%(5 4 cos )

J(@) = 1—cosx
We have 2005 — g(x)
, z(5b—g(x
Jla) = (cosz —1)%”7
where
g(x) = cosz(4+ cosz) + 3xsinz.
Further,

g (z) =3z cosz — (1 +2cosz)sinz

i t
:{ECOS{E<3— <251n:1:+ an:U))’
x T
)

which is negative by Huygens’s inequality (see [10]

sinx tanx
+

P > 3, O<x<g.

x
Thus, g is decreasing and lim, o g(x) = 5. It follows that f/ > 0. This
implies that f is strictly increasing. Applying ’'Hopital’s rule, we get

. . 572

12 = ilg%) flz) < f(z) < ill)% flz) = -~ 12.33701,

which is equivalent to

6 6
————5< < —
11 22/12 TS T 422/ (5r2)
This implies the desired inequalities. ([l
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