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On translation surfaces in 4-dimensional

Euclidean space

Kadri Arslan, Bengü Bayram, Betül Bulca, and Günay Öztürk

Abstract. We consider translation surfaces in Euclidean spaces. Firstly,
we give some results of translation surfaces in the 3-dimensional
Euclidean space E

3
. Further, we consider translation surfaces in the

4-dimensional Euclidean space E
4. We prove that a translation surface

is flat in E
4 if and only if it is either a hyperplane or a hypercylinder.

Finally we give necessary and sufficient condition for a quadratic trian-
gular Bézier surface in E

4 to become a translation surface.

1. Introduction

Surfaces of constant mean curvature, H-surfaces and those of constant
Gaussian curvature, K-surfaces in the 3-dimensional Euclidean space E

3

have been studied extensively. An interesting class of surfaces in E
3 is that

of translation surfaces, which can be parameterized locally as X(u, v) =
(u, v, f(u) + g(v)), where f and g are smooth functions.

From the definition, it is clear that translation surfaces are double curved
surfaces. Therefore, translation surfaces are made up of quadrilateral, that
is, four sided, facets. Because of this property, translation surfaces are used
in architecture to design and construct free-form glass roofing structures
(see [4]). Generally, these glass roofings are made up of triangular glass
facets or curved glass panes. But, since quadrangular glass elements lead to
economic advantages and more transparency compared to a triangular grid,
translation surface are used as a basis for roofings.

Scherk’s surface, obtained by H. Scherk [8], is the only non flat minimal
surface, that can be represented as a translation surface.
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Translation surfaces have been investigated from various viewpoints by
many differential geometers. L. Verstraelen et al. [10] have investigated
minimal translation surfaces in n-dimensional Euclidean spaces. H. Liu [7]
has given a classification of translation surfaces with constant mean curva-
ture or constant Gaussian curvature in the 3-dimensional Euclidean space
E
3 and the 3-dimensional Minkowski space E

3
1. In [5], W. Goemans proved

classification theorems of Weingarten translation surfaces. D. W. Yoon [11]
has studied translation surfaces in the 3-dimensional Minkowski space whose
Gauss map G satisfies the condition ∆G = AG, A ∈ Mat(3,R), where ∆
denotes the Laplacian of the surface with respect to the induced metric and
Mat(3,R) is the set of 3× 3 real matrices. M. I. Munteanu and A. I. Nistor
[6] have studied the second fundamental form of translation surfaces in E

3.
They have given a non-existence result for polynomial translation surfaces in
E
3 with vanishing second Gaussian curvature KII . They have also classified

those translation surfaces for which KII and H are proportional.
In this paper, we consider translation surfaces in the 4-dimensional Eu-

clidean space E4. We prove that a translation surface is flat in E
4 if and only

if it is either a hyperplane or a hypercylinder. Finally, we give a necessary
and sufficient condition for a quadratic triangular Bézier surface in E

4 to
become a translation surface.

2. Basic concepts

Let M be a smooth surface in E
n given by a patch X(u, v), (u, v) ∈ D ⊂

E
2. The tangent space to M at a point p = X(u, v) of M is span {Xu,Xv}.

In the chart (u, v), the coefficients of the first fundamental form of M are
given by

E = 〈Xu,Xu〉 , F = 〈Xu,Xv〉 , G = 〈Xv ,Xv〉 ,

where 〈, 〉 is the Euclidean inner product. We assume that W 2 = EG−F 2 6=
0, i.e., the surface patch X(u, v) is regular. For each p ∈ M , consider the de-
composition TpE

n = TpM ⊕T⊥
p M where T⊥

p M is the orthogonal component
of TpM in E

n.

Let χ(M) and χ⊥(M) be the space of smooth vector fields tangent to M

and the space of smooth vector fields normal to M , respectively. Given any
local vector fields X1, X2 tangent to M , consider the second fundamental
map h : χ(M)× χ(M) → χ⊥(M),

h(Xi,Xj
) = ∇̃X

i
X

j
−∇X

i
X

j
1 ≤ i, j ≤ 2, (2.1)

where ∇ and
∼

∇ are the induced connection of M and the Riemannian con-
nection of En, respectively. This map is well-defined, symmetric and bilinear.
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For any orthonormal frame field {N1, N2, ..., Nn−2} of M , the shape oper-

ator A : χ⊥(M)× χ(M) → χ(M) is defined by

ANk
Xj = −(∇̃Xj

Nk)
T , Xj ∈ χ(M).

This operator is bilinear, self-adjoint and satisfies the condition

〈ANk
Xj ,Xi〉 = 〈h(Xi,Xj), Nk〉 = ckij, 1 ≤ i, j ≤ 2, 1 ≤ k ≤ n− 2, (2.2)

where ckij are the coefficients of the second fundamental form.

The equation (2.1) is called the Gauss formula. One has

h(Xi,Xj) =

n−2∑

k=1

ckijNk, 1 ≤ i, j ≤ 2.

Then the Gaussian curvature K of a regular patch X(u, v) is given by

K =
1

W 2

n−2∑

k=1

(ck11c
k
22 − (ck12)

2). (2.3)

Further, the mean curvature vector of a regular patch X(u, v) is given by

−→
H =

1

2W 2

n−2∑

k=1

(ck11G+ ck22E − 2ck12F )Nk. (2.4)

The norm of the mean curvature vector
∥∥∥−→H

∥∥∥ is called the mean curvature

of M . The mean curvature H and the Gaussian curvature K play the most
important roles in differential geometry for surfaces (see [1]).

Recall that a surface M is said to be flat (respectively minimal) if its
Gaussian curvature (respectively mean curvature) vanishes identically (see
[2]).

The kth mean curvature of M is defined by

Hk =
1

2W 2
(ck11G+ ck22E − 2ck12F ), 1 ≤ k ≤ n− 2.

The surface M is said to beHk-minimal if the kth mean curvatureHk vanishes
identically.

We denote by R the curvature tensor associated with ∇,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The equations of Gauss and Ricci are given, respectively, by

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z)h(Y,W )〉 ,
〈
R⊥(X,Y )ξ, η

〉
= 〈[Aξ, Aη]X,Y 〉 ,

for vectors X,Y,Z,W tangent to M and ξ, η normal to M (see [2]).
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3. Translation surfaces in E
3

Let α, β : R −→ E
3 be two Euclidean space curves. Put α(u) = (f1(u),

f2(u), f3(u)) and β(v) = (g1(v), g2(v), g3(v)). Then the sum of α and β can
be considered as a surface patch X : E2 −→ E

3,

X(u, v) = α(u) + β(v), u0 < u < u1, v0 < v < v1,

which is a surface in E
3, where the tangent vectors α′ and β′ must be linearly

independent for any u and v.
A basis for the tangent space is given by

Xu = (f
1

′(u), f
2

′(u), f
3

′(u)),

Xv = (g
1

′(v), g
2

′(v), g
3

′(v)).

The unit normal vector field N can be given by (see [3])

N =
1√

1− 〈α′, β′〉
(
f
2

′g
3

′ − f
3

′g
2

′, f
3

′g
1

′ − f
1

′g
3

′, f
1

′g
2

′ − f
2

′g
1

′
)
.

Definition 3.1. A surface M defined as the sum of two plane curves
α(u) = (u, 0, f(u)) and β(v) = (0, v, g(v)) is called a translation surface in
E
3. So, a translation surface is defined by means of the Monge patch

X(u, v) = (u, v, f(u) + g(v)).

Example 3.1. Consider the translation surfaces in E
3 given by

a) f(u) = cosh(
u

3
), g(v) = sin(

v

3
) (see Figure 1(A)),

b) f(u) = sin(3u), g(v) = cos(3v) (see Figure 1(B)).

(a) Translation surface. (b) The egg box surface.

Figure 1. Translation surfaces in E
3.

The following results are well known.
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Proposition 3.1 (see [7]). Let M be a translation surface in E
3. Then

the Gaussian and the mean curvature of M can be given by

K =
f ′′g′′

(1 + (f ′)2 + (g′)2)2

and

H =
f ′′(1 + (g′)2) + g′′(1 + (f ′)2)

2(1 + (f ′)2 + (g′)2)
3

2

.

From the previous proposition, one can get the following results.

Theorem 3.1. Let M be a translation surface in E
3. Then M has van-

ishing Gaussian curvature if and only if either M is a plane or a part of

a cylinder with the axis parallel to (1, 0, a) or (0, 1, c), where a, c are real

constants.

Theorem 3.2 (see [8]). Let M be a translation surface in E
3. If M has

constant Gaussian curvature, then M is congruent to a cylinder. So, K = 0.

Corollary 3.1. Let M be a translation surface in E
3. Then M is a min-

imal surface if and only if

f ′′

1 + (f ′)2
= − g′′

1 + (g′)2
= a,

where a is a non-zero constant.

Theorem 3.3 (see [8]). Let M be a translation surface in E
3. Then M is

minimal if and only if M is a surface of Scherk given by the parametrization

f(u) =
1

a
log |cos(au)| ,

g(v) = −1

a
log |cos(av)| ,

where a is a non-zero constant.

Theorem 3.4 (see [7]). Let M be a translation surface with constant

mean curvature H 6= 0 in the 3-dimensional Euclidean space E
3. Then M is

congruent to a surface given by the parametrization

f(u) =
−
√
1− a2

2H

√
1− 4H2u2,

g(v) = −av,

where a < 1 is a non-zero positive constant.
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4. Translation surfaces in E
4

Let α, β : R −→ E
4 be two curves in E

4. Put α(u) = (f1(u), f2(u), f3(u),
f4(u)) and β(v) = (g1(v), g2(v), g3(v), g4(v)). Then the sum of α and β can
be considered as a surface patch X : E2 −→ E

4,

X(u, v) = α(u) + β(v), u0 < u < u1, v0 < v < v1,

which is a surface in E
4.

Definition 4.1. A surface M defined as the sum of two space curves
α(u) = (u, 0, f3(u), f4(u)) and β(v) = (0, v, g3(v), g4(v)) is called a transla-

tion surface in E
4. So, a translation surface is defined by a patch

X(u, v) = (u, v, f3(u) + g3(v), f4(u) + g4(v)). (4.1)

The tangent space of M is spanned by the vector fields

Xu = (1, 0, f
3

′(u), f
4

′(u)),

Xv = (0, 1, g
3

′(v), g
4

′(v)).

Hence the coefficients of the first fundamental form of the surface are

E = 〈Xu,Xu〉 = 1 + (f
3

′)2 + (f
4

′)2,

F = 〈Xu,Xv〉 = f
3

′g
3

′ + f
4

′g
4

′,

G = 〈Xv ,Xv〉 = 1 + (g
3

′)2 + (g
4

′)2,

where 〈 , 〉 is the standard scalar product in E
4. Since the surface M is non-

degenerate, ‖Xu ×Xv‖ =
√
EG− F 2 6= 0. For the later use we define a

smooth function W as W = ‖Xu ×Xv‖ .
The second partial derivatives of X(u, v) are given by

Xuu = (0, 0, f
3

′′(u), f
4

′′(u)),

Xuv = (0, 0, 0, 0),

Xvv = (0, 0, g
3

′′(v), g
4

′′(v)).

(4.2)

Further, the normal space of M is spanned by the orthonormal vector fields

N
1
=

1√
Ẽ
(−f

3

′(u),−g
3

′(v), 1, 0),

N
2
=

1√
ẼW̃

(F̃ f
3

′(u)− Ẽf
4

′(u), F̃ g
3

′(v)− Ẽg
4

′(v),−F̃ , Ẽ),

(4.3)
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where

Ẽ = 1 + (f
3

′)2 + (g
3

′)2,

F̃ = f
3

′f
4

′ + g
3

′g
4

′,

G̃ = 1 + (f
4

′)2 + (g
4

′)2

W̃ =

√
ẼG̃− F̃ 2.

Using (4.2) and (4.3), we can calculate the coefficients of the second fun-
damental form as follows:

c111 =
f
3

′′

√
Ẽ
, c122 =

g
3

′′

√
Ẽ
,

c112 = c212 = 0,

c211 =
Ẽf

4

′′ − F̃ f
3

′′

√
ẼW̃

,

c222 =
Ẽg

4

′′ − F̃ g
3

′′

√
ẼW̃

.

(4.4)

Using (4.4) and (2.2), the second fundamental tensors ANα become

AN1
=

1

W 2




f
3

′′√
Ẽ

0

0
g
3

′′√
Ẽ


 , AN2

=
1

W 2




Ẽf
4

′′−F̃ f
3

′′√
ẼW̃

0

0
Ẽg

4

′′
−F̃ g

3

′′√
ẼW̃


 .

By (4.4) together with (2.3) and (2.4), we get the following result.

Proposition 4.1. Let M be a translation surface in E
4. Then the Gauss-

ian curvature and mean curvature vector field of M can be given by

K =
f
3

′′g
3

′′G̃− (f
3

′′g
4

′′ + g
3

′′f
4

′′)F̃ + f
4

′′g
4

′′Ẽ

W̃ 2W 2

and

−→
H =

f
3

′′G+ g
3

′′E

2
√

ẼW 2
N1 +

G(f
4

′′Ẽ − f
3

′′F̃ ) + E(g
4

′′Ẽ − g
3

′′F̃ )

2
√

ẼW̃W 2
N2.

From this proposition, one can get the following results.

Theorem 4.1. Let M be a translation surface in E
4. Then M has van-

ishing Gaussian curvature if and only if either M is a plane or a part of a

hyper-cylinder of the form

X(u, v) = (0, v, b3 + g3(v), b4 + g4(v)) + u(1, 0, a3, a4)

or

X(u, v) = (u, 0, d3 + f3(u), d4 + f4(u)) + v(0, 1, c3 , c4),
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where ai, bi, ci, di (i = 3, 4) are real constants, and b3, b4, d3, and d4 can be

taken to be 0.

Theorem 4.2 (see [3]). Let M be a translation surface in E
4. Then M is

minimal if and only if either M is a plane or

fk(u) =
ck

c23 + c24

(
log

∣∣cos(
√
au)

∣∣+ cu
)
+ eku,

gk(v) =
ck

c23 + c24

(
− log

∣∣∣cos(
√
bv)

∣∣∣+ dv
)
+ pkv, k = 3, 4

where ck, ek, pk, a, b, c, d are real constants with a > 0 and b > 0.

For the general case of the previous theorem see [10].

Proposition 4.2. Let M be a translation surface in E
4 given by the sur-

face patch (4.1). If the functions f3(u) and g3(v) are linear polynomials,

then M is H1-minimal.

Proof. The first mean curvature of the translation surface M is

H1 =
f
3

′′G+ g
3

′′E

2
√

ẼW 2
.

Suppose that f3(u) and g3(v) are linear polynomials of the form

f3(u) = a1u+ a2, g3(v) = b1v + b2.

Then the first mean curvature of the translation surface M vanishes identi-
cally. �

5. Bézier translation surfaces in E
4

Quadratic triangular Bézier surfaces in E
4 can be parametrized with the

help of barycentric coordinates u, v, and t = 1− u− v as follows:

s(u, v, t) =
∑

i+j+k=2

B2
ijk(u, v, t)bijk,

where

B2
ijk =

2!

i!j!k!
uivjtk

are basis functions and bijk are control points (see [9]).
A quadratic triangular Bézier surface M ⊂ E

4 can be parametrized with
the help of affine parameters u, v as follows:

X(u, v) =
1

2
xu2 + yuv +

1

2
zv2 + wu+ cv + d, (5.1)

where x, y, z, w, c, d are constant vectors in E
4.
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Furthermore, a quadratic triangular Bézier surface can be considered as
the sum of two curves

α(u) =

4∑

i=1

1

2
xiu

2 +wiu+ ai,

β(v) =

4∑

i=1

1

2
ziv

2 + civ + bi.

Corollary 5.1. Let M be a quadratic triangular Bézier surface in E
4

given by (5.1). If

w1 = 1, x1 = z1 = c1 = d1 = 0,

c2 = 1, x2 = z2 = w2 = d2 = 0, (5.2)

y = 0,

then M is a translation surface.

Proof. If the equalities (5.2) hold, then

X(u, v) = (u, v, r(u, v), s(u, v)),

where

r(u, v) =
1

2
x3u

2 +
1

2
z3v

2 + w3u+ c3v + d3,

s(u, v) =
1

2
x4u

2 +
1

2
z4v

2 + w4u+ c4v + d4.

So the Bézier surface becomes a translation surface of the form

f3(u) =
1

2
x3u

2 + w3u+ a3; g3(v) =
1

2
z3v

2 + c3v + b3,

f4(u) =
1

2
x4u

2 + w4u+ a4; g4(v) =
1

2
z4v

2 + c4v + b4,

(5.3)

where di = ai + bi, i = 3, 4. �

Example 5.1. We construct a 3D geometric shape model in E
3 by using

the projection of the Bézier translation surface in equation (5.3), which is
given by

X(u, v) = (u, v,−u2

2
,−v2

2
),

where x3 = −1, z4 = −1, w3 = a3 = z3 = c3 = b3 = x4 = w4 = a4 = c4 =
b4 = 0.
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Furthermore, we plot the graph (see Figure 2) of the given surface by
using the Maple plotting command

plot3d([x+ y, z, w], x = a..b, y = c..d).

Figure 2. The projection of Bézier translation surface in E
3.
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